

New Weyl-Type Inequalities by Multiplicative Injective and Surjective \boldsymbol{s}-Numbers of Operators in Reflexive Banach Spaces

Lale CONA ${ }^{1, *}$
${ }^{1}$ Gümüşhane University, Faculty of Engineering and Natural Sciences, Department of Mathematical Engineering, Gümüşhane, Türkiye lalecona@gumushane.edu.tr,ORCID:0000-0002-2744-1960

Abstract

In this work, two problems are investigated. In general, Weyl-type inequalities of operators in complex reflexive Banach spaces are discussed. First, we obtained the Weyl-type inequalities using arbitrary multiplicative surjective and injective s-numbers that are dual of each other. Second, we introduced the Weyl-type inequalities by multiplicative injective and surjective s numbers under certain conditions for S and S^{\prime} operators in complex reflexive Banach space. So, new Weyl-type inequalities are investigated for both dual s-number sequences and dual operators.

Keywords: Dual s - numbers; Dual operators; Multiplicative injective and surjective s numbers; s-numbers; Weyl-Type inequalities.

Yansımalı Banach Uzaylarda Operatörlerin Çarpımsal İnjektiv ve Surjektiv s-Sayıları ile Yeni Weyl-Tipi Eşitsizlikleri

Öz

[^0]Bu çalışmada iki problem incelenmiştir. Genel olarak, kompleks yansımalı Banach uzaylarında operatörlerin Weyl-tipi eşitsizlikleri üzerinde durulmuştur. İlk olarak, birbirinin duali olan keyfi çarpımsal surjektif ve injektif s-sayılarını kullanarak Weyl-tipi eşitsizlikler elde edilmiştir. İkinci olarak, kompleks yansımalı Banach uzayındaki S ve S^{\prime} operatörleri için belirli koşullar altında çarpımsal injektif ve surjektif s-sayıları ile Weyl-tipi eşitsizlikler ifade edilmiştir. Böylece hem dual s-sayı dizileri hem de dual operatörler için yeni Weyl-tipi eşitsizlikleri araştırılmıştr.

Anahtar Kelimeler: Dual s-sayıları; Dual operatörler; Çarpımsal injektif ve surjektif s sayıları; s-sayıları; Weyl-Tipi eşitsizlikler.

1. Introduction

The definition of s-number (or singular numbers) was firstly used by E. Schmidt in the theory of non- selfadjoint integral equation. The axiomatic structure of the original s-numbers in Banach spaces was developed by A. Pietsch [1].

Let us first give the theorem which expresses the classical Weyl inequality in Hilbert spaces [2]. Let H be a Hilbert space and $S \in C_{\infty}(H)$ a compact operator. Then

$$
\prod_{k=1}^{n}\left|\lambda_{k}(S)\right| \leq \prod_{k=1}^{n} s_{k}(S)
$$

for $n=1,2, \ldots$

This inequality is an important tool to prove the correlation between eigenvalues and s numbers. Thus, an important contribution is made to the investigation of the optimum asymptotic behavior of the eigenvalues. A. Pietsch developed the Weyl inequality for operators in Banach spaces [3].

$$
\left(\prod_{j=1}^{n}\left|\lambda_{j}(S)\right|\right)^{\frac{1}{n}} \leq\left(\frac{n}{k}\right)^{\frac{n-k}{2 n}} n^{\frac{k}{2 n}}\|S\|^{1-\frac{k}{n}}\left(\prod_{j=n-k+1}^{n} h_{j}(S)\right)^{\frac{1}{n}} .
$$

This inequality applies to any s-number sequence, because the Hilbert numbers are the smallest s-numbers in Banach spaces. We can also look at [4] for better constants.

For these inequalities, the Weyl numbers are considered to be suitable s-numbers. This fact has been confirmed as a result of extensive studies on the eigenvalues about of integral operators moving in function spaces. Researchers obtained similar inequalities by taking different s -
numbers instead of Weyl numbers. These inequalities are generally referred to as Weyl-type inequalities in the literature. We can see several Weyl-type inequalities in [2, 5, 6]. However, various Weyl-type inequalities were obtained for different operators (Riesz operator, Compact operator, etc.) in Banach space [5-7]. We can see some Weyl-type inequalities by injective and surjective s-numbers in $[8,9]$. In our study, we will use the multiplicative injective and surjective s-numbers.

In the studies done in the ever-evolving literature, it has been concluded that many problems of the theory of multi-point differential operators can be easily solved on the direct sum of Banach spaces [10, 11]. In this context, some s-number functions of the direct sum of operator defined on the direct sum of Banach spaces, which can contribute to the field, and the s-number functions of the same type of coordinate operators have been investigated [12, 13]. In addition, s numbers have a very important place for studies related to Lorentz-Schatten sequence classes [1724].

We denote by B_{X} the closed unit ball of X. In what follows X, Y, Z, e.t.c . always denote complex Banach spaces. Then $L(X, Y)$ and $C_{\infty}(X, Y)$ respectively are denote the set of bounded linear operators and compact operators from X into Y. Also, if $X=Y$, it is denoted by $L(X)=$ $L(X, X)$ and $C_{\infty}(X)=C_{\infty}(X, X)$. Moreover, S^{\prime} is a dual operator of S.

2. s-Numbers and basic results

Definition 1. Let $S \in L(X)$. If $S^{n} \in C_{\infty}(X, Y)$ for $n \in \mathbb{N}$ then S is called power compact [5-7].

