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ABSTRACT: In this study, approximate analytical solution for the dynamic response of composite sandwich 
beams subjected to moving mass is presented. Using modal superposition, the equation of motion for the beam is 
derived in matrix form. Since coefficients of the matrix equation of motion are time-dependent, Newmark’s method 
is employed for numerical solution. Effects of the lamina thickness and the fiber orientation on the beam deflection 
and the contact force between the beam and the mass are studied. 
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Hareketli Kütle Etkisi Altindaki Kompozit Sandviç Kirişlerin Dinamik Analizi 
 

ÖZET: Bu çalışmada, hareketli kütle etkisi altındaki kompozit sandviç kirişlerin dinamik davranışı için yaklaşık 
bir analitik çözüm sunulmuştur. Modal süperpozisyon kullanılarak kiriş için hareket denklemi matris formda elde 
edilmiştir. Bu hareket denkleminin katsayıları zamana bağlı olduğundan, Newmark metodu kullanılarak sayısal 
çözüm yapılmıştır. Tabaka yüksekliği ve lif doğrultularının, kiriş çökmesi ve hareketli kütle ile kiriş arasında 
meydana gelen değme kuvveti üzerindeki etkileri incelenmiştir. 
 
Anahtar Kelimeler: Kompozit sandviç kirişler; Hareketli kütle; Modal süperpozisyon; Dinamik analiz 
 
1. INTRODUCTION 

Dynamics of continuous elastic systems due to the 
passage of different types of moving loads is of a great 
importance in many diverse fields of engineering. 
Especially, in bridge engineering, dynamic effects of the 
moving vehicles on bridge structures has attracted much 
attention during the last three decades because of 
increasing use of heavy and high-speed vehicles as well 
as the development of high-performance materials 
which results in more slender bridge cross-sections.  

 
It is well known inertial effects of a heavy vehicle 

travelling on an elastic structure are very important 
when it moves at high speeds [1-5]. In addition, 
separation between the mass and the supporting 
structure may occur in the case of greater vehicle to 
beam mass ratio [6-7]. Since equation of motion for the 
moving mass problem includes time-varying 
coefficients, a closed form solution is not available. 
Therefore, various approximate techniques have been 
used to solve the problem [1-9]. Bilello et al. [10] gave 
experimental validation of moving mass problem of a 
simply supported elastic beam.  

 
Nowadays, the traditional heavy beams of simple 

materials are gradually being replaced by stronger 
composite beams with low weight. The use of 
composites in different engineering applications has 
tremendously increased because of their high strength, 
stiffness and favorable failure characteristics.  

 
 

The vibration problem of composite structures due 
to different types of loads has been extensively studied 
[11-17]. Although dynamic analyses of isotropic 
structures under the action of moving loads were well 
studied, to the authors’ knowledge, works on dynamic 
problem of laminated composite or sandwich beams 
under moving loads are rare [18-20].  

 
This study is the extended version of the authors’ 

previous paper [21]. It presents an approximate 
analytical solution of composite sandwich beams 
subjected to a moving mass by using equivalent mass 
and stiffness assumptions. The equation of motion with 
time-dependent coefficients for the beam is derived in 
matrix form by using the modal superposition. 
Deflection response of the beam and the interaction 
force between the beam and the mass are obtained 
numerically with using Newmark’s method. Effects of 
the lamina thickness and the fiber orientation on the 
results are studied for two sandwich beam models.      

 
2. FORMULATION 
As shown in Figure 1, a multi-layered composite beam 
with simple supports is under the action of a lumped 
mass moving with a constant speed. In this model, the 
top and bottom layers (face sheets) are made from 
anisotropic composite material while the central (core) 
layer may be isotropic or anisotropic. The beam is 
initially at rest and it is assumed that mid-plane 
symmetry exists, i.e., the bending-stretching coupling 
and transverse shear are neglected. 
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Figure 1. A simply supported sandwich beam under a 
mass moving with constant speed 
 
Governing differential equation of motion of the 
problem can be written as follows: 
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where eqEI )(
, eqm

, bω , L, and ),( txy  represent the 
equivalent flexural rigidity, the equivalent mass per unit 
length, the circular frequency of damping, the length 
and the transverse deflection of the beam, respectively. 
Boundary and initial conditions are 
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For the laminated composite beam shown in Figure 1, 
the equivalent mass per unit length and the stiffness can 
be written as [13, 19, 21]. 
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where b is width of the beam, H and h are terms related 
with thickness as seen in Figure 1, ρ is mass density and 
E is Young’s modulus. Subscripts “c” and “f” represent 
quantities belong to the core and face layers, 

respectively. fE
 can be written as  
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where 11E , 22E , 12G  and 12ν  are the mechanical 
properties of face lamina along their principal 
directions. θ  is the fiber angle measured from x- axis in 
counter-clock wise direction. 
 

