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Abstract: Let 𝑉(𝑅𝐺) denote the normalized unit group of the group ring 𝑅𝐺 of 

a group 𝐺 over a ring 𝑅. The concept of 𝐺-nilpotent unit in a commutative group 

ring has been defined in (Danchev, 2012). In this study, some necessary and 

sufficient conditions for a normalized unit group in a commutative group ring of 

a direct product group 𝐺 × 𝐻 to consist only of 𝐺 × 𝐻-nilpotent units have been 

given and especially some results which are related to groups 𝐺 × 𝐶3 and 𝐺 × 𝐶4 
have been introduced where 𝐶3  and 𝐶4  are cyclic groups of orders 3 and 4 

respectively. In this context, we can say that the paper extends the results in 

(Danchev, 2012). At the end, an open problem is served as a future work. 
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Öz: 𝑉(𝑅𝐺) , bir 𝑅  halkası üzerindeki bir 𝐺  grubunun 𝑅𝐺  grup halkasının 

normalleştirilmiş birim grubunu göstersin. Değişmeli bir grup halkasındaki 𝐺-

nilpotent birimsel kavramı (Danchev, 2012)'de tanımlanmıştır. Bu çalışmada da, 

bir 𝐺 × 𝐻  direkt çarpım grubunun değişmeli grup halkasında normallenmiş 

birimsel elemanlar grubunun sadece 𝐺 × 𝐻 -nilpotent birimsel elemanlardan 

oluşabilmesi için bazı gerek ve yeter şartlar verilmiştir. Ayrıca özel olarak 𝐺 × 𝐶3 
ve 𝐺 × 𝐶4 gruplarına dair bazı sonuçlar sunulmuştur ki burada 𝐶3 ve 𝐶4 sırasıyla 

3 ve 4 mertebeli devirli gruplardır. Bu bağlamda, makale (Danchev, 2012)’deki 

sonuçları genişletir diyebiliriz. Sonunda, gelecek çalışma için açık problem 

sunulmuştur. 
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1. Introduction  

 

Let 𝑅  be a ring and 𝐺  be a group. Then the group ring 𝑅𝐺  is the set of all finite sums 
∑ 𝑟(𝑔)𝑔𝑔∈𝐺  where 𝑟(𝑔) ∈ 𝑅. The operations on the ring structure 𝑅𝐺 can be seen in (Sehgal, 1978; 

Karpilovsky, 1982; Milies & Sehgal, 2002; Görentaş, 2020) in detail. The sets of all units that are 

multiplicative invertible elements and normalized units which have augmentation 1 in 𝑅𝐺 are shown by 

𝑈(𝑅𝐺)  and 𝑉(𝑅𝐺)  respectively (Küsmüş, 2020). Augmentation of a unit 𝑢 = ∑ 𝑟(𝑔)𝑔𝑔∈𝐺 ∈ 𝑅𝐺  is 

defined as follows (Sehgal, 1978; Milies & Sehgal, 2002): 

 

𝜀(𝑢) = ∑𝑟(𝑔)

𝑔∈𝐺

 (1) 

 

Actually, one can see that 𝜀: 𝑅𝐺 → 𝑅 is a ring homomorphism with the transformation defined 

as in above equality. The kernel of 𝜀 is defined as follows: 

 
Δ(𝐺) = {𝛾 ∈ 𝑅𝐺: 𝜀(𝛾) = 0} (2) 

 

and it is generated as  

 
Δ(𝐺) = 〈𝑔 − 1: 𝑔 ∈ 𝐺, 𝑔 ≠ 1𝐺〉 (3) 

 

which is said to be augmentation ideal of 𝑅𝐺 (Sehgal, 1978; Milies & Sehgal, 2002). 

The 𝑝-primary component of a group 𝐺 is generally displayed by 𝐺𝑝 which consists of elements 

of order 𝑝𝑘  for some 𝑘 ∈ ℕ  and so the maximal torsion part 𝐺0  of 𝐺  is a co-product of primary 

components as (Danchev, 2010 and 2012). 

 

 

𝐺0 =∐𝐺𝑝
𝑝

 

 

(4) 

 

All the elements of 𝐺 are trivial units in 𝑉(𝑅𝐺) (Danchev, 2008 and 2009). An element 𝑒 of a 

ring 𝑅 is said to be idempotent if 𝑒2 = 𝑒 and the set of all idempotent elements is shown by 𝑖𝑑(𝑅) 
(Görentaş, 1999). Also, we know that idempotent elements in a group ring 𝑅𝐺 have been defined as 

(Danchev, 2010).  