Let's give the definition of an s-number sequence [14].
Definition 2. A rule $s_{n}(S): L \rightarrow[0, \infty]$ assigning to every operator $S \in L$ a non-negative scalar sequence $s_{n}(S)_{n \in \mathbb{N}}$ is called an s-number sequence if the following conditions are satisfied:
(i) Monotonicity:
$\|S\|=s_{1}(S) \geq s_{2}(S) \geq \cdots \geq 0$ for $S \in L(X, Y)$,
(ii) Additivity:
$s_{n}(S+T) \leq s_{n}(S)+\|T\|$ for $S, T \in L(X, Y)$ and $n, m=1,2, \ldots$,
(iii) Ideal-Property:
$s_{n}(R S T) \leq\|R\| s_{n}(S)\|T\|$ for $R \in L\left(X_{0}, X\right), S \in L(X, Y)$ and $T \in L\left(Y, Y_{0}\right)$
(iv) Rank-Property:
$s_{n}(S)=0$ for $S \in L(X, Y)$ with $\operatorname{rank}(S)<n$
(v) Norming Property:
$s_{n}\left(I_{n}\right)=1$ for the identity maps $I_{n}: l_{2}^{n} \rightarrow l_{2}^{n}$ on l_{2}.
Let's give important s-number definitions. For $S \in L(X, Y)$ and $n=1,2, \ldots$, the n-th approximation number is defined by

$$
a_{n}(S)=\inf \{\|S-A\|: A \in L(E, F), \operatorname{rank}(A)<n\},
$$

the n-th Gelfand number by

$$
c_{n}(S):=\inf \left\{\left\|S J_{M}\right\|: M \subset X, \operatorname{codim}(M)<n\right\},
$$

where $J_{M}: M \rightarrow X$ is the natural embedding from a subspace M of X into X, and the n-th Kolmogorov number by

$$
d_{n}(S):=\inf \left\{\left\|Q_{N} S\right\|: N \subset Y, \quad \operatorname{dim}(N)<n\right\},
$$

where $Q_{N}: Y \rightarrow Y / N$ defines the canonical quotient map from Y into the quotient space Y / N, and the $n-$ th Weyl number by

$$
x_{n}(S)=\sup \left\{a_{n}(S A):\left\|A: l_{2} \rightarrow X\right\| \leq 1\right\}
$$

and the $n-t$ th Hilbert number by

$$
h_{n}(S):=\sup \left\{a_{n}(B S A):\left\|A: l_{2} \rightarrow X\right\| \leq 1,\left\|B: Y \rightarrow l_{2}\right\| \leq 1\right\} .
$$

Remark 1. The following inequality exists for s-numbers in Banach spaces

$$
h_{n}(S) \leq s_{n}(S) \leq a_{n}(S),
$$

where $s_{n}(S)_{n \in \mathbb{N}}$ is an arbitrary s-number $[5,14]$.
Now let us express the relation between s-numbers in Hilbert spaces [5, 6].
Let us first give a brief description of the s-number in the classical Hilbert spaces. Suppose H is a Hilbert space and let $S \in C_{\infty}(H)$. Then $s_{n}(S)=\lambda_{n}\left(\left(S^{*} S\right)^{\frac{1}{2}}\right)$ are called the singular
numbers of S. We will show the sequence of eigenvalues of the S transformation with $\lambda_{n}(S)_{n \in \mathbb{N}}$. This sequence is ordered in decreasing absolute value and counted according to their multiplicity,

$$
\left|\lambda_{1}(S)\right| \geq \cdots \geq\left|\lambda_{n}(S)\right| \geq \cdots \geq 0 .
$$

If S possesses less than n eigenvalues λ with $\lambda \neq 0$ we put $\lambda_{n}(S)=\lambda_{n+1}(S)=\cdots=0$. It is well known that the sequence of eigenvalues form a null sequence.

Lemma 1. Let X, Y be Hilbert spaces and $S \in C_{\infty}(X, Y)$. Then we have

$$
a_{n}(S)=c_{n}(S)=x_{n}(S)=d_{n}(S)=h_{n}(S)=\lambda_{n}\left(S^{*} S\right)^{\frac{1}{2}}
$$

where S^{*} is the Hilbert adjoint of S.
In addition to these, let's give the following definitions [5, 6].
a. A s-number sequence $s=\left(s_{n}\right)$ is called injective if, given any metric injection $J \in$ $L(Y, \tilde{Y})$ i.e. $\|J y\|=\|y\|$ for $y \in Y, s_{n}(S)=s_{n}(J S)$ for all $S \in L(X, Y)$ and all Banach spaces X.
b. A s-number sequence $s=\left(s_{n}\right)$ is called surjective if, given any metric surjection $Q \in$ $L(\tilde{X}, X)$ i.e. $Q\left(B_{\tilde{X}}\right)=B_{\tilde{X}}, s_{n}(S)=s_{n}(S Q)$ for all $S \in L(X, Y)$ and all Banach spaces Y.
c. If a s-number sequence satisfies (a) and (b) then it is called injective and surjective.

