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Abstract 

 

This work applies a newly developed evolutionary optimization algorithm named as Seeker 

Optimization Algorithm for designing broad band matching circuits that maximally match 

different load impedances to transmission lines in a pre-described range of frequencies. SO 

algorithm has been verified to be very effective in finding the solutions for such multi-objective 

functions. Herein the design process aims to select the values and the places of the matching 

impedances between loads and transmission lines under specific constraints. The obtained results 

have been compared to those in the literature to verify the enhancement in the performance. 

 

Keyword: Matching network, Optimization, Seeker Optimization Algorithm, Multi-stub System, 

Tapered Transmission line. 

 

1. Introduction  
Nowadays, a wideband lossless design in 

telecommunication applications becomes a 

require, and this is why matching networks 

plays a pivotal role in all communication 

applications. The main purpose of matching 

networks is to provide maximum power 

transfer from source to load, improve the 

signal to noise ratio, and reduce the amplitude 

and phase errors in power distribution 

networks by minimizing the reflection 

coefficient [1]. One of the most popularly 

used matching methods is the stub tuning.  To 

find the best values of the desired matching 

circuit namely lengths and positions of the 

stubs either the Smith chart or analytical 

solutions has been used ın the lıtrature [1]. 

However, when the the number of stubs 

increases, the process becomes complicated. 

Whereas such problem could be solved by 

using the optimization techniques by finding 

the stubs lengths and positions that minimize 

the reflection coefficient [2, 3]. 



Alfaqawi and Hasar / The International Journal of Materials and Engineering Technology 004 (2021) 178-187 

179 
 

Seeker Optimization (SO) algorithm, which 

is relatively new proposed optimization 

technique firstly proposed in 2006 [4] is a 

promising technique for the real parameter 

optimization. SO algorithm idea mainly 

imitate the concept of how the humans act 

when searching something. This includes the 

human used memory, experience, and 

uncertainty reasoning. SO algorithm has 

recently been applied successfully in solving 

a lot of electromagnetic problems [5-8].  

The main purpose of using the optimization 

in this work is to find the best parameters to 

design a matching networks that consist of 

multi-stubs placed between source and the 

load [9, 10]. The design parameters to be 

found are the stubs locations (d) as well as the 

lengths of the stubs (L). Where, SOA is used 

to find the appropriate stubs lengths and 

positions by minimizing the reflection 

coefficient in a pre-specified frequency 

range. Nonsimilar to [2, 3] in which only a 

single and double stubs configurations were 

designed using optimization methods, a 

multi-stub configuration is considered here. 

It should be mentioned here that, the design 

of stubs using optimization techniques 

instead of traditional methods is an 

interesting topic in the optimization 

applications [2, 3]. 

The main purposes of thıs paper are to: 

firstly; approve the capability of using newly 

devloped optimization techniques in 

matching applications. Secondly, is to 

demonstrate the enhancement in the system 

efficiency by using variable characteristic 

impedance  Zo over the usage of the fixed 

characteristic impedance Zo. Worth 

mentioning here that the variable 

characteristic impedance has been also 

applied successfully in [11,12] to improve 

antenna bandwidth. To the owther best 

knowledge this is the first time in the litrature 

to use the SOA in such proplem solving. 

The outlines of this study could be 

summerized as follows; In section II which 

has two subsections, in the first one the 

formulation of the problem has been 

presented, where in the second subsection the 

theoretical background of the SO algorithm 

has been presented. In section 3, three design 

examples are presented. Finally, Results and 

possible advanced studies presented and 

discussed in section 4. 

 

2. Materials and Methods 

This section has been divided into two 

subsections; where the formulation of the 

problem has been presented in the first 

subsection and the theoretical background of 

the SO Algorithm been presented in the other. 

 

2.1 Formulation of the Problems 

Figure 1 shows a general N parallel (shunt) 

stubs that are used to match a predefined load 

impedance  ZL to a transmission line defined 

by its characteristic impedance  Zo. Matching 

stubs could be open-circuited (OC) or short-

circuited (SC). The transmission line’s 

characteristic impedance Zo and admittance 

 Yo are related as Zo =
1

 Yo
, and in the same 

manner the load impedance and the load 

admittance  ZL =
1

 YL
. In a perfectly matched 

system,  Zo and  Yo are complex conjugates 

resulting in 100% power transfer to the load, 

and hence the design mainly aims to find the 

stub best locations and dimensions that fit to 

the matching condition.  

