

On f-biharmonic Curves in the Three-dimensional Lorentzian Sasakian Manifolds

Murat ALTUNBAŞ 0

Abstract

The necessary and sufficient conditions for a proper f-biharmonic curve in the three-dimensional Lorentzian Sasakian manifolds are obtained. Moreover, we give some results for f-biharmonic Legendre curves.

Keywords and 2010 Mathematics Subject Classification Keywords: Lorentzian metric —*f*-biharmonic curves—Lorentzian Sasakian manifolds MSC: 53B25, 53C25

Department of Mathematics, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, Erzincan, 24100, Turkey Maltunbas@erzincan.edu.tr

Corresponding author: Murat ALTUNBAŞ

Article History: Received 30 June 2021; Accepted 17 December 2021

1. Introduction

Harmonic maps between (pseudo-) Riemannian manifolds have been studied extensively since the eminent work of Eells and Sampson [1]. In addition to this, biharmonic maps, which are generalizations of harmonic maps, constitute one of the dynamical topic of differential geometry (for a survey of biharmonic maps see [2]). Non-harmonic biharmonic maps are said to be proper biharmonic maps. Chen and Ishikawa showed that there does not exist proper biharmonic curves in Euclidean 3-space [3]. Moreover, they investigated proper biharmonic curves in Minkowski 3-space (see [4]). Caddeo, Montaldo and Piu studied biharmonic curves on a surface [5]. Caddeo, Oniciuc and Piu demonstrated that all non-geodesic biharmonic curves are helices in three-dimensional Heisenberg space [6]. Ou and Wang characterized non-geodesic biharmonic curves in Sol space and proved that there exists no non-geodesic biharmonic helix in Sol space [7]. Caddeo, Montaldo, Oniciuc and Piu found explicit formulae for biharmonic curves in Cartan-Vranceanu three-dimensional spaces [8].

In [9], Lu gave a generalization of biharmonic maps and introduced f-biharmonic maps. He derived the first variation formula and calculated the f-biharmonic map equation. Ou considered f-biharmonic curves on a generic manifold and gave a characterization for them in n-dimensional space forms [10]. Guvenc and Ozgur studied f-biharmonic Legendre curves in Sasakian space forms [11]. Karaca and Ozgur investigated f-biharmonic curves in Sol spaces, Cartan Vranceanu three-dimensional spaces and homogenous contact three-manifolds [12]. Du and Zhang examined f-biharmonic curves in Lorentz-Minkowski space [13].

In this paper, we investigate the curves of the three-dimensional Lorentzian Sasakian manifolds in order to specify f-bihamonicity properties of them. We consider the Lorentzian Bianchi-Cartan-Vranceanu model of 3-dimensional Lorentzian Sasakian manifolds. Throughout the paper, all geometric objects (curves, manifolds, vector fields, functions etc.) are assumed to be smooth.

2. Preliminaries

2.1 Contact Lorentzian manifolds

A (2n+1)-dimensional differentiable manifold *M* is said to be an almost contact manifold if it admits a global form η such that $\eta \wedge (d\eta)^n \neq 0$ everywhere. When a contact form η is given, we have a unique vector field ξ satisfying

 $\eta(\xi) = 1$ and $d\eta(\xi, X) = 0$,

where X is a vector field on M. The vector field ξ is called characteristic vector field. It is known that there exists a Lorentzian metric g and a (1,1)-tensor field such that

$$\eta(X) = -g(X,\xi), \ d\eta(X,Y) = g(X,\phi Y), \ \phi^2(X) = -X + \eta(X)\xi,$$
(1)

where X and Y are vector fields on M. From (1), it follows that

$$\phi \xi = 0, \ \eta \circ \phi = 0, \ g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y).$$

A Lorentzian manifold *M* equipped with the tensors (g, ϕ, ξ, η) satisfying (1) is called Lorentzian contact metric manifold. A Lorentzian contact metric manifold is Sasakian if and only if

A Lorentzian contact metric manifold is Sasakian ii and

 $(\nabla_X \phi)Y = g(X,Y)\xi + \eta(Y)X,$

for any vector fields X, Y on M, where ∇ is Levi-Civita connection of g [14].

Definition 1. A 1-dimensional integral submanifold of a contact manifold is called a Legendre curve [17].