Moreover, we have

$$
c_{n}(S)=a_{n}\left(J_{\infty} S\right) \text { and } d_{n}(S)=a_{n}\left(S Q_{1}\right),
$$

where $J_{\infty}: Y \rightarrow l_{\infty}\left(B_{Y^{\prime}}\right)$ is the metric surjection defined by $J_{\infty} y=(\langle y, a\rangle)_{a \in B_{Y^{\prime}}}$, and with values in the space $l_{\infty}\left(B_{Y^{\prime}}\right)$ of bounded sequences and where $Q_{1}: l_{1}\left(B_{X}\right) \rightarrow X$ is the metric surjection from $l_{1}\left(B_{X}\right)$ onto X, defined by $Q_{1}\left(\left(\xi_{x}\right)\right):=\sum_{x \in B_{X}} \xi_{x} x$.

On the other hand, a s-numbers sequence $\left(s_{n}\right)$ is called multiplicative if

$$
s_{n+m-1}(T S) \leq s_{n}(T) s_{m}(S)
$$

for $S \in L(X, Y), T \in L(Y, Z)$ and $m, n \in 1,2, \ldots$.

Now, we recall useful mixing multiplicativity property for an arbitrary s-number sequence $s=\left(s_{n}\right)$ from [4]. For $S \in L(X, Y)$ and $T \in L(Y, Z)$,
a. $\quad s_{n+m-1}(T S) \leq s_{n}(T) a_{m}(S)$ and $s_{n+m-1}(T S) \leq a_{n}(T) s_{m}(S)$.
b. If $s=\left(s_{n}\right)$ is injective, then $s_{n+m-1}(T S) \leq c_{n}(T) s_{m}(S)$.
c. If $s=\left(s_{n}\right)$ is surjective, then $s_{n+m-1}(T S) \leq s_{n}(T) d_{m}(S)$.

The following result can be easily deduced from the above inequalities. If $s=\left(s_{n}\right)$ is an injective and surjective s-number sequence, then

$$
s_{n+m+l-1}(T S R) \leq c_{n}(T) s_{m}(S) d_{l}(R)
$$

for $R \in L\left(X_{0}, X\right), S \in L(X, Y)$ and $T \in L\left(Y, Y_{0}\right)$.

Let us now state a lemma that we frequently refer to in our proofs [15].
Lemma 2. Let $I \in L(X, Y)$ identity map. Then,

$$
x_{k}\left(I: l_{\infty}^{n} \rightarrow l_{2}^{n}\right)=\left(\frac{n}{k}\right)^{\frac{1}{2}}
$$

for $1 \leq k \leq n$.
A. Pietsch's principle of related operators in the context of operators on X factorizing through Y. And we give the following lemma which is quite useful as a result of the principle of related operators [5-7].

Definition 3. Let $S \in L(X)$ and $T \in L(Y)$. If there are maps $P \in L(X, Y)$ and $R \in L(Y, X)$ such that $S=R P$ and $T=P R$, then S and T are called related.

Lemma 3. Let $S \in L(X)$ and $T \in L(Y)$ be related operators and S power compact. Then T is power compact and

$$
\sigma(S) \backslash\{0\}=\sigma(T) \backslash\{0\}, \quad m(S, \lambda)=m(T, \lambda) \text { for all } 0 \neq \lambda \in \sigma(S)
$$

Hence we have $\lambda_{n}(S)=\lambda_{n}(T)$ for all $n \in \mathbb{N}$.

We need another fact about the 2-summing norms due to Garling-Gordon [15].

Lemma 4. Let X_{n} be any n-dimensional Banach space. Then

$$
\pi_{2}\left(I_{X_{n}}\right)=\sqrt{n} .
$$

The following basic fact is quite important to prove the main result [5].

Lemma 5. Let $S \in C_{\infty}(X)$ be a compact operator and $\lambda_{n}(S) \neq 0$. Then there is a n dimensional subspace X_{n} of X, invariant under S, such that the operator $S_{n} \in L\left(X_{n}\right)$ induced by S has exactly the eigenvalues $\lambda_{1}(S), \ldots, \lambda_{n}(S)$.

The following theorems give the relationship between operators and their duals for some s-numbers, see [1] for similar relations.

Theorem 1. Let $S \in L(X, Y)$; then

$$
c_{n}(S)=d_{n}\left(S^{\prime}\right)
$$

where S^{\prime} is dual operator of S.

Theorem 2. Let $S \in C_{\infty}(X, Y)$; then

$$
d_{n}(S)=c_{n}\left(S^{\prime}\right)
$$

where S^{\prime} is dual operator of S.

3. Main results

In the first section, we have recalled that Weyl-type inequalities are optimal for estimating eigenvalues of operators in Banach spaces. We can see several Weyl-type inequalities in [5, 6, 16].

Let us give the Weyl-type inequalities expressing the relation between the eigenvalues and Weyl numbers established by Pietsch in [3]:

$$
\left(\prod_{k=1}^{2 n-1}\left|\lambda_{k}(S)\right|\right)^{\frac{1}{2 n-1}} \leq \sqrt{2 e}\left(\prod_{k=1}^{n} x_{k}(S)\right)^{\frac{1}{n}}
$$

and

$$
\left(\sum_{k=1}^{n}\left|\lambda_{k}(S)\right|^{p}\right)^{\frac{1}{p}} \leq c_{p}\left(\sum_{k=1}^{n} x_{k}^{p}(S)\right)^{\frac{1}{p}}
$$

for $S \in C_{\infty}(X, Y)$.