 

 

𝑖𝑑(𝑅𝐺) = 〈∑ 𝑟𝑔𝑔
𝑟𝑔∈𝑖𝑑𝐶(𝑅)

: 𝑔 ∈ 𝐺〉 

 

(5) 

An element 𝑎 of 𝑅 is called by nilpotent if 𝑎𝑛 = 0 for some 𝑛 ∈ ℕ. For a ring 𝑅, 𝑁(𝑅) is the 

set of all nilpotent elements in 𝑅 and is said to be nil-radical of 𝑅. For an ideal 𝑆 ≤ 𝑅, 𝐼(𝑆𝐺; 𝐺) is a 

fundamental ideal and 𝐼(𝑅𝐺;𝐻) is relative augmentation ideal of 𝑅𝐺 with respect to 𝐻 ≤ 𝐺 (Danchev, 

2012). As mentioned in (Küsmüş, 2020), Danchev (2012) has defined some sets such as 𝑖𝑛𝑣(𝑅) =
{𝑝: 𝑝. 1𝑅 ∈ 𝑈(𝑅)}, 𝑧𝑑(𝑅) = {𝑝: 𝑝𝑟 = 0, ∃𝑟 ∈ 𝑅\{0}} and 𝑠𝑢𝑝𝑝(𝐺) = {𝑝: 𝐺𝑝 ≠ 1}. He has also defined 

the followings: 

 

Definition 1.1. Let 𝑢 ∈ 𝑉(𝑅𝐺). Then 𝑢 is said to be 𝐺-nilpotent if 𝑢 = 𝑔(1 + 𝑛) for some 𝑔 ∈ 𝐺 and 

𝑛 ∈ 𝐼(𝑁(𝑅)𝐺; 𝐺). 
 

Definition 1.2. 𝑉(𝑅𝐺) is called 𝐺-nilpotent if  

 

𝑉(𝑅𝐺) = 𝐺 × (1 + 𝐼(𝑁(𝑅)𝐺; 𝐺)) 

 

(6) 
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Under these definitions, Danchev (2012) has formally shown that 𝑉(𝑅𝐺) is 𝐺-nilpotent if and only if 

𝑉(𝑆𝐺) = 𝐺 where 𝑆 = 𝑅/𝑁(𝑅). 
By the way, we deal with defining a novel type of units which are lifted from nilpotent elements 

because nilpotents are also special type elements in a group ring and we have a lot of information and 

motivation related to nilpotents and nil-radical of a ring in the corresponding literature. We already have 

some type of units which are well-known such as Bass cyclic units, bicyclic units, etc. By this reason, it 

is better to generate novel types of units using other type of elements in a group ring.  

 

2.  Material and Methods 

 

In this section, we give some motivation and definitions related to the direct products of two 

commutative groups. 

Let 𝐺 and 𝐻 be two commutative groups with 𝑝-primary and 𝑞-primary components 𝐺𝑝 and 𝐻𝑞 

respectively. Utilizing maximal torsion parts of 𝐺 and 𝐻, we show the maximal torsion part of the direct 

product 𝐷 = 𝐺 × 𝐻 as follows: 

 

𝐷0 =∐∐𝐺𝑝 × 𝐻𝑞
𝑞𝑝

=∐𝐺𝑝 ×∐𝐻𝑞
𝑞𝑞

 

 

(7) 

where 𝑝 and 𝑞 are prime integers (Küsmüş, 2019).  

Due to the fact that 𝐺𝑝 = 1 means that 𝐺  has no 𝑝-primary component, we indicate by the 

notation 𝐺𝑝 × 𝐻𝑞 = 1 that 𝐺 or 𝐻 has no 𝑝-primary or 𝑞-primary components respectively (Küsmüş, 

2020). 

 
𝑠𝑢𝑝𝑝𝐶(𝐺 × 𝐻) = {𝑝𝑞: 𝐺𝑝 × 𝐻𝑞 ≠ 1} 

 

(8) 

is said to be the support of 𝐺 × 𝐻 (Küsmüş,2020). 

Besides, we use the sets 
  

𝑧𝑑𝐶(𝑅) = {𝑝𝑞: ∃0 ≠ 𝑟 ∈ 𝑅, 𝑝𝑞𝑟 = 0} 
(9) 

 

and  

 
𝑖𝑛𝑣𝐶(𝑅) = {𝑝𝑞: 𝑝𝑞. 1 ∈ 𝑈(𝑅)} 

 

(10) 

are defined in (Küsmüş, 2020).  

Throughout the paper, we also need the following propositions and definitions related to the 

ring 𝑅. 

 

Proposition 2.1. Let 𝑅  be a commutative and unital ring and 𝑁(𝑅)  be the nil-radical of 𝑅 . Then 

(Danchev, 2012). 

 

 
𝑈(𝑅/𝑁(𝑅)) = {𝑟 + 𝑁(𝑅): 𝑟 ∈ 𝑈(𝑅)} (11) 

 

 

Proposition 2.2. Since 𝑅 is a commutative and unital ring (Danchev, 2012), 

 
𝑖𝑛𝑣(𝑅) = 𝑖𝑛𝑣(𝑅/𝑁(𝑅)) 

 

(12) 

 

Definition 2.3. Let ℘ be the set of all prime integers. Then (Danchev, 2012), 

 
𝑛𝑝(𝑅) = {𝑝 ∈ ℘: ∃𝑠 ∈ 𝑅/𝑁(𝑅), 𝑝𝑠 ∈ 𝑁(𝑅)} 

 

(13) 
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Corollary 2.4. 𝑛𝑝(𝑅) = 𝑧𝑑(𝑅/𝑁(𝑅)) (Danchev, 2012). 