2.2 Frenet-Serret equations

Let $\gamma: I \to M$ be a unit speed curve in a three-dimensional Lorentzian manifold M such that γ' satisfies $g(\gamma', \gamma') = \varepsilon_1 = \pm 1$. The constant ε_1 is said to be the causal character of γ . A unit speed curve is called spacelike or timelike if its causal character is 1 or -1, respectively. A unit speed curve is called a Frenet curve if $g(\gamma'', \gamma'') \neq 0$. A Frenet curve has an orthonormal frame field $\{T = \gamma', N, B\}$ along γ . Then the Frenet-Serret equations are given by

$$\begin{aligned} \nabla_T T &= \varepsilon_2 \kappa N, \\ \nabla_T N &= -\varepsilon_1 \kappa T - \varepsilon_3 \tau B, \\ \nabla_T B &= \varepsilon_2 \tau N, \end{aligned}$$

where $\kappa = \|\nabla_{\gamma} \gamma'\|$ is the geodesic curvature and τ is the geodesic torsion of γ . The vector fields *T*, *N* and *B* are called tangent vector field, principal normal vector field and binormal vector field of γ , respectively.

The constants ε_2 and ε_3 are defined by $g(N,N) = \varepsilon_2$ and $g(B,B) = \varepsilon_3$, and called second causal character and third causal character of γ , respectively. The equation $\varepsilon_1 \varepsilon_2 = -\varepsilon_3$ holds.

A Frenet curve γ is a geodesic if and only if $\kappa = 0$.

Proposition 2. Let $\{T, N, B\}$ are orthonormal frame field in a Lorentzian 3-manifold. Then, [17],

 $T \wedge_L N = \varepsilon_3 B, N \wedge_L B = \varepsilon_1 T, B \wedge_L T = \varepsilon_2 N.$

Proposition 3. The torsion of a Legendre curve is 1 in three-dimensional Sasakian Lorentzian manifolds [15].

2.3 f-Biharmonic maps

A map $\varphi: (M_m, g) \to (N_n, h)$ between two pseudo-Riemannian manifolds is called harmonic if it is a critical point of the energy

$$E(\boldsymbol{\varphi}) = \frac{1}{2} \int_{\Omega} \|d\boldsymbol{\varphi}\|^2 dv_g,$$

where Ω is a compact domain of M_m . The tension field $\tau(\varphi)$ of φ is defined by

$$\tau(\varphi) = tr(\nabla^{\varphi} d\varphi) = \sum_{i=1}^{m} \varepsilon_i (\nabla^{\varphi}_{e_i} d\varphi(e_i) - d\varphi(\nabla_{e_i} e_i)),$$

Vol. 3, No. 2, 24-30, 2021

where ∇^{φ} and $\{e_i\}$ denote the induced connection by φ on the bundle φ^*TN_n . A map φ is called harmonic if its tension field vanishes. The bienergy $E_2(\varphi)$ of a map φ is defined by

$$E_2(\boldsymbol{\varphi}) = \frac{1}{2} \int_{\Omega} \|\boldsymbol{\tau}(\boldsymbol{\varphi})\|^2 dv_g,$$

and φ is called biharmonic if it is a critical point of the bienergy, where Ω is a compact domain of M_m . Clearly, all harmonic maps are biharmonic. Non-harmonic biharmonic maps are called proper biharmonic maps. The bitension field $\tau_2(\varphi)$ of φ is defined by

$$\tau_2(\varphi) = \sum_{i=1}^m \varepsilon_i((\nabla_{e_i}^{\varphi} \nabla_{e_i}^{\varphi} - \nabla_{\nabla_{e_i}e_i}^{\varphi})\tau(\varphi) - R^N(\tau(\varphi), d\varphi(e_i))d\varphi(e_i)),$$
(2)

where R^N denotes the curvature tensor of N_n . A map φ is called biharmonic if its bitension field vanishes.