3.1. Weyl-Type inequality by dual s-numbers of power compact operators

Power compact operators are a classical subject in the context of integral operators to relate the properties (e.i. kernel properties) of an operator to the decay of its eigenvalues [6]. So, we firstly obtained Weyl-type inequalities of power compact operators in Banach spaces through multiplicative injective and surjective s-numbers. Here $[x]$ denotes the integer part of x for $1 \leq$ $x<\infty$ and if $0<x \leq 1$ we put $[x]:=1$.

Theorem 3. Let $S \in L(X)$ is a power compact operator such that all complex Banach space X and $s=\left(s_{n}\right)$ be a multiplicative injective s-number sequence for $n \in \mathbb{N}$. Then,

$$
\left(\prod_{k=1}^{n}\left|\lambda_{k}(S)\right|\right)^{\frac{1}{n}} \leq C(\delta) \sqrt{n} \sqrt{e}\left(\prod_{k=1}^{m} s_{k}(S)\right)^{\frac{1}{m}}
$$

where $m:=\left[\frac{n}{1+\delta}\right]$ and $0<\delta \leq 1, C(\delta)=2\left(\frac{1+\delta}{\delta}\right)^{\frac{1}{2}}$ for $n, m \in \mathbb{N}$.

Proof. Since $S \in L(X)$ is a power compact we can find a n-dimensional subspace X_{n} of X invariant under S such that the restriction of S to $X_{n}, S_{n}=S_{\mid X_{n}}$ has precisely $\lambda_{1}(S), \ldots, \lambda_{n}(S)$ as its eigenvalues. By Lemma $4, \pi_{2}\left(I_{\mid X_{n}}\right)=\sqrt{n}$. Hence by the Grothendieck-Pietsch factorization $B \in L\left(H, X_{n}\right)$ with $B A=I_{\mid X_{n}}$ and $\|A\|=\pi_{2}(A)=\sqrt{n},\|B\|=1$. We may assume that the Hilbert space H is n-dimensional (by restriction), $H=l_{2}^{n}$ so that $B=A^{-1}$. Define $T_{n}=$ $A S_{n} A^{-1} \in L\left(l_{2}^{n}\right) ; T_{n}$ has the same eigenvalues $\left(\lambda_{j}(S)\right)_{j=1}^{n}$ as S_{n} with the principle of related operators. Using Weyl's inequality in Hilbert space and the multiplicative of s-number sequence, we obtain

$$
\begin{align*}
\left(\prod_{k=1}^{n}\left|\lambda_{k}(S)\right|\right)^{\frac{1}{n}} & =\left(\prod_{k=1}^{n}\left|\lambda_{k}\left(S_{n}\right)\right|\right)^{\frac{1}{n}} \\
& =\left(\prod_{k=1}^{n}\left|\lambda_{k}\left(T_{n}\right)\right|\right)^{\frac{1}{n}} \\
& \leq\left(\prod_{k=1}^{n} s_{k}\left(T_{n}\right)\right)^{\frac{1}{n}} \tag{1}
\end{align*}
$$

Moreover, $0<\delta \leq 1$ and a non-increasing sequence of positive numbers $\left(s_{k}\right)_{k \in \mathbb{N}}$ we use the estimate

$$
\left(\prod_{k=1}^{n} s_{k}\right)^{\frac{1}{n}} \leq\left(\prod_{k=1}^{m} s_{[\delta k]+k-1}\right)^{\frac{1}{m}}
$$

where $m:=\left[\frac{n}{1+\delta}\right]$ and $n, m \in \mathbb{N}$. Thus,

$$
\begin{align*}
\left(\prod_{k=1}^{n} s_{k}\left(T_{n}\right)\right)^{\frac{1}{n}}= & \left(\prod_{k=1}^{n} s_{k}\left(A S_{n} A^{-1}\right)\right)^{\frac{1}{n}} \\
& \leq\left(\prod_{k=1}^{m} s_{[\delta k]+k-1}\left(A S_{n} A^{-1}\right)\right)^{\frac{1}{m}} \tag{2}
\end{align*}
$$

The mixing multiplicative (b) property of an injective s-number sequence yields the estimate for the single s-numbers

$$
\begin{equation*}
\left(\prod_{k=1}^{m} s_{[\delta k]+k-1}\left(A S_{n} A^{-1}\right)\right)^{\frac{1}{m}} \leq\left(\prod_{k=1}^{m} s_{k}\left(A S_{n}\right) c_{[\delta k]}\left(A^{-1}\right)\right)^{\frac{1}{m}} . \tag{3}
\end{equation*}
$$

Also using property (iii) of Definition $2,\|A\|=\pi_{2}(A)=\sqrt{n},\|B\|=1$ by the GrothendieckPietsch factorization and Lemma 2 we have

$$
\begin{align*}
s_{k}\left(A S_{n}\right) c_{[\delta k]}\left(A^{-1}\right) & \leq\|A\| s_{k}(S) c_{[\delta k]}\left(I_{n} B\right) \\
& \leq \sqrt{n} s_{k}(S)\|B\| c_{[\delta k]}\left(I_{n}: l_{2}^{n} \rightarrow l_{2}^{n}\right) \\
& =\sqrt{n} s_{k}(S)\|B\| x_{[\delta k]}\left(I_{n}: l_{2}^{n} \rightarrow l_{2}^{n}\right) \\
& \leq \sqrt{n} s_{k}(S) \sqrt{\frac{n}{[\delta k]}} \tag{4}
\end{align*}
$$