 

We know that a ring 𝑅  has nontrivial idempotents if and only if 𝑅/𝑁(𝑅)  has nontrivial 

idempotents as well. Actually, we can lift idempotent elements of a ring 𝑅 from the nil-radical 𝑁(𝑅) 
(Bourbaki, 1989). Hence, if the quotient ring 𝑅/𝑁(𝑅) has nontrivial idempotents, we can say 𝑅 has so 

as well. Now, we can define 𝐺 × 𝐻-nilpotent units since 𝐺 × 𝐻 is the direct product of groups 𝐺 and 𝐻. 

 

Definition 2.5. Let 𝑢 ∈ 𝑉(𝑅(𝐺 × 𝐻)). Then 𝑢 is said to be 𝐺 × 𝐻-nilpotent if 𝑢 = 𝑔ℎ(1 + 𝑛) for some 

𝑔 ∈ 𝐺, ℎ ∈ 𝐻 and 𝑛 ∈ 𝐼(𝑁(𝑅)𝐺 × 𝐻; 𝐺 × 𝐻), we say 𝑉(𝑅(𝐺 × 𝐻)) is 𝐺 × 𝐻-nilpotent if every units in 

𝑉(𝑅(𝐺 × 𝐻)) is 𝐺 × 𝐻-nilpotent. 

 

In the next section, we investigate some necessary and sufficient conditions for the normalized 

unit group 𝑉(𝑅(𝐺 × 𝐻)) to has only 𝐺 × 𝐻-nilpotent units. 

 

3. Results 

 

Firstly, we should note that 𝐶𝑛 = 〈𝑥: 𝑥
𝑛 = 1〉 denotes a cyclic group with a generator 𝑥 of order 

𝑛 throughout the section. Now, recall some definitions in (Küsmüş, 2020) such as  

 

𝑖) 𝑠𝑢𝑝𝑝𝐶(𝐺 × 𝐻) = {𝑝𝑞: 𝐺𝑝 × 𝐻𝑞 ≠ 1} 

 

𝑖𝑖) 𝑧𝑑𝐶(𝑅) = {𝑝𝑞: ∃0 ≠ 𝑟 ∈ 𝑅, 𝑝𝑞𝑟 = 0} 
 

𝑖𝑖𝑖) 𝑖𝑛𝑣𝐶(𝑅) = {𝑝𝑞: 𝑝𝑞. 1𝑅 ∈ 𝑈(𝑅)} 
 

Theorem 3.1. 𝑉(𝑅(𝐺 × 𝐻)) is 𝐺 × 𝐻-nilpotent ⟺ 𝑅 is indecomposable and reduced, 

 
𝑉(𝑅/𝑁(𝑅)(𝐺 × 𝐻)0) = (𝐺 × 𝐻)0 (14) 

 

and the followings hold: 

 

𝑖. 𝐺 × 𝐻 has only maximal torsion part or 

𝑖𝑖. 𝐺 × 𝐻 ≠ (𝐺 × 𝐻)0 and  

 
𝑠𝑢𝑝𝑝𝐶(𝐷) ∩ [𝑖𝑛𝑣𝐶(𝑅) ∪ 𝑧𝑑𝐶(𝑅)] = ∅ 

 

(15) 

Proof. First, assume that 𝑉(𝑅(𝐺 × 𝐻)) is 𝐺 × 𝐻-nilpotent and 𝑅 is decomposable. Then, there exists a 

nontrivial 𝑟 ∈ 𝑖𝑑(𝑅). Thus, we can generate a nontrivial unit in the unit group 𝑉(𝑅/𝑁(𝑅)(𝐺 × 𝐻)) such 

as 
 

𝑢 = 𝑢(𝑟, 𝑔, ℎ) = 1𝑅/𝑁(𝑅) − (𝑟 + 𝑁(𝑅)) + (𝑟 + 𝑁(𝑅))𝑔ℎ ∈ 𝑉(
𝑅

𝑁(𝑅)
𝐺 × 𝐻)\(𝐺 × 𝐻) 

 

(16) 

with the inverse 

 

𝑢−1 = 1𝑅/𝑁(𝑅) + (𝑟 + 𝑁(𝑅))(−1 + (𝑔ℎ)
−1) 

 

(17) 

This contradicts with Prop. 6 in (Danchev, 2012). Similarly, if we assume that 𝑅  has a nontrivial 

nilpotent element, then 
  

𝑣 = 1 𝑅

𝑁(𝑅)

+ (𝑓 + 𝑁(𝑅)) − (𝑓 + 𝑁(𝑅))𝑔ℎ 

 