A map φ is called *f*-harmonic with a function $f: M \to \mathbb{R}$, if it is a critical point of the energy

$$E_f(\boldsymbol{\varphi}) = rac{1}{2} \int_{\Omega} f \left\| d \boldsymbol{\varphi} \right\|^2 d v_g,$$

where Ω is a compact domain of M_m . The *f*-tension field $\tau_f(\varphi)$ of φ is given by

$$\tau_f(\boldsymbol{\varphi}) = f\tau(\boldsymbol{\varphi}) + d\boldsymbol{\varphi}(gradf) \tag{3}$$

see [16]. The *f*-bitension field $\tau_{2,f}(\varphi)$ of φ is defined by

$$\tau_{2,f}(\boldsymbol{\varphi}) = f\tau_2(\boldsymbol{\varphi}) + \Delta f\tau(\boldsymbol{\varphi}) + 2\nabla_{grad\,f}^{\boldsymbol{\varphi}}\tau(\boldsymbol{\varphi}). \tag{4}$$

A map φ is called f-biharmonic if its f-bitension field vanishes ([9,13]). Non-harmonic and non-biharmonic f-biharmonic curves are called proper f-biharmonic curves and if f is a constant, then an f-biharmonic curve turns to be a biharmonic curve [9].

3. *f*-Biharmonic curves in Lorentzian Sasakian manifolds

We recall fundamental concepts about the Lorentzian Bianchi-Cartan-Vranceanu model of 3-dimensional Lorentzian Sasakian manifolds from [17]. Let us consider the set

$$D = \{(x, y, z) \in \mathbb{R}^3 : 1 + \frac{c}{2}(x^2 + y^2) > 0\},\$$

where c is a real number. On the region D, the contact form η is taken

$$\eta = dz + \frac{ydx - xdy}{1 + \frac{c}{2}(x^2 + y^2)}.$$

Then, the characteristic vector field of η is $\xi = \frac{\partial}{\partial z}$.

Next, the Lorentzian metric is equipped as

$$g_c = \frac{dx^2 + dy^2}{\{1 + \frac{c}{2}(x^2 + y^2)\}^2} - (dz + \frac{ydx - xdy}{1 + \frac{c}{2}(x^2 + y^2)})^2.$$

The Lorentzian orthonormal frame field (e_1, e_2, e_3) on (D, g_c) is given by

$$e_1 = \{1 + \frac{c}{2}(x^2 + y^2)\}\frac{\partial}{\partial x} - y\frac{\partial}{\partial z}, \ e_2 = \{1 + \frac{c}{2}(x^2 + y^2)\}\frac{\partial}{\partial y} + x\frac{\partial}{\partial z}, \ e_3 = \frac{\partial}{\partial z}.$$

Then the endomorphism field ϕ is given by

 $\phi(e_1) = e_2, \ \phi(e_2) = -e_1, \ \phi(e_3) = 0.$

(10)

The Levi-Civita connection ∇ of (D, g_c) is described as

$$\begin{split} \nabla_{e_1} e_1 &= cye_2, \ \nabla_{e_1} e_2 = -cye_1 + e_3, \ \nabla_{e_1} e_3 = e_2, \\ \nabla_{e_2} e_1 &= -cxe_2 - e_3, \ \nabla_{e_2} e_2 = cxe_1, \ \nabla_{e_2} e_3 = -e_1, \\ \nabla_{e_3} e_1 &= e_2, \nabla_{e_3} e_2 = -e_1, \nabla_{e_3} e_3 = 0. \end{split}$$

The contact form η on *D* fulfills

$$d\eta(X,Y) = g_c(X,\phi Y), X, Y \in \chi(D)$$

Moreover the structure (g_c, ϕ, ξ, η) is Sasakian. The non-vanishing components of the curvature tensor *R* of (D, g_c) are given by

$$\begin{aligned} R(e_1, e_2)e_1 &= -(2c+3)e_1, \ R(e_1, e_3)e_3 = -e_1, \\ R(e_2, e_1)e_1 &= -(2c+3)e_2, R(e_2, e_3)e_3 = -e_2, \\ R(e_3, e_1)e_1 &= e_3, \ R(e_3, e_2)e_2 = e_3. \end{aligned}$$

For the sectional curvature *K* of (D, g_c) , we have

$$K(\xi, e_i) = -R(\xi, e_i, \xi, e_i) = -1, \ i = 1, 2,$$

and

$$K(e_1, e_2) = R(e_1, e_2, e_1, e_2) = 2c + 3$$

So, (D, g_c) is of constant holomorphic sectional curvature H = 2c + 3.

For the case H = -1 (i.e. c = -2), the Lorentzian Sasakian manifold D turns to be anti-de Sitter 3-space.

Now, suppose that $\gamma: I \to (D, g_c)$ is a curve parametrized by arc-length and $\{T, N, B\}$ is an orthonormal frame field tangent to D along γ , where $T = T_1e_1 + T_2e_2 + T_3e_3$, $N = N_1e_1 + N_2e_2 + N_3e_3$ and $B = B_1e_1 + B_2e_2 + B_3e_3$.