where $I_{n}: l_{2}^{n} \rightarrow l_{2}^{n}$ identity maps for $n \in \mathbb{N}$. From $m:=\left[\frac{n}{1+\delta}\right] \geq \frac{n}{2(1+\delta)}$ and $[\delta k] \geq \frac{\delta k}{2}$ and Stirling's formula $e^{m} \geq \frac{m^{m}}{m!}$ we can combine Eqns. (1)-(4)

$$
\begin{aligned}
\left(\prod_{k=1}^{n}\left|\lambda_{k}(S)\right|\right)^{\frac{1}{n}} & \leq \sqrt{n}\left(\prod_{k=1}^{m} s_{k}(S)\left(\frac{n}{[\delta k]}\right)^{\frac{1}{2}}\right)^{\frac{1}{m}} \\
& \leq \sqrt{n}\left(\prod_{k=1}^{m}\left(\frac{n}{[\delta k]}\right)^{\frac{1}{2}}\right)^{\frac{1}{m}}\left(\prod_{k=1}^{m} s_{k}(S)\right)^{\frac{1}{m}} \\
& \leq \sqrt{n}\left(\prod_{k=1}^{m}\left(\frac{2 n}{\delta k}\right)^{\frac{1}{2}}\right)^{\frac{1}{m}}\left(\prod_{k=1}^{m} s_{k}(S)\right)^{\frac{1}{m}} \\
& \leq \sqrt{n}\left(\frac{2}{\delta}\right)^{\frac{1}{2}}\left(\frac{n^{m}}{m!}\right)^{\frac{1}{2 m}}\left(\prod_{k=1}^{m} s_{k}(S)\right)^{\frac{1}{m}} \\
& \leq \sqrt{n}\left(\frac{2}{\delta}\right)^{\frac{1}{2}}\left(e^{m} \frac{1}{2 m}(2(1+\delta))^{\frac{1}{2}}\left(\prod_{k=1}^{m} s_{k}(S)\right)^{\frac{1}{m}}\right. \\
& \leq 2\left(\frac{1+\delta}{\delta}\right)^{\frac{1}{2}} \sqrt{n} \sqrt{e}\left(\prod_{k=1}^{m} s_{k}(S)\right)^{\frac{1}{m}}
\end{aligned}
$$

Finally, we obtain following inequality

$$
\left(\prod_{k=1}^{n}\left|\lambda_{k}(S)\right|\right)^{\frac{1}{n}} \leq C(\delta) \sqrt{n} \sqrt{e}\left(\prod_{k=1}^{m} s_{k}(S)\right)^{\frac{1}{m}}
$$

where $0<\delta \leq 1, C(\delta)=2\left(\frac{1+\delta}{\delta}\right)^{\frac{1}{2}}$ and $n, m \in \mathbb{N}$.
Remark 2. If we put $\delta=1, m=\left[\frac{n}{2}\right]=n-1$ replace $\left(s_{n}\right)$ by $\left(x_{n}\right)$ then we have Pietsch's Weyl inequality

$$
\left(\prod_{k=1}^{n}\left|\lambda_{k}(S)\right|\right)^{\frac{1}{n}} \leq 2 \sqrt{2 e} n^{\frac{1}{2}}\left(\prod_{k=1}^{n-1} x_{k}(S)\right)^{\frac{1}{n-1}}
$$

where $m, n \in \mathbb{N}$.

Theorem 4. Let $S \in L(X)$ be a power compact operator such that all complex reflexive Banach space X and $s=\left(s_{n}\right)$ be a multiplicative surjective s-number sequence for $n \in \mathbb{N}$. Then,

$$
\left(\prod_{k=1}^{n}\left|\lambda_{k}(S)\right|\right)^{\frac{1}{n}} \leq C(\delta) \sqrt{n} \sqrt{e}\left(\prod_{k=1}^{m} s_{k}(S)\right)^{\frac{1}{m}}
$$

where m : $=\left[\frac{n}{1+\delta}\right]$ and $0<\delta \leq 1, C(\delta)=2\left(\frac{1+\delta}{\delta}\right)^{\frac{1}{2}}$ for $n, m \in \mathbb{N}$.
Proof. If S is a compact power operator, the dual operator S^{\prime} is also a compact power operator. Furthermore, the eigenvalues sequences of S and S^{\prime} can be arrenged in such a way that $\lambda_{n}\left(S^{\prime}\right)=\lambda_{n}(S)$ for all $n \in \mathbb{N}$, see e.g. [5]. For $n \in \mathbb{N}$ and any operator S, define $\tilde{s}_{n}(S)=s_{n}\left(S^{\prime}\right)$. $\tilde{s}=(\tilde{s})$ is known to be a sequence of s-numbers [5]. Also, since the dual of a metric injection is a metric surjection [14], \tilde{s} is an injective s-number sequence. Then we obtain from Theorem 3 applied to S^{\prime} that

$$
\begin{aligned}
\left(\prod_{k=1}^{n}\left|\lambda_{k}(S)\right|\right)^{\frac{1}{n}} & =\left(\prod_{k=1}^{n}\left|\lambda_{k}\left(S^{\prime}\right)\right|\right)^{\frac{1}{n}} \\
& \leq C(\delta) \sqrt{n} \sqrt{e}\left(\prod_{k=1}^{m} \tilde{s}_{k}\left(S^{\prime}\right)\right)^{\frac{1}{m}} \\
& \leq C(\delta) \sqrt{n} \sqrt{e}\left(\prod_{k=1}^{m} s_{k}\left(S^{\prime \prime}\right)\right)^{\frac{1}{m}}
\end{aligned}
$$

We have $S^{\prime \prime}=S$ since X is reflexive. Thus, the alleged inequality is proved.
3.2. Weyl-Type inequality of dual operators by arbitrary multiplicative injective and surjective \boldsymbol{s}-numbers

We mentioned that Weyl numbers with minimum s-numbers are considered the best s numbers for working with Weyl-type inequalities. Nevertheless, whether there exists a minimal multiplicative s-number sequence another from Weyl numbers for was investigated by [4].