 

(18) 

is a nontrivial unit where 𝑓 ∉ 𝑁(𝑅). This condradiction also shows that 𝑅 has to be reduced. We know 

that 
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𝑉 (
𝑅

𝑁(𝑅)
𝐷0) ⊆ 𝑉 (

𝑅

𝑁(𝑅)
𝐷) 

 

(19) 

and also 𝑉(𝑅/𝑁(𝑅)𝐷)) = 𝐷 by the assumption. Therefore, 

 
 

𝑉 (
𝑅

𝑁(𝑅)
(𝐺 × 𝐻)0) = 𝑉 (

𝑅

𝑁(𝑅)
(𝐺 × 𝐻)0) ∩ 𝐺 × 𝐻 = (𝐺 × 𝐻)0 

 

(20) 

and if 𝐺 × 𝐻 = (𝐺 × 𝐻)0, we are done. Let us assume that 𝐺 × 𝐻 ≠ (𝐺 × 𝐻)0 and  

 
𝑠𝑢𝑝𝑝𝐶(𝐺 × 𝐻) ∩ 𝑖𝑛𝑣𝐶(𝑅) ≠ ∅ 

 

(21) 

In this case, we obtain 

 
  

𝑒 =
1

𝑝𝑞
(1 + 𝑔ℎ +⋯+ 𝑔ℎ𝑜(𝑔ℎ)−1) = 𝑒2 

 

 

(22) 

which is a nontrivial idempotent where 𝑝𝑞 ∈ 𝑠𝑢𝑝𝑝𝐶(𝐺 × 𝐻) ∩ 𝑖𝑛𝑣𝐶(𝑅). So we can attain a nontrivial 

unit as above using 𝑒 ∈ 𝑖𝑑(𝑅) which is a contradiction. Hence,  

 
𝑠𝑢𝑝𝑝𝐶(𝐺 × 𝐻) ∩ 𝑖𝑛𝑣𝐶(𝑅) = ∅ 

 

(23) 

On the other hand, if 

 
𝑠𝑢𝑝𝑝𝐶(𝐺 × 𝐻) ∩ 𝑧𝑑𝐶(𝑅) ≠ ∅ 

 

(24) 

then  
 

(𝑟 + 𝑁(𝑅))(1 − 𝑔𝑝ℎ𝑞)
𝑝𝑞
= 0𝑅/𝑁(𝑅) 

(25) 

 

where 𝑝𝑞𝑟 = 0, 𝑔𝑝 ∈ 𝐺𝑝 ≤ 𝐺 and ℎ𝑞 ∈ 𝐻𝑞 ≤ 𝐻. Thus  

 

𝑢 = 1 + (𝑟 + 𝑁(𝑅))(1 − 𝑔𝑝ℎ𝑞) 

 

(26) 

is a nontrivial unit in 𝑉(𝑅/𝑁(𝑅)(𝐺 × 𝐻)) which is another contradiction. So it has to be realized that 

𝑠𝑢𝑝𝑝𝐶(𝐺 × 𝐻) ∩ 𝑧𝑑𝐶(𝑅) = ∅. Conversely, let 𝑅 be an indecomposable and reduced ring and also 

 
𝑠𝑢𝑝𝑝𝐶(𝐺 × 𝐻) ∩ [𝑖𝑛𝑣𝐶(𝑅) ∪ 𝑧𝑑𝐶(𝑅)] = ∅ (27) 

 

We have 

 

𝑉 (
𝑅

𝑁(𝑅)
(𝐺 × 𝐻)0) ∩ (𝐺 × 𝐻) = (𝐺 × 𝐻)0 (28) 

 

and  

 

𝑉 (
𝑅

𝑁(𝑅)
𝐺 × 𝐻) = 𝑉 (

𝑅

𝑁(𝑅)
(𝐺 × 𝐻)0) (𝐺 × 𝐻) (29) 

  

(May, 1976, p. 491). Extending the group epimorphism 𝜋: 𝐺 × 𝐻 ⟶
𝐺×𝐻

(𝐺×𝐻)0
 over the quotient ring 

𝑅/𝑁(𝑅) to 
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𝜋: 𝑅/𝑁(𝑅)(𝐺 × 𝐻) ⟶ 𝑅/𝑁(𝑅)(
𝐺 × 𝐻

(𝐺 × 𝐻)0
) (30) 

 

we get the inclusion 

 

𝑉 (
𝑅

𝑁(𝑅)
𝐺 × 𝐻) ⊆ 𝑉(𝑅/𝑁(𝑅)(

𝐺 × 𝐻

(𝐺 × 𝐻)0
) (31) 

 

Utilizing Lemma 4. in (May, 1976), one can notice that 

 

𝑉 (
𝑅

𝑁(𝑅)
(
𝐺 × 𝐻

(𝐺 × 𝐻)0
)) =

𝐺 × 𝐻

(𝐺 × 𝐻)0
(1 + 𝑁(

𝑅

𝑁(𝑅)
(
𝐺 × 𝐻

(𝐺 × 𝐻)0
))0) (32) 