The *f*-biharmonicity condition for curves on (D, g_c) is obtained in the following theorem.

Theorem 4. Let $\gamma: I \to (D, g_c)$ be a curve parametrized by arc-length. Then γ is f-biharmonic if and only if the following relations are satisfied:

$$3\kappa\kappa' f + 2\kappa^2 f' = 0,$$

$$\kappa f'' + 2\kappa' f' + f[\kappa'' + \varepsilon_3 \kappa^3 + \varepsilon_1 \kappa \tau^2 + \kappa \varepsilon_2 (\varepsilon_3 + 2(c+2)\eta(B)^2)] = 0,$$

$$-2\kappa \tau f' - f(2\kappa' \tau + \kappa \tau') + 2\varepsilon_1 (c+2)\kappa f \eta(N)\eta(B) = 0.$$
(5)

Proof. Let $\gamma = \gamma(s)$ be a curve parametrized by arc-length. We use formula (4). From [17], we have

$$\tau(\gamma) = \varepsilon_1 \nabla_T T = -\varepsilon_3 \kappa N,\tag{6}$$

$$R(T,N,T,N) = \varepsilon_3 + 2(c+2)B_3^2,$$

$$R(T,N,T,B) = 2\varepsilon_1(c+2)N_3B_3,$$
(7)

$$\tau_2(\gamma) = 3\varepsilon_3 \kappa \kappa' T + \varepsilon_2 (\kappa'' - \varepsilon_2 \kappa (\varepsilon_1 \kappa^2 + \varepsilon_3 \tau^2)) N + \varepsilon_1 (2\kappa' \tau + \kappa \tau') B + \varepsilon_2 \kappa R(T, N) T.$$
(8)

Moreover, from [13], we have

$$\nabla_{gradf}^{\gamma}\tau(\gamma) = f'\nabla_{T}(\nabla_{T}T) = \varepsilon_{2}f'[\kappa'N + \kappa(-\varepsilon_{1}\kappa T - \varepsilon_{3}\tau B)],$$

$$\Delta f\tau(\gamma) = f''\nabla_{T}T = f''\varepsilon_{2}\kappa N.$$
(9)

Therefore, combining equations (6), (8) and (9), we obtain

$$\tau_{2,f}(\gamma) = 3\varepsilon_3 \kappa \kappa' fT + \varepsilon_2 f(\kappa'' - \varepsilon_2 \kappa (\varepsilon_1 \kappa^2 + \varepsilon_3 \tau^2))N + \varepsilon_1 f(2\kappa' \tau + \kappa \tau')B + \varepsilon_2 f \kappa R(T,N)T + \varepsilon_2 \kappa f''N + 2\varepsilon_2 f'[\kappa'N + \kappa(-\varepsilon_1 \kappa T - \varepsilon_3 \tau B)].$$

If we take inner product of equation (10) with T, N and B, respectively and use the equations (7), we get (5).

Corollary 5. Let $\gamma: I \to (D, g_c)$ be a Legendre curve parametrized by arc-length. Then γ is f-biharmonic if and only if the following relations are satisfied:

$$\begin{aligned} & 3\kappa\kappa'f + 2\kappa^2f' = 0, \\ & \kappa f'' + 2\kappa'f' + f[\kappa'' + \varepsilon_3\kappa^3 + \varepsilon_1\kappa + \kappa\varepsilon_2(\varepsilon_3 + 2(c+2)\eta(B)^2)] = 0, \\ & -\kappa f' + f(-\kappa' + \varepsilon_1(c+2)\kappa\eta(N)\eta(B)) = 0. \end{aligned}$$

Now, we express the following results for $c \neq -2$.

Proposition 6. Let $\gamma: I \to (D, g_c)$ be an f-biharmonic curve parametrized by arc-length. If κ is a non-zero constant, then γ is biharmonic.

Proof. Under the assumption κ is a non-zero constant, from the first equation in (5), obviously we get f' = 0. So, γ is a biharmonic curve.

Proposition 7. Let $\gamma: I \to (D, g_c)$ be an f-biharmonic curve parametrized by arc-length. If τ is a non-zero constant and $\eta(N)\eta(B) = 0$ (i.e., $N_3B_3 = 0$), then γ is biharmonic.