We will obtain an important inequality between arbitrary multiplicative injective and surjective s-numbers $\left(s_{n}\right)$ and $\left(r_{n}\right)$ with the property that $s_{n}(S) \leq r_{n}(S)$ for all $S \in C_{\infty}(X)$ compact operators. We will also investigate the relation that $s=\left(s_{n}\right) s$-numbers which is an
arbitrary multiplicative injective and surjective s-number sequence of S is compact operator and it's S^{\prime} is dual operator in complex reflexive Banach space.

Theorem 5. Let $\left(s_{n}\right)$ and $\left(r_{n}\right)$ be multiplicative injective and surjective s-numbers sequence with the property that $s_{n}(S) \leq r_{n}(S)$ for all $S \in C_{\infty}(X)$ compact operators such that complex Banach space X. Then,

$$
r_{2 n-1}(S) \leq \sqrt{e}\left(\prod_{k=1}^{n} s_{k}(S)\right)^{\frac{1}{n}}
$$

for $n=1,2, \ldots$
Proof. Since $\left(r_{n}\right)$ is an injective and surjective s-number sequence, we have that operator $Q_{1} \in L\left(l_{1}^{n}, X\right)$ and $J_{\infty} \in L\left(X, l_{\infty}^{n}\right)$.

$$
\begin{equation*}
r_{2 n-1}(S)=r_{2 n-1}\left(J_{\infty} S Q_{1}\right) \leq\left(\prod_{k=1}^{n} r_{2 k-1}\left(J_{\infty} S Q_{1}\right)\right)^{\frac{1}{n}} \tag{5}
\end{equation*}
$$

We easily see that for Q_{1}, an operator acting in Hilbert space, and $\left(s_{n}\right)$, a multiplicative injective and surjective s-number sequence, the following inequality holds.

$$
\begin{align*}
\left(\prod_{k=1}^{n} r_{2 k-1}\left(J_{\infty} S Q_{1}\right)\right)^{\frac{1}{n}} & =\left(\prod_{k=1}^{n} s_{2 k-1}\left(J_{\infty} S Q_{1}\right)\right)^{\frac{1}{n}} \\
& \leq\left(\prod_{k=1}^{n} c_{\frac{k}{2}}\left(J_{\infty}\right) s_{k}(S) d_{\frac{k}{2}}\left(Q_{1}\right)\right)^{\frac{1}{n}} \tag{6}
\end{align*}
$$

Thus using property (iii) of Definition 2 , J_{∞} is an operator acting in Hilbert space, $\left\|J_{\infty}\right\| \leq 1$ and $\left\|Q_{1}\right\| \leq 1$ we obtain

$$
\begin{align*}
\left(\prod_{k=1}^{n} c_{\frac{k}{2}}\left(J_{\infty}\right) s_{k}(S) d_{\frac{k}{2}}\left(Q_{1}\right)\right)^{\frac{1}{n}} & \leq\left(\prod_{k=1}^{n} c_{\frac{k}{2}}\left(I_{n}: l_{\infty}^{n} \rightarrow l_{\infty}^{n}\right)\left\|J_{\infty}\right\| s_{k}(S)\left\|Q_{1}\right\| d_{\frac{k}{2}}\left(I_{n}: l_{1}^{n} \rightarrow l_{1}^{n}\right)\right)^{\frac{1}{n}} \\
& \leq\left(\prod_{k=1}^{n} c_{\frac{k}{2}}\left(I_{n}: l_{\infty}^{n} \rightarrow l_{\infty}^{n}\right) s_{k}(S) d_{\frac{k}{2}}\left(I_{n}: l_{1}^{n} \rightarrow l_{1}^{n}\right)\right)^{\frac{1}{n}} \tag{7}
\end{align*}
$$

where I_{n} is a identity map. Since I_{n} is an operator acting in Hilbert space and combining Eqns. (5)-(7) we arrive

$$
r_{2 n-1}(S) \leq\left(\prod_{k=1}^{n} x_{\frac{k}{2}}\left(I_{n}: l_{\infty}^{n} \rightarrow l_{\infty}^{n}\right) s_{k}(S) x_{\frac{k}{2}}\left(I_{n}: l_{1}^{n} \rightarrow l_{1}^{n}\right)\right)^{\frac{1}{n}} .
$$

We easily get the following estimates by using the identity maps I_{n} for $n=1,2, \ldots$ with Lemma 2 , from the last equation and known inequality $\frac{n^{n}}{n!} \leq e^{n}$,

$$
\begin{aligned}
r_{2 n-1}(S) \leq & \left(\prod_{k=1}^{n}\left(\frac{2 n}{k}\right)\right)^{\frac{1}{n}}\left(\prod_{k=1}^{n} s_{k}(S)\right)^{\frac{1}{n}} \\
& \leq 2\left(\frac{n^{n}}{n!}\right)^{\frac{1}{n}}\left(\prod_{k=1}^{n} s_{k}(S)\right)^{\frac{1}{n}} \\
& \leq 2 e\left(\prod_{k=1}^{n} s_{k}(S)\right)^{\frac{1}{n}}
\end{aligned}
$$

Finally, we get that

$$
r_{2 n-1}(S) \leq 2 e\left(\prod_{k=1}^{n} s_{k}(S)\right)^{\frac{1}{n}}
$$

for $n=1,2, \ldots$.
Let's express the relation for dual operators under the conditions of Theorem 5.