 

For the first stub: 

 

𝑌1 = 𝑌1
𝑑 + 𝑌1

𝑠    (1) 

𝑌1
𝑑 = 𝑌𝑂  

1− 𝛤1 exp (−2 𝛾 𝑑1)

1+ 𝛤1 exp (−2 𝛾 𝑑1)
  (2) 

𝛤1 =
𝑌𝑜−𝑌𝐿

𝑌𝑜+𝑌𝐿
    (3) 

𝑌1
𝑠 = 𝑌𝑜

1− 𝛤1
 𝑠

1+ 𝛤1
 𝑠    (4) 
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Figure 1. General N parallel stubs connection [9]. 

 

To reach the network matching between the 

load and the transmission line, we need to 

determine the total admittance calculated 

from the transmission line end, where this 

admittance is derived in recursive manner as 

follows [9]:  

For the nth stub: 

𝑌𝑛 = 𝑌𝑛
𝑑 + 𝑌𝑛

𝑠    (5) 

𝑌𝑛
𝑑 = 𝑌𝑂  

1− 𝛤𝑛 exp (−2 𝛾 𝑑𝑛)

1+ 𝛤𝑛 exp (−2 𝛾 𝑑𝑛)
  (6) 

𝛤𝑛 =
𝑌𝑜−𝑌𝑛−1

𝑌𝑜+𝑌𝑛−1
    (7) 

𝑌𝑛
𝑠 = 𝑌𝑜

1− 𝛤𝑛
 𝑠

1+ 𝛤𝑛
 𝑠    (8) 

 

For the last stub 

𝑌𝑁 = 𝑌𝑁
𝑑 + 𝑌𝑁

𝑠    (9) 

𝑌𝑁
𝑑 = 𝑌𝑂  

1− 𝛤𝑁 exp (−2 𝛾 𝑑𝑁)

1+ 𝛤𝑁 exp (−2 𝛾 𝑑𝑁)
   (10) 

𝛤𝑁 =
𝑌𝑜−𝑌𝑁−1

𝑌𝑜+𝑌𝑁−1
     (11) 

𝑌𝑁
𝑠 = 𝑌𝑜

1− 𝛤𝑁
 𝑠

1+ 𝛤𝑁
 𝑠     (12) 

 

where 𝛤𝑛
 𝑠 is is calculated as per the stub’s 

type (Sunt/series) as per below: 

 

𝛤𝑛
 𝑠 = −exp(−2𝛾𝑙𝑛

𝑠)    𝑛 = 1,2, … , 𝑁  for SC

  (13) 

𝛤𝑛
 𝑠 = 𝑒𝑥𝑝 (−2𝛾𝑙𝑛

𝑠)   𝑛 = 1,2, … , 𝑁    for OC 

  (14) 

 

Where,  

𝛾 = 𝛼 + 𝑗𝛽    (15) 

𝛽 =
2𝜋


=

2𝜋𝑓 

𝑣
    (16) 

 

In the aforementioned equations, 

  𝑌𝐿 = load admittance 

 𝑌𝑜 =characteristic admittance 

 𝑌𝑛 = adjacent admittance to the left of the 

𝑛𝑡ℎ stub 

 𝑌𝑛
𝑑 = adjacent admittance from the right 

𝑛𝑡ℎ stub. 

 𝑌𝑛
𝑠 = stub input admittance. 

 𝛤𝑛 = reflection coefficient between (𝑌𝑜) 
and (𝑌𝑛−1) 

 𝛤𝑛
 𝑠 = reflection coefficient from stub n. 

 𝑑𝑛 = distance between 𝑛𝑡ℎ stub and 

𝑛 − 1𝑡ℎstub,  

 𝑙𝑠𝑛 = stub length 

 𝛾 = propagation constant 

 𝛼= attenuation constant, 𝛽 = phase 

constant,  = wavelength, 𝑣 = phase 

velocity. 

 𝑓 is the frequency.  

 

The overall reflection coefficient could be 

calculated as per the equation17: 

𝛤 =
𝑌𝑜−𝑌𝑁

𝑌𝑜+𝑌𝑁
     (17) 

 

To sum up, the best matching is achieved 

when 𝛤 is minimized. With the assumption 

that all the components in the systems are 

lossless (neglecting the losses from the 

components itself), the parameters to be 

optimized are the stubs separating distances 

as well their lengths (𝑑𝑛, 𝑙𝑛
𝑠). 