Proof. Under the assumption τ is a non-zero constant and $\eta(N)\eta(B) = 0$, using the first and third equations in (5), we get

$$\frac{\kappa'}{\kappa} = -\frac{2f'}{3f} \tag{11}$$

and

$$\tau(\frac{\kappa'}{\kappa} + \frac{f'}{f}) = 0. \tag{12}$$

Putting equation (11) in (12) shows that f is constant, therefore γ is a biharmonic curve.

Corollary 8. If $\gamma: I \to (D, g_c)$ is an f-biharmonic Legendre curve parametrized by arc-length and $\eta(N)\eta(B) = 0$, then γ is biharmonic.

Proposition 9. Let $\gamma: I \to (D, g_c)$ be an f-biharmonic curve parametrized by arc-length. If τ is a non-zero constant, then $f = e^{\int \frac{3\varepsilon_1(c+2)\eta(N)\eta(B)}{\tau}}$.

Proof. Under the assumption τ is a non-zero constant, if we use the first and third equations in (5), we obtain

$$\frac{\kappa'}{\kappa} = -\frac{2f'}{3f} \tag{13}$$

and

$$-2\kappa\tau f' - 2f\kappa'\tau + 2\varepsilon_1(c+2)\kappa f\eta(N)\eta(B) = 0.$$
(14)

Setting equation (13) in (14), we get the result.

Corollary 10. If $\gamma: I \to (D, g_c)$ is an f-biharmonic Legendre curve parametrized by arc-length, then $f = e^{\int 3\varepsilon_1(c+2)\eta(N)\eta(B)}$.

Proposition 11. Let $\gamma: I \to (D, g_c)$ be a non-geodesic curve parametrized by arc-length and suppose that $\tau = 0$. In this case, γ is f-biharmonic if and only if the following equations are valid:

$$f^2 \kappa^3 = c_1^2,\tag{15}$$

$$(f\kappa)'' = -f\kappa(\varepsilon_3\kappa^2 + \varepsilon_2(\varepsilon_3 + 2(c+2)\eta(B)^2)),$$
(16)

$$\eta(N)\eta(B) = 0,\tag{17}$$

where $c_1 \in \mathbb{R}$.

Proof. Under the assumption $\tau = 0$, if we use equations in (5) by integrating first equation, we deduce the results.

Proposition 12. Let $\gamma: I \to (D, g_c)$ be a non-geodesic curve parametrized by arc-length and suppose that τ and κ are non-constants. In this case, γ is f-biharmonic if and only if the following equations are valid:

$$f^2 \kappa^3 = c_1^2, \tag{18}$$

$$(f\kappa)'' = -f\kappa(\varepsilon_3\kappa^2 + \varepsilon_1\tau^2 + \varepsilon_2(\varepsilon_3 + 2(c+2)\eta(B)^2)),$$
(19)

$$\kappa^2 f^2 \tau = e^{\int \frac{2\epsilon_1 (c+2)\eta(N)\eta(B)}{\tau}},\tag{20}$$

where $c_1 \in \mathbb{R}$.

Proof. Under the assumption τ and κ are non-constants, if we use equations in (5) by integrating first and third equations, we obtain (18), (19) and (20).

From the last two propositions, we can give the following theorem.

Theorem 13. An arc-length parametrized curve $\gamma: I \to (D, g_c)$ is proper f-biharmonic if and only if one of the following situations is true:

(*i*) $\tau = 0$, $f = c_1 \kappa^{-3/2}$ and the curvature κ solves the equation below:

$$3(\boldsymbol{\kappa}')^2 - 2\boldsymbol{\kappa}\boldsymbol{\kappa}'' = -4\boldsymbol{\kappa}^2[\boldsymbol{\varepsilon}_3\boldsymbol{\kappa}^2 + \boldsymbol{\varepsilon}_2(\boldsymbol{\varepsilon}_3 + 2(c+2)\boldsymbol{\eta}(B)^2)].$$

(ii) $\tau \neq 0$, $\frac{\tau}{\kappa} = \frac{e^{\int \frac{2\epsilon_1(c+2)\eta(N)\eta(B)}{\tau}}}{c_1^2}$, $f = c_1 \kappa^{-3/2}$ and the curvature κ solves the equation below:

$$3(\kappa')^2 - 2\kappa\kappa'' = -4\kappa^2 \left[\varepsilon_3\kappa^2 \left(1 - \varepsilon_2 \frac{e^{\int \frac{4\varepsilon_1(c+2)\eta(N)\eta(B)}{\tau}}}{c_1^4}\right) + \varepsilon_2(\varepsilon_3 + 2(c+2)\eta(B)^2)\right].$$

Proof. (i) The first equation of (5) gives

$$f = c_1 \kappa^{-3/2}.\tag{21}$$

By replacing the above equation into (16), we obtain the result.