The load term ),( txp  in Eq. (1) can be written as  

  )()(),( vtxtPtxp −= δ , (7) 

where )(Lδ  is the Dirac delta function and )(tP  is 
defined as 
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where M, v and g are the mass and speed of the moving 
load, and acceleration of gravity, respectively.   
 

In modal form, transverse deflection ),( txy  of the 
beam can be written as follows: 
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where N is number of modes to be included in 

numerical calculations and )(tqn  are the generalized 

co-ordinates to be determined. )(xnφ  represents the 
normal modes of the beam. For simply supported 
beams, it can be defined as 
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Introducing the solution given by Eq. (9) into Eq. (1), 

multiplying the result by )(xiφ , and then integrating it 
over the interval Lx ≤≤0  yields 
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where 1=inδ  when ni = , and 0=inδ  when ni ≠ . 
Dots and primes represent the derivatives with respect 

to time t and spatial coordinate x, respectively. nξ  and 

nω  are the damping coefficient and the natural circular 
frequency for nth mode, respectively, and they can be 
defined as follows:   

  n

b
n ω

ωξ =
, (12) 
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Eq. (11) indicates a set of coupled ordinary differential 
equations, and can be written in the following matrix 
form.  

   PKqqCqM =++ &&& . (14) 
where, the matrices M , C , K , and the vector P  are 
time-varying and defined as  
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where, I  is n-dimensional identity matrix, and the 
matrices Φ′  and Φ ′′  are the first and second 
derivatives of the matrix Φ  with respect to x. 

[ ]Ldiag  indicates a diagonal matrix, e.g., 
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The possibility of loss of contact between the mass and 
the beam can be examined by monitoring the contact 
force between the mass and the beam which is given by  
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which is positive if acting in the downward direction. 
Changing of the interaction force from positive to 
negative indicates that the mass has separated from the 
beam and Eq. (1) is no longer valid to describe the 
ensuing motion. 
 
3. RESULTS and DISCUSSION 
Newmark’s method is employed for numerical solution 
of Eq. (14). Table 1 shows material properties of two 
sandwich beam models used in the study. Model I has a 
softer core than that of Model II. Geometrical properties 
of the beam are 4=L  m, 20=b  cm and 402 =H  
cm. In numerical calculations, damping is ignored and 
sufficient number of vibration modes is considered. 
 
Table 1. Material properties for the beam models used 
in the study 
 

Mo
del 

Materia
l 

ρ  
(kg/
m3) 

11E (
GPa) 

22E (
GPa) 

12G (
GPa) 

12υ
 

I Carbon/
Epoxy 

160
0 177 10.8 76 0.2

70 

 Foam 11.2 85.53
×10-5 

85.53
×10-5 

31.40
×10-5 

0.3
62 

II 
E-
Glass/E
poxy 

210
0 39 8.66 3.8 0.2

80 

 Balsa 
wood 160 3.74 0.172 0.202 0.2

29 
 
Figures 2 and 3 show variation of the fundamental 
frequency of the sandwich beam with the face lamina 
thickness to beam height ratio for different fiber angles. 

As 
Hhf /

 goes to 1, the thickness of the face lamina 
increases. As seen in the figures, the fundamental 
frequency decreases with increasing the fiber angle. 
This is because an increase in the fiber angle causes a 
decrease in the beam stiffness. A linear relation is 

observed between πω 2/1  and 
Hhf /

 for Model I 
(Figure 2) while not for Model II (Figure 3). When the 
stiffness of the core layer is so small compared to that of 
the face layers, it can, thus, be obtained a linear relation 
between the frequency and the thickness ratio.  
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In Figures 4 and 5, variation of maximum midpoint 

deflections of the beam with 
Hhf /

 for different fiber 
angles is given. For Model I, the maximum midpoint 

deflections decrease with increasing 
Hhf /

 (Figure 
4). However, it is observed that the maximum midpoint 
deflections for Model II increase first and then decrease 

when 
Hhf /

 increases (Figure 5). Curves in Figures 4 
and 5 are compatible with those in Figures 2 and 3. As 

