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Abstract— There are many methods/definitions for fractional order derivatives, and
naturally, there are many definitions for fractional order integrals based on these definitions.
In this paper, a new definition for fractional order integral was emphasized based on the
definition for fractional order derivative made by Karci.
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1. Introduction

The concept of rate of change in any function versus change in the independent variables
was defined as derivative, and this concept attracted by many scientists and mathematicians
such as Newton, L’Hospital, Leibniz, Abel, Euler, Riemann, etc (Newton, 1687; L Hospital,
1696; L’Hospital, 1715; Goldenbaum et al, 2008; Baron, 1969; Leibniz, 1695). After these
mathematicians/scientists, there are many mathematicians dealt with this concept, and some of
them such as Euler, Riemann-Liouville, Caputo, Abel, Fourier, Miller-Ross, Grunwald-
Letnikov, Oldham-Spanier, and Kolwankar-Gangal extended the derivative concept to
fractional order derivative.

The fractional calculus, fractional order derivatives have attracted many mathematicians /
scientists such as Newton, Leibniz, L’Hospital, Abel, Euler, Rieman, Fourier, Caputo,
Liouville, etc and there are a lot of studies on fractional calculus (Das, 2011; Mandelbrot et al,
1968; Mirevski et al, 2007; Schiavone et al, 1990; Bataineh et al, 2009; Diethelm et al, 2005;
Li et al, 2011). Karct and his friends defined a new concept for fractional order derivatives
and determined revealed the properties of fractional order derivatives (Karci, 2013a; Karci
2013b; Karci, 2015a; Karci, 2015b; Karci, 2015¢; Karci, 2015d; Karci, 2015¢; Karci, 2016;
Karet, 2017).

Especially, Karc1 defined fractional order derivatives with holding all properties of
Newtonian derivative. Due to this case, the fractional order integration was re-defined in this
paper based on KArc1’s fractional order derivative.

This paper is organized as follow. Section 2 describes the new definition for fractional
order derivative. Section 3 illustrates the chain rule for fractional order derivative. Finally,
paper is concluded in Section 4.
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2. Karcr’s Fractional Order Derivative
The concept of fractional order derivative was re-defined by Karci holding the all
properties of classical derivative defined by Newton. Some properties of fractional order

derivative defined by Karci are as follow. The Karcr’s derivative 'K obeys the rules and
properties of classical derivative (Newtonian derivative) in case of product, quotient, chain.

Definition 1: Assume that f(x):R—R is a function, a eR and L(.) be a L ’Hospital process.
The fractional order derivative of f(x) is
d(f(x+h)— f(x))

K E ()= lim L(fa(x+h)—fa(x)J= lim ah :(f(x))a_ldf(x)
h—0 (X-}-h)a_xa h—0 d((X+h)a—Xa) X ax
dh

Definition 2: Assume that f{x), g(x):R—R are continuous functions, a €R and h(x)=f(x)g(x). The fractional
order derivative of h(x) is as follows.
f(x)

a-1
jK h(X):(f(X)g(X)J (df (X)g(X)+ f(X) dg(X)
X dx X
Definition 3: Assume that f{x), g(x):R—R is a continue functions, a.€R and h(x) = @ The fractional order

d

derivative of h(x) is as follows.
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f(x)j“ a ST

xg(x) 9°(x)
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Definition 4: The chain rule for fractional order derivative with respect to Definition 1 is

TN (O] AR L) e
X

ox% ou”® ox* u

3. Fractional Order Integration
The fractional order integrals defined by many researchers, and the Riemann-Liouville
fractional integrals (Kilbas et al, 2006) can be given as follow.

(12 £ Yx) = = (1a) | (Xfftt))‘fta . (x>a R(a) > 0) and

1 ¢ f(t)dt
17 f)x)= , (x<b;R(a)>0
1100 = [ X <biR@>0)
where I"(av) is the gamma function. In this paper, fractional order integral is defined based on
K fractional order derivative. The following theorem gives the fractional order integral

based on ‘K.

Theorem: Assume that f(x) is real function which has single polynomial term, a¢eR (« is

the fractional order of derivative) and °Kf (x) = bx® then 'Kf (x) = ¢~ 22 x«".
C+a
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Proof: Assume that f(x) is a real function and has single polynomial term such as
f(x) = ax"

,a,neR, and
a-1 n @1
OKF () :( f (X)j dfd(X) _ [aX j anx™ = a® (D@D 4yt = g2y
X X X

If °Kf (x) =bx°, then b and ¢ can be obtained as follows.
c:a(n—l):>n=£+1andbzaanzaa(CJraj:a“: ab —a=qd b u
a a C+a C+a

Example 1: Assume that f(x)=4x°, and « =%then JKf (x) =10x*. The fractional order
2

integral of Kf (x) =10x? can be obtained as follow.
2

10
n:%+1:5 and a =22 =*42=4. So, f(x)=/Kf(x)=ax’=4x", and this is the
E 2+§ 2

original function f(x).

Example 2: Assume that f(x)=4x°, and « = 2 then JKf (x) =80x®. The fractional order
integral of JKf (x) =80x® can be obtained as follow.

n:%+1:5 and a= /% =4. So, f(x)=,Kf(x)=ax"=4x>, and this is the original
+

function f(x).

Example 3: Assume that f(x)=4x°, and « = -1then Kf(x) =%x‘4. The fractional order

integral of _{Kf (x) =80x™° can be obtained as follow.

-1
4) =4. So, f(x)=_Kf(x)=ax"=4x°, and this is the

n:;j+1:5 and a=71—24 (—
original function f(x).

4. Conclusions
In this paper, the methods for fractional order integral was made based on the Karci’s
fractional order derivative providing the all properties of Newtonian derivative. The new
definition for integral is for real function not complex functions, this definition was supported
with examples.
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