(ii) From the first equation of (5), we have

$$f = c_1 \kappa^{-3/2}. \tag{22}$$

Setting the above equation in (20), we get

$$\frac{\tau}{\kappa} = \frac{e^{\int \frac{2\varepsilon_1(c+2)\eta(N)\eta(B)}{\tau}}}{c_1^2}.$$
(23)

And finally putting equations (22) and (23) in (19), we obtain the result.

Consequently, we can express the following corollary.

Corollary 14. An arc-length parametrized f-biharmonic curve $\gamma: I \rightarrow (D, g_c)$ with constant geodesic curvature is biharmonic.

4. Conclusions

In this paper, we obtain some characterizations for f-biharmonic curves in Lorentzian Bianchi-Cartan-Vranceanu model of 3-dimensional Lorentzian Sasakian manifolds.

5. Acknowledgements

The author would like to thank the referee for his/her valuable suggestions and comments.

References

- ^[1] Eells, J. Jr., & Sampson J. H., (1964). *Harmonic mappings of Riemannian manifolds*. Amer. J. Math. 86(1), 109-160.
- [2] Montaldo, S., & Oniciuc, C., (2006). A short survey on biharmonic maps between Riemannian manifolds. Rev. Un. Mat. Argentina, 47(2), 1-22.
- [3] Chen, B.Y., & Ishikawa S., (1991). Biharmonic surfaces in pseudo-Euclidean spaces. Mem. Fac. Sci. Kyushu Univ. Ser. A, 45(2), 323-347.
- ^[4] Inoguchi, J. I., (2003). Biharmonic curves in Minkowski 3-space. Int. J. Math. Math. Sci., 21, 1365-1368.
- ^[5] Caddeo, R., Montaldo, S., & Piu, P. (2001). Biharmonic curves on a surface. Rend. Mat. Appl., 21, 143-157.
- [6] Caddeo, R., Oniciuc, C., & Piu, P. (2004). *Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group*. Rend. Sem. Mat. Univ. Politec. Torino, 62, 265-277.
- [7] Ou, Y. L., & Wang, Z. P., (2006). Biharmonic maps into Sol and Nil space. arXiv preprint math/0612329.
- [8] Caddeo, R., Montaldo, S., Oniciuc, C., & Piu, P. (2006). *The classification of biharmonic curves of Cartan-Vranceanu 3-dimensional spaces*. The 7th Int. Workshop in Dif. Geo. App., Cluj University Press, 121-131.
- ^[9] Lu, W. J., (2015). On *f*-Biharmonic maps and bi-*f*-harmonic maps between Riemannian manifolds. Sci. China Math. 58(7), 1483-1498.
- ^[10] Ou, Y. L. (2014). On *f*-biharmonic maps and *f*-biharmonic submanifolds. Pacific J. Math., 271(2), 461-477.
- ^[11] Güvenç, S., & Özgür, C., (2017). On the characterizations of *f*-biharmonic Legendre curves in Sasakian space forms. Filomat, 31(3), 639-648.
- ^[12] Karaca, F., & Özgür, C., (2018). On *f*-biharmonic curves. International Electronic Journal of Geometry, 11(2), 18-27.
- ^[13] Du, L., & Zhang, J., (2020). Classification of f-biharmonic curves in Lorentz–Minkowski space. Journal of Mathematics.
- ^[14] Calvoruso, G., (2011). Contact Lorentzian manifolds. Dif. Geom. Appl., 29, 41-51.
- ^[15] Lee, J. E., (2019). Slant curves and contact Magnetic curves in Sasakian Lorentzian 3-Manifolds. Symmetry, 11(6), 784.
- ^[16] Oukkas, S., Nasri, R., & Djaa, M., (2010). On the *f*-harmonic and *f*-biharmonic maps. JP J. Geom. Topol., 10(1) 11-27.
- ^[17] Lee, J. E., (2020). *Biharmonic curves in three-dimensional Lorentzian Sasakian space forms*. Comm. Korean Math. Soc., 35(3), 967-977.