Hhf /
 increases, stiffness of the beam also increases, 

and thus the beam deflections decrease. Figures 4 and 5 
also show that the maximum beam deflections increase 
with increasing the fiber angle. Results in Figures 2 to 5 
show that the natural frequency and the deflections of 
composite sandwich beams can be controlled by 
choosing the proper fiber angle or lamina thickness as 
previously reported in [19]. 
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Figure 2. πω 2/1  vs. 
Hhf /

 for different fiber angles 
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Figure 3. πω 2/1  vs. 
Hhf /

 for different fiber angles 
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Figure 4. Maximum midpoint deflections vs. 
Hhf /

 for different 

fiber angles, ( 3.0/ =mLM , hkmv /50= ) 
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Figure 5. Maximum midpoint deflections vs. 

Hhf /
 for different fiber angles, ( 3.0/ =mLM , hkmv /50= ) 

 
 

Figures 6 and 7 give variation of beam deflections at 
midpoint for different fiber angles when the mass 
moves along the beam. From these figures, it is 

observed that midpoint deflections increase when the 
fiber angle increases due to decreasing of the beam 
stiffness. Deflection curves are observed to approach 

each other for 45>θ  when core stiffness of the 
sandwich beam is increased.  
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Figure 6. Midpoint deflections of the beam for different fiber angles (
3/1/ =Hhf , 3.0/ =mLM , hkmv /50= ) 
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Figure 7. Midpoint deflections of the beam for different fiber angles (

3/1/ =Hhf , 3.0/ =mLM , hkmv /50= ) 
 
 

In Figures 8 and 9, the contact (interaction) force 
between the mass and the beam for different fiber 
angles is given. The contact force exhibits 
fluctuations when the mass travels along the beam. 

As the fiber angle increases, greater fluctuations are 
observed.  
 
Figures 10 and 11 give a comparison of the midpoint 

deflections and the contact forces, respectively, for 
the beam models used. It is observed from these 
figures that smaller deflections but greater contact 

forces are obtained for Model II since the stiffness of 
the core layer is increased. 
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Figure 8. The contact force for different fiber angles (
3/1/ =Hhf , 3.0/ =mLM , hkmv /50= )  
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Figure 9. The contact force for different fiber angles (

3/1/ =Hhf , 3.0/ =mLM , hkmv /50= )  
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Figure 10. Comparison of midpoint deflections for the beam models used (

3/1/ =Hhf , 45=θ , 3.0/ =mLM , 
hkmv /50= ) 

0 0.2 0.4 0.6 0.8 1
vt / L

0.4

0.6

0.8

1

In
te

ra
ct

io
n 

Fo
rc

e,
 F

c (
kN

)

Model I
Model II

 
Figure 11. Comparison of the contact forces for the beam models used (

3/1/ =Hhf , 45=θ , 3.0/ =mLM , 
hkmv /50= ) 
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4. CONCLUSIONS 
In this study, dynamic problem of composite sandwich 
beams subjected to a moving mass with constant speed 
is considered. The equation of motion with time-
dependent coefficients for the beam is derived in matrix 
form by using the modal superposition and solved 
numerically by Newmark’s direct integration scheme. 
Results show that increasing of the thickness and the 
fiber angle of the face lamina has a great effect on the 
deflection response of the beam and the contact force 
between the mass and the beam. For sandwich 
composite beams with soft-core layer, greater 
deflections but smaller contact forces are obtained. This 
type of beams is more flexible than those with hard-core 
layers. This study gives basic understanding about 
dynamics of the laminated composite beams. For better 
understanding, further investigations including the 
combined effect of anisotropy and transverse shear 
should be required.  
 
ACKNOWLEDGEMENTS 
This study is supported by The Scientific and 
Technological Research Council of Turkey (TUBITAK) 
under International Postdoctoral Research Scholarship 
Program (2219). 
 