 

2.2 Seeker Optimization Algorithm 

In engineering, optimization consists of 

trying variations of parameters and using 

information gained in different iterations to 

get the best results, those best results 
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(solution) are relative to the problem in hand, 

the solving method, and the tolerance 

allowed. Mathematically, optimization could 

be defined as adjusting inputs to a 

mathematical process to find minimum or 

maximum desired output. 

SO algorithm is a new promising technique 

for the real parameter optimization. Which 

mainly imitate the concept humans 

searching. As humans are using their 

memory, experience, and uncertainty 

reasoning SO algorithm is working with the 

same concept. SO algorithm divides the 

solution set randomly into K sub-populations 

with the same size, each individual in this 

sub-populations is called individually as a 

searcher or equally as seeker, where all those 

seekers in one sub-population constitute a 

neighborhood socially sharing searching 

information among themselves. When the 

algorithm starts to work, search direction, as 

well as the radius of the search for each 

seeker (step length), and trust degree will be 

determined for each seeker. Every seeker 

finds its a new position based on three 

factors: Namely, the seekers social learning, 

cognitive learning, as well the uncertainty 

reasoning. SO algorithm operates on a search 

population of s D-dimensional position 

vectors [13], that could be considered 

potential solutions of the optimization 

problem that we are trying to solve 

(represented by the fitness function), i.e., 

𝑥𝑖⃗⃗  ⃗  =  [𝑥𝑖1, … , 𝑥𝑖𝑗, … , 𝑥𝑖𝐷];  𝑖 = 1, 2, … , 𝑠  

 

where 𝑥𝑖𝑗 is the 𝑗𝑡ℎ element of 𝑥  𝑖 and s is the 

population size. The flow chart of the seeker 

optimization is shown in Figure 2. Firstly, it 

generates s positions that are uniformly 

distributed and randomly selected in the 

solution total space (defined by the maximum 

and minimum values of the parameters). Next 

step is to calculate the fitness of each seeker, 

then calculates the search direction 𝑑𝑖𝑗(𝑡) 
and the search radius 𝛼𝑖𝑗(𝑡), for the 𝑖𝑡ℎ seeker 

at time step t. Then the 𝑗𝑡ℎ element of the 𝑖𝑡ℎ 

seeker is calculated as per equation 18 [14]: 

𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝛼𝑖𝑗(𝑡)𝑑𝑖𝑗(𝑡)  (18) 

To avoid converging to a local minimum, 

SOA uses an inter sub population 

strategywhich described by: 

𝑥𝑘𝑛𝑗,𝑤𝑜𝑟𝑠𝑡 = {
𝑥𝑙𝑗,𝑏𝑒𝑠𝑡         𝑖𝑓 𝑅𝑗 ≤ 0.5

𝑥𝑘𝑛𝑗,𝑤𝑜𝑟𝑠𝑡                 𝑒𝑙𝑠𝑒
   

     (19) 

  

Where 𝑅𝑗 is a U, R number in the interval 

[0,1], 𝑥𝑘𝑛𝑗,𝑤𝑜𝑟𝑠𝑡 is defined as 𝑗𝑡ℎ element of 

 𝑛𝑡ℎ worst position in 𝑘𝑡ℎ sub-population, 

𝑥𝑙𝑗,𝑏𝑒𝑠𝑡 is the 𝑗𝑡ℎ  element of the superior 

position in 𝑙𝑡ℎ sub-population. 

 

B. Search Direction 

An empirical gradient is used when the 

fitness function can’t be differentiated [15] 

by in which the direction of increment/ 

decrement could be determined. In this way, 

and so seekers are leading their search. In SO 

algorithm model three different searching 

manners are used to find the search direction 

Namely they are called as egotistic, altruistic 

and proactive. 

For Egotistic part, is a totally depending on 

the seeker itself self-behavior which depends 

on the seeker self-cognitive learning [16]. 