Theorem 6. Let $\left(s_{n}\right)$ and $\left(r_{n}\right)$ be be multiplicative injective and surjective s-numbers sequence with the property that $s_{n}(S) \leq r_{n}(S)$ for all $S \in C_{\infty}(X)$ compact operators such that complex reflexive Banach space X. Then,

$$
r_{2 n-1}\left(S^{\prime}\right) \leq 2 e\left(\prod_{k=1}^{n} s_{k}\left(S^{\prime}\right)\right)^{\frac{1}{n}}, n \in \mathbb{N}
$$

where S^{\prime} is dual operator of S.

Proof. Since $\left(r_{n}\right)$ is an injective and surjective s-number sequence, for operator $Q_{1}^{\prime} \in$ $L\left(X^{\prime}, l_{\infty}^{n}\right)$ and $J_{\infty}^{\prime} \in L\left(l_{1}^{n}, X^{\prime}\right)$ we have

$$
\begin{equation*}
r_{2 n-1}\left(S^{\prime}\right)=r_{2 n-1}\left(Q_{1}^{\prime} S^{\prime} J_{\infty}^{\prime}\right) \leq\left(\prod_{k=1}^{n} r_{2 k-1}\left(Q_{1}^{\prime} S^{\prime} J_{\infty}^{\prime}\right)\right)^{\frac{1}{n}} \tag{8}
\end{equation*}
$$

We easily see that for J_{∞}^{\prime}, an operator acting in Hilbert space, and $\left(s_{n}\right)$, a multiplicative injective and surjective s-number sequence, we can write

$$
\begin{align*}
\left(\prod_{k=1}^{n} r_{2 k-1}\left(Q_{1}^{\prime} S^{\prime} J_{\infty}^{\prime}\right)\right)^{\frac{1}{n}} & =\left(\prod_{k=1}^{n} s_{2 k-1}\left(Q_{1}^{\prime} S^{\prime} J_{\infty}^{\prime}\right)\right)^{\frac{1}{n}} \\
& \leq\left(\prod_{k=1}^{n} c_{\frac{k}{2}}\left(Q_{1}^{\prime}\right) s_{k}\left(S^{\prime}\right) d_{\frac{k}{2}}\left(J_{\infty}^{\prime}\right)\right)^{\frac{1}{n}} \tag{9}
\end{align*}
$$

Moreover we have from Theorem 1 and Theorem 2,

$$
\begin{equation*}
\left(\prod_{k=1}^{n} c_{\frac{k}{2}}\left(Q_{1}^{\prime}\right) s_{k}\left(S^{\prime}\right) d_{\frac{k}{2}}\left(J_{\infty}^{\prime}\right)\right)^{\frac{1}{n}}=\left(\prod_{k=1}^{n} d_{\frac{k}{2}}\left(Q_{1}\right) s_{k}\left(S^{\prime}\right) c_{\frac{k}{2}}\left(J_{\infty}\right)\right)^{\frac{1}{n}} . \tag{10}
\end{equation*}
$$

Thus using property (iii) of Definition $2, J_{\infty}$ is an operator acting in Hilbert space, $\left\|J_{\infty}\right\| \leq 1$ and $\left\|Q_{1}\right\| \leq 1$ we obtain

$$
\begin{align*}
\left(\prod_{k=1}^{n} d_{\frac{k}{2}}\left(Q_{1}\right) s_{k}\left(S^{\prime}\right) c_{\frac{k}{2}}\left(J_{\infty}\right)\right)^{\frac{1}{n}} & \leq\left(\prod_{k=1}^{n}\left\|Q_{1}\right\| d_{\frac{k}{2}}\left(I_{n}: l_{1}^{n} \rightarrow l_{1}^{n}\right) s_{k}\left(S^{\prime}\right) c_{\frac{k}{2}}\left(I_{n}: l_{\infty}^{n} \rightarrow l_{\infty}^{n}\right)\left\|J_{\infty}\right\|\right)^{\frac{1}{n}} \\
& \leq\left(\prod_{k=1}^{n} d_{\frac{k}{2}}\left(I_{n}: l_{1}^{n} \rightarrow l_{1}^{n}\right) s_{k}\left(S^{\prime}\right) c_{\frac{k}{2}}\left(I_{n}: l_{\infty}^{n} \rightarrow l_{\infty}^{n}\right)\right)^{\frac{1}{n}} \tag{11}
\end{align*}
$$

where I_{n} is a identity map. Since I_{n} is an operator acting in Hilbert space and combining Eqns. (8)-(11) we arrive

$$
r_{2 n-1}(S) \leq\left(\prod_{k=1}^{n} x_{\frac{k}{2}}\left(I_{n}: l_{1}^{n} \rightarrow l_{1}^{n}\right) s_{k}\left(S^{\prime}\right) x_{\frac{k}{2}}\left(I_{n}: l_{\infty}^{n} \rightarrow l_{\infty}^{n}\right)\right)^{\frac{1}{n}}
$$