 

Here, we denote the nilpotent elements which have augmentation 0 by 𝑁(
𝑅

𝑁(𝑅)
(
𝐺×𝐻

(𝐺×𝐻)0
))0. On the other 

hand, owing to the fact that 

 

1 + 𝑁(
𝑅

𝑁(𝑅)
(
𝐺 × 𝐻

(𝐺 × 𝐻)0
))

0

=  𝜋 (1 + 𝑁 (
𝑅

𝑁(𝑅)
𝐺 × 𝐻)

0

) ⊆ 𝜋(𝑉 (
𝑅

𝑁(𝑅)
(
𝐺 × 𝐻

(𝐺 × 𝐻)0
))) (33) 

 

we attain 

 

𝐺 × 𝐻

(𝐺 × 𝐻)0
(1 + 𝑁(

𝑅

𝑁(𝑅)
(
𝐺 × 𝐻

(𝐺 × 𝐻)0
))

0

) ⊆ 𝜋(
𝐺 × 𝐻

(𝐺 × 𝐻)0
)𝜋(𝑉 (

𝑅

𝑁(𝑅)
(
𝐺 × 𝐻

(𝐺 × 𝐻)0
))) (34) 

 

and so 

 

𝐺 × 𝐻

(𝐺 × 𝐻)0
(1 + 𝑁(

𝑅

𝑁(𝑅)
(
𝐺 × 𝐻

(𝐺 × 𝐻)0
))

0

) ⊆ 𝜋(
𝐺 × 𝐻

(𝐺 × 𝐻)0
𝑉 (

𝑅

𝑁(𝑅)
(
𝐺 × 𝐻

(𝐺 × 𝐻)0
))) (35) 

 

This means that  

 

𝜋(𝑉 (
𝑅

𝑁(𝑅)
(
𝐺 × 𝐻

(𝐺 × 𝐻)0
))) ⊆ 𝜋(

𝐺 × 𝐻

(𝐺 × 𝐻)0
𝑉 (

𝑅

𝑁(𝑅)
(
𝐺 × 𝐻

(𝐺 × 𝐻)0
))) (36) 

 

Since the inverse of the above inclusion is clear, one can conclude that 

 

𝜋(𝑉 (
𝑅

𝑁(𝑅)
(
𝐺 × 𝐻

(𝐺 × 𝐻)0
))) = 𝜋(

𝐺 × 𝐻

(𝐺 × 𝐻)0
𝑉 (

𝑅

𝑁(𝑅)
(
𝐺 × 𝐻

(𝐺 × 𝐻)0
))) (37) 

 

and thus the image of 𝑉 (
𝑅

𝑁(𝑅)
𝐺 × 𝐻) − (𝐺 × 𝐻)𝑉 (

𝑅

𝑁(𝑅)
(𝐺 × 𝐻)0) under 𝜋 is 0. This shows that  

 

𝑉 (
𝑅

𝑁(𝑅)
𝐺 × 𝐻) − (𝐺 × 𝐻)𝑉 (

𝑅

𝑁(𝑅)
(𝐺 × 𝐻)0) (38) 

 

is in the kernel of 𝜋. We also know that 

 

𝐾𝑒𝑟 𝜋 ⊆ 𝑉 (
𝑅

𝑁(𝑅)
(𝐺 × 𝐻)0) (39) 
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Then 

 

𝑉 (
𝑅

𝑁(𝑅)
𝐺 × 𝐻) ⊆ (𝐺 × 𝐻)𝑉 (

𝑅

𝑁(𝑅)
(𝐺 × 𝐻)0) + 𝑉(

𝑅

𝑁(𝑅)
(𝐺 × 𝐻)0) (40) 

 

To sum up, we have the inclusion 

 

𝑉 (
𝑅

𝑁(𝑅)
𝐺 × 𝐻) ⊆ (𝐺 × 𝐻)𝑉 (

𝑅

𝑁(𝑅)
(𝐺 × 𝐻)0) (41) 

 

As the converse of this inclusion is apparent, the equation 

 

𝑉 (
𝑅

𝑁(𝑅)
𝐺 × 𝐻) = (𝐺 × 𝐻)𝑉 (

𝑅

𝑁(𝑅)
(𝐺 × 𝐻)0) (42) 

 

hold. Substituting the assumption 

 

𝑉 (
𝑅

𝑁(𝑅)
(𝐺 × 𝐻)0) = (𝐺 × 𝐻)0 (43) 

 

into the above equation, we have indicated that 

 

𝑉 (
𝑅

𝑁(𝑅)
𝐺 × 𝐻) = (𝐺 × 𝐻) (44) 

 

as claimed. ∎ 

 

Theorem 3.2. Let 𝐺 and 𝐻 be Abelian groups where |𝐻| = 3. Then, 𝑉(𝑅(𝐺 × 𝐻)) is 𝐺 × 𝐻-nilpotent 

if and only if 

 

𝑖) 𝑉(𝑅/𝑁(𝑅)𝐺) = 𝐺, 

 

𝑖𝑖) 1 + 3(𝑎2 + 𝑏2 + 𝑎𝑏 + 𝑎 + 𝑏) ∈ 𝑉(
𝑅

𝑁(𝑅)
) ⇔ (𝑎, 𝑏) ∈ {(0,0), (−1,0), (0, −1)}.  