REFERENCES 

 
1. Fryba, L., 1972, Vibration of Solids and Structures 

under Moving Loads, Noordhoff International, 
Groningen, the Netherlands 

2. Ting, E.C., Genin, J., Ginsberg, J.H., 1974, A 
General Algorithm for Moving Mass Problem, 
Journal of Sound and Vibration, 33, 49-58 

3. Stanisic, M.M., 1985, On a New theory of the 
Dynamic Behavior of the Structures Carrying 
Moving Masses, Ingenieur-Archiv, 55, 176-185 

4. Sadiku, S., Leipholz, H.H.E., 1987, On the 
Dynamics of Elastic Systems with Moving 
Concentrated Masses, Ingenieur-Archiv, 57, 223-
242 

5. Akin, J.E., Mofid, M., 1989, Numerical Solution 
for the Response of Beams with Moving Mass, 
ASCE Journal of Structural Engineering, 115, 120-
131 

6. Lee, H.P., 1996, Dynamic Response of a Beam 
with a Moving Mass, Journal of Sound and 
Vibration, 191, 289-294 

7. Lee, U., 1998, Separation between the Flexible 
Structure and the Moving Mass Sliding on It, 
Journal of Sound and Vibration, 209, 867-877  

8. Wu, J.J., Whittaker, A.R., Cartmell, M.P., 2001, 
Dynamic Responses of Structures to Moving 
Bodies Combined Finite Element and Analytical 
Methods, International Journal of Mechanical 
Sciences, 43, 2555-2579  

9. Bowe, C.J., Mullarkey, T.P., 2008, Unsprung 
Wheel-Beam Interactions using Modal and Finite 
Element Models, Advances In Engineering 
Software, 39, 911-922 

10. Bilello, C., Bergman, L.A., Kuchma, D., 2004, 
Experimental Investigation of a Small-Scale Bridge 
Model under a Moving Mass, ASCE Journal of 
Structural Engineering, 130, 799-804 

11. Reddy, J.N., Phan, N.D., 1985, Stability and 
Vibration of Isotropic, Orthotropic and Laminated 
Plates according to a Higher-Order Shear 
Deformation Theory, Journal of Sound and 
Vibration, 98, 157-170 

12. Suresh, J.K., Venkatesan, C., 1990, Structural 
Dynamic Analysis of Composite Beams, Journal of 
Sound and Vibration, 143, 503-519 

13. Hamada, A., 1995, Vibration and Damping 
Analysis of Beams with Composite Coats, 
Composite Structures, 32, 33-38 

14. Banerjee, J.R., 1998, Free Vibration of Axially 
Loaded Composite Timoshenko Beams using the 
Dynamic Stiffness Matrix Method, Computers & 
Structures, 69, 197-208 

15. Bassiouni, A.S., Gad-Elrab, R.M., Elmahdy, T.H., 
1999, Dynamic Analysis for Laminated Composite 
Beams, Composite Structures, 44, 81-87 

16. Lee, S.Y., Wooh, S.C., 2004, Finite Element 
Vibration Analysis of Composite Box Structures 
using the High Order Plate Theory, Journal of 
Sound and Vibration, 277, 801-814 

17. Zhen, W., Wanji, C., 2008, An Assessment of 
Several Displacement-Based Theories for the 
Vibration and Stability Analysis of Laminated 
Composite and Sandwich Beams, Composite 
Structures, 84, 337-349 

18. Kadivar, M.H., Mohebpour, S.R., 1998, Finite 
Element Dynamic Analysis of Unsymmetric 
Composite Laminated Beams with Shear Effect and 
Rotary Inertia under the Action of Moving Loads, 
Finite Elements In Analysis and Design, 29, 259-
273  

19. Zibdeh, H.S., Abu-Hilal, M., 2003, Stochastic 
Vibration of Laminated Composite Coated Beam 
Traversed by a Random Moving Load, Engineering 
Structures, 25, 397-404  

20. Lee, S.Y., Yhim, S.S., 2004, Dynamic Analysis of 
Composite Plates Subjected to Multi-Moving Loads 
based on a Third Order Theory, International 
Journal of Solids and Structures, 41, 4457-4472 

21. Kahya, V., Mosallam, A.S., “Kompozit Sandviç 
Kirişlerin Hareketli Yük Etkisi Altında Dinamik 
Davranışı”, TUMTMK XVI. Ulusal Mekanik 
Kongresi, 22-26 Haziran 2009, Kayseri-Türkiye, 
739-749  

 

 


