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ABSTRACT 

This study provides a three parameter Transmuted Power Function distribution that is the generalization of the 
Power Function distribution. Structural properties of the proposed distribution are derived including survival 

function, hazard rate, moments, quantiles, mode, Rényi entropy, smallest and largest densities of ordered statistics. 

The estimation of the model parameters is performed using maximum likelihood method. Two real data sets are used 
to demonstrate the flexibility of the new model. 

Keywords: Transmuted, Power Function, Reliability Function, Moment Generating Function, Rényi Entropy, Order 

Statistics, Maximum Likelihood Estimation. 

 

  

 

1. INTRODUCTION  

In the modern era, large number of continuous univariate 

models exist, among these univariate models some 

particular occupy a central role because of their 

demonstrated utility in wide variety of circumstances. 

Many parametric models are used to model lifetime data. 

Power function distribution is flexible lifetime 
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distribution model which is the special case of beta 

distribution. Power function distribution was derived 

from Pareto distribution using the inverse transformation 

[1]. According to [1], if  is power function distribution 

then  is the Pareto distribution model. Meniconi and 

Barry [2] explore the performance of Power function 

distribution on electrical components and illustrated that 

power function distribution is most suitable distribution 

on electrical component data as compared to log-normal, 

Weibull and exponential models. Likewise, numerous 

probability models are used to model income distribution, 

but these models are mathematically more complicated to 

manage. The power function distribution on the other 

hand is very helpful in this regard [3]. The power 

function distribution can be used to fit the distribution of 

likelihood ratios in statistical tests. Further the 

introduction and derivations of statistical properties of the 

power function distribution discussed by [4-7]. 

Characterizations of power function distribution using 

order statistics and record values has been studied by [8], 

[9] discussed ordered statistics to estimate the scale and 

location of power function distribution. [10-12] provided 

detailed discussion on parameter estimation of power 

function distribution using various estimation procedures 

like method of moments, maximum likelihood, 

percentiles, method of least square, and Bayesian 

estimation with various loss functions. Bayesian analysis 

of power function distribution was discussed using three 

single and as well as three double priors and the accuracy 

of these priors was assessed using simulation studies 

[13]. An initial test estimator for a scale parameter of the 

power function distribution was proposed by [14]. 

Abdulsathar, Renjini [15] estimate the Gini-index and 

Lorenz curve of power function distribution and the 

shape parameter using Bayesian approach. The estimators 

was developed using weighted squared error and squared 

error loss functions.  

Cordeiro and dos Santos Brito [16] derived Beta power 

function distribution, Tahir, Alizadeh [17] introduced 

Weibull power function (WPF) distribution, and 

Oguntunde, Odetunmibi [18] studied the Kumaraswamy 

Power function distribution. 

Cumulative distribution function (cdf) and probability 

density function (pdf) of power function distribution is 

given by;  

 

 

Where  is scale and  is shape parameter. 

The purpose of this research is to provide more flexible 

generalization of power function distribution using the 

quadratic rank transmutation map introduced by Shaw 

and Buckley [19]. The generalized distribution is called 

Transmuted Power Function distribution (T-Ps). 

For an arbitrary cdf  , [19] defined the transmuted 

generalized family with cdf and pdf given by 

 

and 

 

respectively and where . The generalized 

distribution reduces to parent distribution for . 

Using this approach various generalized distributions 

have been generated; Transmuted Weibull Lomax, 

Transmuted Lindley, Transmuted Pareto [20-22] 

Furthermore, the study is organized as follows; in section 

2 graphical representations of probability density function 

and the hazard function is given. Section 3 deals with 

various mathematical properties, random number 

generation and estimation of proposed distribution. 

2. THE T-PS DISTRIBUTION 

The random variable  follows the T-Ps distribution 

with the probability density function,  

 

The corresponding cumulative distribution function is 

 

where ,  and  are shape, scale and transmuted 

parameters respectively. 

2.1.   Reliability Analysis 

The reliability function S(y), which is the probability of 

an item not failing prior to sometime y, is defined by S(y) 

= 1−F(y). The survival function of a T-Ps distribution is 

given by 

 

The hazard function is given by 

 

Figure 1 and Figure 2 illustrates various shapes of 

probability density function and hazard function for 

various combinations of parameter respectively 

 

Figure 1: Density Plots of the T-Ps for some parameter 

values (β=0.5, 1) 
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Figure 2: Plots of the T-Ps hazard function for some 

parameter values (β=0.5, 1) 

 

2.2 Moments 

The rth moment  of the T-Ps distribution can be 

derived using relation  

 

Using the (5) in (7), we get  

 

Setting r=1 in (8) we can get the mean of the T-Ps 

distribution 

 

Similarly, we can obtain the variance of T-Ps using the 

relation  

2.3 Quantile Function and Random Number 

Generation 

By definition, the quantile function of random variable 

 of T-Ps is obtained by inverting the cumulative 

distribution function as  

 

 

 

Using (9) we can generate the random numbers for 

Transmuted power function distribution, where q is the 

uniform random variate.  