 

Proof. ⇒: Assume that 𝑉(𝑅(𝐺 × 𝐻)) has only 𝐺 × 𝐻-nilpotent units. In this case, we equivalently have 

𝑉(𝑅/𝑁(𝑅)(𝐺 × 𝐻)) = 𝐺 × 𝐻. Define a group epimorphism over 𝐺 × 𝐻 ≃ 𝐺 × 〈𝑥: 𝑥3 = 1〉 as  

 
𝜒: 𝐺 × 𝐻 ⟶ 𝐺, 𝜒(𝑔, ℎ) = 𝑔 (45) 

 

Extending linearly 𝜒 over group ring, we attain  

 
�̅�: 𝑅/𝑁(𝑅)(𝐺 × 𝐻) ⟶ 𝑅/𝑁(𝑅)𝐺 

 

(46) 

with an element 𝛾 = ∑ (𝑟𝑔ℎ + 𝑁(𝑅)) 𝑔ℎ𝑔ℎ∈𝐺×𝐻  which has the image 

 

�̅�(𝛾) = ∑ (𝑟𝑔ℎ + 𝑁(𝑅))𝑔

𝑔ℎ∈𝐺×𝐻

 (47) 

 

Restricting �̅� to the unit groups yields  

 
𝜒𝑉: 𝑉(𝑅/𝑁(𝑅)(𝐺 × 𝐻)) ⟶ 𝑉(𝑅/𝑁(𝑅)𝐺) (48) 

 

with 

 



YYU JINAS 28 (1): 8-18 

Hanoymak and Küsmüş / A Generalization of G-Nilpotent Units in Commutative Group Rings to Direct Product Groups 

15 
 

𝐾𝑒𝑟 𝜒𝑉 = 𝑉(1 + Δ 𝑅

𝑁(𝑅)𝐺

(𝐻)) = (1 + 〈1 − 𝑥, 1 − 𝑥2〉) ∩ 𝑉(𝑅/𝑁(𝑅)(𝐺 × 𝐻)) (49) 

 

Thus, 

 
𝑉(𝑅/𝑁(𝑅)(𝐺 × 𝐻))

𝑉(1 + Δ 𝑅

𝑁(𝑅)
𝐺
(𝐻))

≃ 𝑉(
𝑅

𝑁(𝑅)
𝐺) (50) 

 

and we form a short exact sequence 𝐴
𝑖
→𝐵

𝜒𝑉
→ 𝐶 where 

𝐴 = 𝑉(1 + Δ𝑅/𝑁(𝑅)𝐺(𝐻)), 𝐵 = 𝑉(𝑅/𝑁(𝑅)(𝐺 × 𝐻)) and 𝐶 = 𝑉(𝑅/𝑁(𝑅)𝐺). Splitting 𝐴
𝑖
→𝐵

𝜒𝑉
→ 𝐶, we 

obtain a decomposition as 𝐵 = 𝐴 × 𝐶. One can notice that if 

 

𝑉(𝑅/𝑁(𝑅)(𝐺 × 𝐻)) = 𝐺 × 𝐻 

 

(51) 

then 𝐴 = 𝐻  and 𝐶 = 𝑉(𝑅/𝑁(𝑅)𝐺) = 𝐺 . Now, we should also explore necessary and sufficient 

conditions to be 

 
𝐴 = 𝑉(1 + Δ𝑅/𝑁(𝑅)𝐺(𝐻)) = 𝐻 

 

(52) 

Actually, since 

 

𝐴 = 1 + Δ 𝑅

𝑁(𝑅)
𝐺
(𝐻) ∩ 𝑉 (

𝑅

𝑁(𝑅)
(𝐺 × 𝐻)) 

 

(53) 

a unit  

 
𝑢 = 1 + 𝑎(1 − 𝑥) + 𝑏(1 − 𝑥2) ∈ 〈𝑥: 𝑥3 = 1〉 

 

(54) 

if and only if  

 
𝑢𝑣 = 𝑢[1 + 𝑐(1 − 𝑥) + 𝑑(1 − 𝑥2)] = 1 + (1 − 𝑥)(𝑎 + 𝑐 + 2𝑎𝑐 + 𝑏𝑐 + 𝑎𝑑 − 𝑏𝑑) 

                                                 +(1 − 𝑥2)(𝑏 + 𝑑 − 𝑎𝑐 + 𝑏𝑐 + 𝑎𝑑 + 2𝑏𝑑) = 1 

 