And this could be calculated using the 

equation (20) as: 

𝑑 𝑖,𝑒𝑔𝑜(𝑡) = 𝑠𝑔𝑛(𝑝 𝑖,𝑏𝑒𝑠𝑡(𝑡) − 𝑥 𝑖(𝑡))  (20) 

 
Secondly, altruistic behavior, where the 

seekers communicating their neighbors to 

adjust their behavior and to reach their goal, 

Mainly, a seeker i  in the sub-population is 

associated with two  altruistic directions, i.e., 

 𝑑 𝑖,𝑎𝑙𝑡1(𝑡) ,  𝑑 𝑖,𝑎𝑙𝑡2(𝑡) given by: 

𝑑 𝑖,𝑎𝑙𝑡1(𝑡) = 𝑠𝑔𝑛(𝑔 𝑏𝑒𝑠𝑡(𝑡) − 𝑥 𝑖(𝑡))  (21) 

𝑑 𝑖,𝑎𝑙𝑡2(𝑡) = 𝑠𝑔𝑛(𝑙 𝑏𝑒𝑠𝑡(𝑡) − 𝑥 𝑖(𝑡))  (22) 

 

Lastly, seekers also use the proactiveness 

property, as the seekers are able to use a goal-

directed behavior [19]. Also, foreseeing the 

future behavior depending on their previous 

behavior [20]. And so, each seeker will be 

anticipating to change its own search 
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direction according to the seeker itself 

previous recorded behavior. And so, any 

seeker i is connected to an empirical direction 

named as proactiveness direction 𝑑 𝑖,𝑝𝑟𝑜(𝑡): 

𝑑 𝑖,𝑝𝑟𝑜(𝑡) = 𝑠𝑔𝑛(𝑥 𝑖(𝑡1)  −  𝑥 𝑖(𝑡2)) (23)          

 

Where 𝑡1, 𝑡2  ∈ 𝑡, 𝑡 − 1, 𝑡 − 2 and 𝑥 𝑖(𝑡1) has 

better fitness value than 𝑥 𝑖(𝑡2). As per the 

human reasonable judgment, the real search 

direction of the 𝑖𝑡ℎ seeker, i.e., 𝑑𝑖(t) = [𝑑𝑖1 , 

𝑑𝑖2, …, 𝑑𝑖𝐷] is based on a compromise 

among the previously explained four types of 

the empirical directions. In this work, the 𝑗𝑡ℎ  

element of 𝑑𝑖(𝑡) is selected by applying he 

following selection rule: 

𝑑𝑖𝑗(𝑡) =

{
 
 

 
 0                               𝑖𝑓  𝑟𝑗 ≤ 𝑝𝑗

(0)

+1    𝑖𝑓 𝑝𝑗
(0)
< 𝑟𝑗  ≤ 𝑝𝑗

(0) + 𝑝𝑗
(1)

−1   𝑖𝑓 𝑝𝑗
(0) + 𝑝𝑗

(1) < 𝑟𝑗  ≤    1

 

   (24) 

𝑝𝑗
𝑚, 𝑚 ∈ (0,1, −1) is defined as: in the set 

(𝑑𝑖𝑗,𝑒𝑔𝑜 , 𝑑𝑖𝑗,𝑎𝑙𝑡1, 𝑑𝑖𝑗,𝑎𝑙𝑡2, 𝑑𝑖𝑗,𝑝𝑟𝑜), let 𝑛𝑢𝑚(𝑚) 

is the number of "𝑚" then 𝑝𝑗
(𝑚)/4.

           

 
Figure 2. SOA Flow Chart 

 

A. Step Length (search Radious) 

Among the whole solution searching space, 

there are always fitness points that are closer 

to the extreme point, such that fitness values 

obtained by using those input variables are 

connected to their relative distances from the 
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optimum value, so the search must be 

intensified in regions with relatively good 

solutions [17]. Then it will be definitely of 

great logic to find the better values as moving 

to the optimum point and vice versa.  

During the solving procedure, optimization 

problems in general have ranges of values 

obtained in each iteration. To able to design a 

system that can be applied to a wide range of 

optimization problems (to make SO 

algorithm widely used), the obtained fitness 

values of all the seekers are ordered in 

descending manner and then turned into the 

sequence numbers from 1 to s as inputs to a 

fuzzy reasoning system. A membership 

function of linear type is usually used in the 

conditional part, this mathematically 

represented by: 

𝜇𝑖 = 𝜇𝑚𝑎𝑥 − 
𝑠−𝐼𝑖

𝑠−1
 (𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛)   (24) 

 

Where 𝐼𝑖 is the sequence number of 𝑥 𝑖(𝑡) 
after ordering the fitness values, where 𝜇𝑚𝑎𝑥 

is defined as the maximum membership 

degree value. This value is equal to or little 

less than 1.0. In this work, 𝜇𝑚𝑎𝑥 = 0.95 and 

the minimum value 𝜇𝑚𝑖𝑛 = 0.0111 will be 

considered as often used.  