2.4 Mode of T-PS 

Taking the first derivative of (4) and equating it to zero, 

we get  

 

Using the (10) we can get mode for different values of 

parameters. 

2.5 Rényi Entropy 

The Rényi entropy represents a measure of variation of 

the uncertainty. By definition Rényi entropy defined as 

 

Where   

We have 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6 Order Statistics 

Let be random variables and its ordered values is denoted 

as . The probability 

density function (pdf) of order statistics is obtained using 

the below function 

 

 

The density of the nth ordered statistics follows the 

transmuted Power Function distribution is derived as 

follow 
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The density of the smallest order statistic, is obtained as 

 

The density of the largest order statistic, is obtained as 

 

 

 

2.7 Maximum-likelihood Estimation 

In this section, the maximum likelihood estimates 

(MLEs), of the parameters that are inherent within the 

transmuted Power Function distribution function is given 

by the following: Let be random variables of transmuted 

Power Function distribution of size n.  Then sample 

likelihood and Log-Likelihood functions of T-Ps is 

obtained as 

 

Log-likelihood function is 

 

Therefore, The MLE’s of parameters (α, β, and θ) which 

maximize the above log-likelihood function must satisfy 

the normal equations. We take the first derivative of the 

above log-likelihood equation with respect to parameters 

and equate to zero respectively.  

 

 

 

 

The exact solution of above derived ML estimator for 

unknown parameters is not possible. So it is more 

convenient to use non-linear optimization algorithms 

such as Newton Raphson algorithm to numerically 

maximize the above likelihood function. After 

application of large sample property of ML Estimates, 

MLE  can be treated as being approximately normal 

with mean θ and variance-covariance matrix equal to the 

inverse of the expected information matrix, i.e. 

.  is the 

information matrix then its inverse of matrix is  

provide the variances and covariance’s. The observed 

information matrix given by 

 

 

Approximate two sided  confidence 

intervals for α, β, and θ are, respectively, given by 

 

numDeriv package of R language can be used to compute 

the Hessian matrix and its inverse, standard errors and 

asymptotic confidence intervals. 

3. APPLICATION 

In this section, we use censored and uncensored real data 

sets to compare the fits of the new model and illustrate 

the usefulness of the new model. 

3.1 Smith and Naylor Data – Uncensored 

The data set is obtained from Smith and Naylor [23] 

represents lifetimes of 50 industrial devices put on life 

test at time zero. The first set consists of 63 observations 

of the strengths of 1.5 cm glass fibres, originally obtained 

by workers at the UK National Physical Laboratory. 

Table 1 presents basic descriptive statistics for the Smith 

and Naylor data 

Table 1. Descriptive statistic of the Smith and Naylor 

data 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

0.550 1.375 1.590 1.507 1.685 2.240 

 

In order to determine the shape of the most appropriate 

hazard function for modeling, graphical analysis data 

may be used. In this context, the total time in 

test (TTT) plot is very useful (for more details see Aarset 

[24]). 
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Figure 3. The TTT plot of the Smith and Naylor data. 

The TTT plot is concave and provides evidence that the 

monotonic hazard rate is adequate. We compare the 

fitting of the T-Ps model with 5 models. The cdf of the 

other fitted models are: 

1. The Transmuted Log-Loistic (T-LL) distribution 

introduced by Aryal [25].  The cdf of T-LL 

distribution (with three parameters  and ) is 

 

 

where  is a shape parameter,  is a scale 

parameter and  is a transmuted parameter. 

2. The Complementary Burr III Poisson (C-BIII-P) 

distribution introduced by Hassan et al. (2015).  The 

cdf of C-BIII-P distribution (with three parameters 

 and ) is 

 

where  are shape parameters and   is scale 

parameter. 

3. The Poisson-Lomax (P-L) distribution introduced by 

Al-Zahrani and Sagor [26]. The cdf of P-L 

distribution (with three parameters  and ) is 

 

 is shape parameter and  are scale 

parameters. 

4. Transmuted-Rayligh (T-R) distribution introduced 

by Merovci [27]. The cdf of T-R distribution (with 

two parameters  and ) is 

 

 is scale parameters and  is transmuted 

parameter. 

In each case, the parameters are estimated by maximum 

likelihood and also model selection is carried out using 

log-likelihood function evaluated at the MLEs ( ), 

Akaike information criterion (AIC), consistent Akaike 

information criterion (CAIC), Hannan-Quinn information 

criterion (HQIC), Bayesian information criterion (BIC), 

Anderson-Darling ( ) and Cram'er–von Mises ( ) to 

compare the fitted models. In general, the smaller the 

values of these statistics, the better the fit to the data. The 

estimates of the parameters and the standard error values 

of this estimates are listed in Table 2 while Table 3, gives 

the rest of the statistics as , AIC, CAIC, BIC, HQIC, 

,  and K-S values. 