(55) 

for some 𝑣 = 1 + 𝑐(1 − 𝑥) + 𝑑(1 − 𝑥2)  where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅/𝑁(𝑅)𝐺 . Then, we can constitute a 

system of linear equations as  

 
𝑎 + 𝑐 + 2𝑎𝑐 + 𝑏𝑐 + 𝑎𝑑 − 𝑏𝑑 = 0 (56) 

  

𝑏 + 𝑑 − 𝑎𝑐 + 𝑏𝑐 + 𝑎𝑑 + 2𝑏𝑑 = 0 (57) 

 

so its matrix equivalent 𝐴 (
𝑐
𝑑
) = (

−𝑎
−𝑏
) where 

 

𝐴 = (
1 + 2𝑎 + 𝑏 𝑎 − 𝑏
𝑏 − 𝑎 1 + 𝑎 + 2𝑏

) 

 

(58) 

has a unique solution (
𝑐
𝑑
) if and only if 𝐴 is an invertible matrix so we can onclude that 

 
𝑑𝑒𝑡𝐴 = 1 + 3(𝑎2 + 𝑏2 + 𝑎𝑏 + 𝑎 + 𝑏) 

 

(59) 

must be a unit in 𝑉(𝑅/𝑁(𝑅)𝐺) because of the formula 𝐴−1 =
1

𝑑𝑒𝑡𝐴
𝑎𝑑𝑗(𝐴).  Hence,  

 
1 + 𝑎(1 − 𝑥) + 𝑏(1 − 𝑥2) ∈ 〈𝑥: 𝑥3 = 1〉 (60) 

 

and 𝑑𝑒𝑡𝐴 ∈ 𝑉(𝑅/𝑁(𝑅)𝐺) yields all of the following possible cases.  
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Case 1:  

 

1 + 𝑎(1 − 𝑥) + 𝑏(1 − 𝑥2) = 1 if and only if (𝑎, 𝑏) = (0,0). 
 

Case 2: 

 

1 + 𝑎(1 − 𝑥) + 𝑏(1 − 𝑥2) = 𝑥 if and only if (𝑎, 𝑏) = (−1,0). 
 

Case 3: 

 

1 + 𝑎(1 − 𝑥) + 𝑏(1 − 𝑥2) = 𝑥2 if and only if (𝑎, 𝑏) = (0,−1). 
 

So we get 𝑖𝑖) in the hypothesis. ∎ 

 

Corollary 3.3. Let 𝐺 and 𝐻 be Abelian groups where |𝐻| = 3 and char 𝑅 = 3. Then, 𝑉(𝑅(𝐺 × 𝐻)) has 

only 𝐺 × 𝐻-nilpotent units if and only if 

 
𝑉(𝑅𝐺) = 𝐺 × (1 + 𝐼(𝑁(𝑅)𝐺; 𝐺)) (61) 

 

and 𝐾𝑒𝑟 𝜒 = 〈1 − 𝑥, 1 − 𝑥2〉𝑆 such that 

 
𝑆 × 𝑆 = {(0, 𝜇): 𝜇 ∈ ℤ3} ∪ {(𝜇, 0): 𝜇 ∈ ℤ3} 

 

(62) 

Proof. If char 𝑅 = 3, det 𝐴 is 

 
1 + 3(𝑎2 + 𝑏2 + 𝑎𝑏 + 𝑎 + 𝑏) = 1𝑅/𝑁(𝑅) 

 

(63) 

So, one can clearly deduce that 𝑉(1 + 𝐾𝑒𝑟 𝜒𝑉) is {1 + 𝑎(1 − 𝑥) + 𝑏(1 − 𝑥2): 𝑎, 𝑏 ∈ 𝑅/𝑁(𝑅)𝐺}  
and thus 𝑉(1 + 𝐾𝑒𝑟 𝜒𝑉) = 𝐻 if and only if at least one of 𝑎 and 𝑏 has to be 0. This requires  

 
𝑆 × 𝑆 = {(0, 𝜇): 𝜇 ∈ ℤ3} ∪ {(𝜇, 0): 𝜇 ∈ ℤ3} 

 

(64) 

as claimed. ∎ 

 

Theorem 3.4. Let 𝐺 and 𝐻 be Abelian groups with |𝐻| = 4 which is cyclic. Then, 𝑉(𝑅(𝐺 × 𝐻)) has 

not only 𝐺 × 𝐻-nilpotent units if and only if 𝑉 (
𝑅

𝑁(𝑅)
𝐺) ≠ 𝐺 or there exists a unit of the form 

 
𝑢(𝑎, 𝑏, 𝑐) = (1 + 2𝑎 + 2𝑐)(1 + 2𝑎2 + 4𝑏2 + 2𝑐2 + 4𝑎𝑏 + 4𝑏𝑐 + 2𝑎 + 4𝑏 + 2𝑐) 

 

(65) 

where 𝑎, 𝑏, 𝑐 ∈ 𝑅/𝑁(𝑅)𝐺.  