We get the following estimates by using the identity maps I_{n} for $n=1,2, \ldots$ with Lemma 2 , from the last equation and known inequality $\frac{n^{n}}{n!} \leq e^{n}$,

$$
r_{2 n-1}\left(S^{\prime}\right) \leq 2 e\left(\prod_{k=1}^{n} s_{k}\left(S^{\prime}\right)\right)^{\frac{1}{n}}
$$

4. Conclusion

In this study, the role and importance of s-numbers in the literature were investigated. First of all, the development of s-numbers in Banach spaces in the literature was given. Moreover, Weyl-type inequalities, which have an important place in applied mathematics, were presented. Information about the optimality of these Weyl-type inequalities was given. New Weyl-type inequalities were obtained by using multiplicative injective and surjective s-numbers and dual s numbers in complex reflexive Banach spaces. In addition, important relations for dual operators were expressed.

References

[1] Pietsch, A., s-number of operators in Banach spaces, Studia Math., 51, 201-233, 1974.
[2] Weyl, H., Inequalities between two kinds of eigenvalues of a linear transformation, Proceedings of National Academy of Sciences USA, 35, 408-411, 1949.
[3] Pietsch, A., Weyl numbers and eigenvalues of operators in Banach spaces, Mathematische Annalen, 247, 149-168, 1980.
[4] Carl, B., Hincichs, A., Optimal Weyl-type inequalities for operators in Banach spaces, Positivity, 11, 41-55, 2007.
[5] Pietsch, A., Eigenvalues and s-numbers, Cambridge University Press, 1987.
[6] König, H., Eigenvalues of compact operators with applications to integral operators, Linear Algebra and its Applications, 84, 111-122, 1986.
[7] König, H., Eigenvalues of operators and aplication, Handbook of Geometry of Banach Spaces, North-Holland, Amsterdam, 1, 941-974, 2001.
[8] Carl, B., On a Weyl inequalities of operators in Banach spaces, Proceedings of the American Mathematical Society, 137, 155-159, 2009.
[9] Carl, B., Hincichs, A., On s-numbers and Weyl inequalities of operators in Banach spaces, The Bulletin of the London Mathematical Society, 41, 2, 332-340, 2009.
[10] Kochubei, A.N., Symmetric Operators and Nonclassical Specktral Problems, Matematicheskie Zametki, 25, 425-434, 1979.
[11] Barramov, E., Öztürk Mert, R., Ismailov, Z.I., Selfadjoint Extensions of a Singular Differential Operators, Journal of Mathematical Chemistry, 50, 1100-1110, 2012.
[12] Ismailov, Z.I, Cona L., Cevik, E.O., Guler, B.O., Weyl Numbers of Diagonal Matrices, AIP Conference Proceedings, Vol. 1611, 296-299, 2014.
[13] Ismailov, Z.I, Cona L., Cevik, E.O., Gelfand Numbers of Diagonal Matrices, Hacettepe Journal of Mathematics and Statistics, 44(1), 75-81, 2015.
[14] Pietsch, A., Operator ideals, North Holland, Amsterdam, New York, Oxford, 1980.
[15] Pietsch, A., History of Banach spaces and linear operators, Birkhäuser, 2007.
[16] Timoshenkox, A., Theory of elastic stability, Mc Grow-Hill, New York, 1961.
[17] Ipek Al, P., Ismailov, Z.I., Lorentz-Schatten characteristic of compact inverses of first order normal differential operators, The Mediterranean International Conference of Pure Applied Mathematics and Related Areas (MICOPAM 2018), 200-203, 2018.
[18] Ipek Al, P., Ismailov, Z.I., Singular numbers of lower triangular one-band block operator matrices, International Conference on Mathematics "An Istanbul Meeting for World Mathematicians" Minisymposium on Approximation Theory Minisymposium on Math Education (ICOM 2018), 184-189, 2018.
[19] Öztürk Mert, R., Ipek Al, P., Ismailov, Z.I, Lorentz-Schatten property of the inverses of second order differential operators with Dirichlet conditions, Current Academic Studies in Natural Science and Mathematics Sciences, Mehmet Ali Kandemir, Fatma Erdoğan, Editor, IVPE, ss.155-161, 2019.
[20] Ipek Al, P., Ismailov, Z.I., Schatten-von Neumann characteristic of infinite tridiagonal block operator matrices, Communications Faculty of Science University of Ankara Series A1 Mathematics and Statistics, 68(2), 1852-1866, 2019.
[21] Ipek Al, P., Ismailov, Z.I., Compact inverses of first order normal differential operators with Lorentz-Schatten properties, 3. International Conference on Mathematics: An Istanbul Meeting for World Mathematicians (ICOM 2019), 359-363, 2019.
[22] Ipek Al, P., Ismailov, Z.I., Schatten-von Neumann characteristic of tensor product operators, Filomat, 34(10), 2020.
[23] Ipek Al, P., Lorentz-Schatten classes of direct sum of operators, Hacettepe Journal of Mathematics and Statistics, 49(2), 835-842, 2020.
[24] Ipek A1, P., Lorentz-Marcinkiewicz property of direct sum of operators, Filomat, 34(2), 391-398, 2020.

[^0]: * Corresponding Author