 

3. Results & Discussion (Numerical 

Examples) 

In this part we will apply the proposed idea 

over four different types of stubs, namely; 

Single Stub, Double Stub, Multiple stubs 

with fixed  Z0 and Multiple stubs with 

variable  Z0 

 

3.1. Single Stub Example 
In this Example a single short-circuited shunt 

stub is optimized to match a 50 Ω 

transmission line to a load that could be 

described numerically as: ZL = 60 −
j80 (Ω) at frequency of 2 GHz.  Table 1 

shows the best optimum solution obtained 

using the SOA where 𝑙𝑠 is defined as the stub 

length and 𝑑 is defined as the distance 

between the stub location and the load. 

Compared to the results obtained numerically 

in [1] which also included in the same Table. 

Figure 3 shows the magnitude of the resulting 

total reflection coefficient as function of 

frequency. 

According to the results in Table 1, SOA is 

could simply acieve the tuning instead of 

using Smith chart or exact expression 

described in [1]. Also as per the results shown 

in Figure 3, it could be noticed that that in the 

second solution a narrower bandwidth has 

been reached. This is because both 𝑙𝑠 and 𝑑 

has larger values for the second solution, 

which increases the frequency variation of 

the match.  

 
Figure 3. The reflection coefficient 

magnitudes obtained by SOA versus 

frequency for a single short circuit shunt 

stub. 

 

Table 1. Design values obtained by SOA in addition to Pozar’s results for a single stub. 

Technique 𝑙𝑠 () 𝑑 ()  Best fitness 

SOA (solution 1) 0.0950 0.1104 9.1091e-005 

SOA (solution 2) 0.4051 0.2595 2.9145e-005 

Pozar (solution 1) [1] 0.095 0.110 - 

Pozar (solution 2) [1] 0.405 0.260 - 

 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Frequency (GHz)

 | 
| 

 

 

SOA Solution 1

SOA Solution 2
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Table 2. Design values obtained by SOA 

compared to Pozar’s results for double stub 

matching circuit. 

Technique 𝒍𝒔𝟏 () 𝒍𝒔𝟐 () 
SOA (solution 1) 0.1465 0.2042 

SOA (solution 2) 0.4819 0.3498 

Pozar (solution 1) [1] 0.146 0.204 

Pozar (solution 2) [1] 0.482 0.350 

 

3.2.Double Stub Example   

In this example we will consider a double 

stub to match a load of   ZL = 60 − j80 (Ω) 
with TL with characteristic impedance 

of  Zo = 50 Ω. Both stubs are open-circuited 

and /8 −apart. The first stub is located in 

parallel with  ZL. The optimized parameters 

in this example are the lengths of the two 

stubs, so that the results will be easy 

compared to the example in [1]. Table 2 and 

Figure 4 shows the results. 

 

3.3. Multi-Stubs Example  

In the previous stubs examples, the designed 

stubs provided matching at a specific 

frequency, and the aim of the examples to 

show the accuracy of the obtained solutions 

compared to the numerical ones. However, in 

the real time applications a wider bandwidth 

is required to enhance the transmission in the 

system. Accordingly, in this example, seven 

stub of type short-circuited (SC) 

configuration has been optimized to obtain a 

pre expressed standing wave ratio (SWR_ 

{desired}) works in a pre-specified frequency 

range. Standing wave ratio is defined as 

below: 

𝑆𝑊𝑅 =
1+|𝛤|

1−|𝛤|
      (27) 

 

Where the fitness objective function are 

defined as in ref. [9]: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑(𝛤(𝑓) − 𝛤𝑑(𝑓))
2  (28) 

𝛤𝑑 = 0.05 (
2

𝐵
)
2𝑚
(𝑓 − 𝑓𝑜)

2𝑚  (29) 

where 𝛤 is given in 17, 𝛤𝑑 is the desired 

reflection coefficient, 𝐵 is the band width, 𝑓𝑜 

is the middle frequency in the bandwidth, and 

𝑚 is a factor which is chosen here to be unity. 