 

Table 2. MLEs (standard errors in parentheses) to Smith 

and Naylor data. 

 

Table 3. The measures , AIC, CAIC, BIC and HQIC 

to Smith and Naylor data. 

 

 

 

Table 3 shows that T-Ps distribution fitted the data better 

than the other models. In order to assess if the model is 

appropriate, we plot in Figure 2 (a) and (b) the histogram 

of the data and the T-Ps T-LL, C-BIII-P, P-L and T-R 

distributions and the empirical and their estimated cdf 

functions, respectively. These plots indicate that the T-Ps 

distribution provides a better fit to these data than all its 

sub-models. 

 

Figure 4. (a) Estimated densities of the T-Ps T-LL, C-

BIII-P, P-L and T-R distributions for the data.  

(b) Estimated cdf function from the fitted T-Ps T-LL, G-

EE, C-BIII-P, P-L and T-R distributions and the 

empirical cdf for the data. 

In addition, Figure 5 (a), (b), (c), (d) and (e) present the 

probability-probability (P-P) plot for the fitted 

distributions which specified used to determine how well 
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a specific distribution fits to the observed data. This plot 

will be approximately linear if the specified distribution 

is the correct model. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 5. (a), (b), (c), (d) and (e) are the P-P plot for the 

T-Ps T-LL, C-BIII-P, P-L and T-R distributions 

respectively. 

3.2 MURTHY DATA- UNCENSORED 

The second data set has been obtained from Murthy, Xie 

[28] page 180 represents 50 items. Table4 presents basic 

descriptive statistics for data set. 

Table 4. Descriptive statistic of Murthy et al. data 

 

 

Figure 6. The TTT plot of the Petroleum rock samples. 

 

The TTT plot for the current data is displayed in Figure 4, 

which is convex and according to Aarset [24] provides 

evidence that the hazard rate is decreasing. We compare 

the fitting of the Kw-Ps model with 4 non-nested models. 

The cdf of the fitted models are: 

1. The Lindley-Poisson (L-P) distribution introduced 

by Gui, Zhang [29].  The cdf of L-P distribution 

(with two parameters  and ) is 

 

where  are scale parameters. 

2. The transmuted Pareto (T-P) distribution introduced 

by Merovcia and Pukab [22].  The cdf of T-P 

distribution (with three parameters  and ) is 

 

where  is shape parameter,  is scale 

parameter and  is transmuted parameter. 

3. The Burr XII Negative Binomial (B-N-B) 

distribution introduced by Ramos, Percontini [30].  

The cdf of B-N-B distribution (with five parameters 

 and ) is 
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where  are scale parameters and  are shape 

parameters. 

4. The exponentiated Generalized Frechet (E-GF) 

introduced by Cordeiro, Ortega [31].  The cdf of E-

GF distribution (with three parameters  and 

) is 

 

where  are shape parameters and  is 

scale parameter. 

In each case, the parameters are estimated by maximum 

likelihood and also model selection is carried out using 

( ), (AIC), (CAIC), (HQIC), (BIC), ( ) and ( ) to 

compare the fitted models. In general, the smaller the 

values of these statistics, the better the fit to the data. The 

estimates of the parameters and the numerical values of 

the statistics are listed in Table 5 while Table 6. gives the 

rest of the statistics as , AIC, CAIC, BIC, HQIC, 

,  and K-S values. 

Table 5. MLEs (standard errors in parentheses) of 

Murthy et al. data. 

 

Table 6. The measures , AIC, CAIC, BIC, 

HQIC,    and KS to Murthy data. 

 

In order to assess if the model is appropriate, we plot in 

Figure 5 (a) and (b) the histogram of the data and the T-

Ps, L-P, T-P, B-N-W E-GF distributions and the 

empirical and their estimated cdf functions, respectively. 

These plots indicate that the T-Ps distribution provides a 

better fit to these data than all its sub-models. 

 

Figure 7. (a) Estimated densities of the T-Ps, L-P, T-P, 

B-N-B and E-GF distributions for the data. (b) Estimated 

cdf function from the fitted T-Ps, L-P, T-P, B-N-B and E-

GF distributions and the empirical cdf for the data. 

In addition, Figure 7 (a), (b), (c), (d) and (e) present the 

probability-probability (P-P) plot for the T-Ps, L-P, T-P, 

B-N-B and E-GF distributions.  

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

Figure 8: (a), (b), (c), (d) and (e) are the P-P plot for the 

T-Ps, L-P, T-P, B-N-B and E-GF distributions 

respectively. 

4. CONCLUSION 

In this paper, a new generalization of the power function 

distribution introduced by [2] is proposed, which extends 

the power function distribution. For new generalization 

we derived its mathematical properties, explicit 

expressions for the moments, quantile function, 

generating functions and obtain the density function of 

order statistics. We also discussed the maximum 

likelihood estimation for estimating the model parameters 

and compare it with other distributions to show its 

flexibility. The proposed distribution is applied to two 

real data sets and provides better fit than other 

distributions. 
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