ZL is assumed to be constant in both the 

optimization and the plotting of the final 

results because the frequency range is rather 

small; ZL = 150 − j60 (Ω).  
To achieve the goal of this optimization, two 

cases have been considered; Thre first one is 

to run the optimization problem over a fixed 

characteristic impedance of value  Zo =
50 Ω, and the other is to run over a varying 

characteristic impedance [11,12]. In the 

second case, instead of fixing the value 

of  Zo, The charastic impedance is considered 

as a varying parameter with value to be 

considered as the 15th variable in the 

optimization process to obtain SWR which is 

as close as possible to the desired one. 

The optimized values determined by SOA for 

the two cases for the SWR shown in Figures 

5 and 6 are tabulated as in Tables 3 and Table 

4. The best obtained solving parameters are 

defined as the ones that give the closest SWR 

to the desired one, i.e., the minimum value of 

the fitness function. The results obtained for 

the seven stubs with fixed Zo are compared 

with the results obtained by Nelder-Mead 

method (NM) [9] in Table 3.  From Figure 5, 

it could be clearly seen that, the SWR 

obtained using variable Zo  markedly 

outperforms the fixed one and gives almost 

exactly the desired response. In real 

applications, typical values for Zo are from 

20 to 150 Ω. However, most of the 

microwave equipment uses 50 Ω ports and 

connectors.  

Using the “tic/toc” function in MATLAB 

environment where the optimization has been 

performed, the elapsed time has been 

mesured for each of the aforementioned 

examples, and the results has been 

summerized in Table 5. 
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Figure 4. The reflection coefficient 

magnitude for solutions obtained by SOA 

vs. frequency for the double stubs matching 

 

 
Figure 5. Standing wave ratio for the 

desired, NML and for the SOA obtained 

design vs.  frequency for fixed 𝐙𝐨. 

 

 
Figure 6. Standing wave ratio for the desired 

and for the SOA obtained design vs. 

frequency for variable 𝐙𝐨. 

Table 3. Design values obtained by SOA 

and NM with fixed  𝐙𝐨. 

Number 

of stubs 
𝒍𝒔 (𝒎𝒎) 𝒅𝒔 (𝒎𝒎)    𝐙𝐨 (Ω) 

7 stubs 

(SOA) 

26.996    

59.319    

67.848    

66.033    

62.996    

62.372    

60.313 

40.241    

25.527    

11.981       

1        

1    

44.973    

29.319 

50 

7 stubs 

(NM) 

[9] 

24.5371, 

63.3895, 

65.3817, 

61.4128, 

60.2661, 

60.3690, 

64.2648 

39.9823, 

38.8459, 

5.8387, 

4.0774, 

65.0554 

95.5695, 

40.3593 

50 

 

Table 4. Design values obtained by SOA 

with variable  𝐙𝐨. 

# of 

stubs 
𝒍𝒔 (𝒎𝒎) 𝒅𝒔 (𝒎𝒎)    𝐙𝐨 (Ω) 

7 

stubs 

65.73924    

69.98455    

60.13989    

59.46959    

56.04904    

63.77201    

63.69742 

47.46891    

15.41879    

36.05155    

50.67158         

1    

13.61935    

44.77824 

142 

 

 

Table 5. Elapsed time for each run in the 

numerical examples as calculated in 

MATLAB. 

Number of stubs 
Elapsed time for 

each run (sec.) 

Single Stub 44.7807 

Double stub 45.5734 

Multiple Stub 

fixed Zo 
90.2718 

Multiple Stub 

variable Zo 
92.1919 

 

4. Conclusions 

In this work, a newly developed optimization 

technique has been used to design multi-stubs 
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matching system. The SOA has been used to 

find the optimum lengths and positions of the 

stubs to provide best matching circuit. 

Instead of using the recursive numerical 

calculations, the SO algorithm has been used 

to minimize the RC. The obtained results for 

the stubs’ locations as well as lengths for 

single and double stub system were compared 

and similar to those obtained using 

numerical/ graphical traditional techniques. 

For multi-stub matching examples, SO 

algorithm has been used to obtain the system 

parameters in a specific frequency range, 

considering two cases; optimization with 

fixed and variable  Zo. The obtained results 

by SOA show the capability of using 

optimization techniques in matching 

applications.  
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