 

Proof. Utilizing the epimorphisms in the previous theorem, we can set the same short exact sequence 

there. In this case, 𝑉(𝑅(𝐺 × 𝐻)) has not only 𝐺 × 𝐻-nilpotent units if and only if 

 
𝑉(𝑅/𝑁(𝑅)𝐺) ≠ 𝐺 

 

(66) 

or 

 
𝑉(1 + Δ𝑅/𝑁(𝑅)𝐺(𝐻)) ≠ 𝐻 

 

(67) 

where 𝐻 = 〈𝑥: 𝑥3 = 1〉. Let  

 
𝑢 = 1 + 𝑎(1 − 𝑥) + 𝑏(1 − 𝑥2) + 𝑐(1 − 𝑥3) 

 

(68) 
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be a unit in 𝑉(1 + Δ𝑅/𝑁(𝑅)𝐺(𝐻))  with the inverse 𝑣 = 1 + 𝑑(1 − 𝑥) + 𝑒(1 − 𝑥2) + 𝑓(1 − 𝑥3) . 

Then 𝑉(1 + Δ𝑅/𝑁(𝑅)𝐺(𝐻)) ≠ 𝐻 if and only if 𝑢 is nontrivial and 𝑢𝑣 is  

 
1 + (1 − 𝑥)𝛽1 + (1 − 𝑥

2)𝛽2 + (1 − 𝑥
3)𝛽3 = 1 

 

(69) 

where 

 
𝛽1 = (𝑎 + 𝑑 + 2𝑎𝑑 + 𝑏𝑑 + 𝑐𝑑 + 𝑎𝑒 − 𝑐𝑒 + 𝑎𝑓 − 𝑏𝑓) 

 

(70) 

𝛽2 = (𝑏 + 𝑒 − 𝑎𝑑 + 𝑏𝑑 + 𝑎𝑒 + 2𝑏𝑒 + 𝑐𝑒 + 𝑏𝑓 − 𝑐𝑓) 
 

(71) 

𝛽3 = (𝑐 + 𝑓 − 𝑏𝑑 + 𝑐𝑑 − 𝑎𝑒 + 𝑐𝑒 + 𝑎𝑓 + 𝑏𝑓 + 2𝑐𝑓) 
 

(72) 

In this case, 𝑢𝑣 = 1 if and only if 𝑀(
𝑑
𝑒
𝑓
) = (

−𝑎
−𝑏
−𝑐
) has a unique solution (

𝑑
𝑒
𝑓
) where 𝑀 is  

 

(
1 + 2𝑎 + 𝑏 + 𝑐 𝑎 − 𝑐 𝑎 − 𝑏

𝑏 − 𝑎 1 + 𝑎 + 2𝑏 + 𝑐 𝑏 − 𝑐
𝑐 − 𝑏 𝑐 − 𝑎 1 + 𝑎 + 𝑏 + 2𝑐

) (73) 

 

Thus 𝑑𝑒𝑡 𝑀 is invertible in (𝑅/𝑁(𝑅))𝐺 and can be stated as 

 
(1 + 2𝑎 + 2𝑐)(1 + 2𝑎2 + 4𝑏2 + 2𝑐2 + 4𝑎𝑏 + 4𝑏𝑐 + 2𝑎 + 4𝑏 + 2𝑐) (74) 

 

as claimed in the theorem. ∎ 

 

Corollary 3.5. Let 𝐺  and 𝐻  be Abelian groups with |𝐻| = 4 which is cyclic and also 𝑐ℎ𝑎𝑟 𝑅 = 2. 

Then, 𝑉(𝑅(𝐺 × 𝐻)) has not only 𝐺 × 𝐻-nilpotent units if and only if 𝑉(𝑅/𝑁(𝑅)𝐺) ≠ 𝐺 or 

𝐾𝑒𝑟 𝜒 = 〈1 − 𝑥, 1 − 𝑥2, 1 − 𝑥3〉𝑇 such that 𝑇3 = {(𝑎, 𝑏, 𝑐): 𝑎, 𝑏, 𝑐 ∈ 𝑅/𝑁(𝑅)𝐺} where at least two of 

𝑎, 𝑏 and 𝑐 is different from 0𝑅/𝑁(𝑅)𝐺. 

 

Proof. If 𝑉(𝑅(𝐺 × 𝐻)) has not only 𝐺 × 𝐻-nilpotent units and 𝑉(𝑅/𝑁(𝑅)𝐺) = 𝐺, then  

 
𝑉(1 + 𝐾𝑒𝑟 𝜒𝑉) (75) 

 

has to consist nontrivial units. As a unit 𝑢 = 1 + 𝑎(1 − 𝑥) + 𝑏(1 − 𝑥2) + 𝑐(1 − 𝑥3) has to be different 

from 1, 𝑥, 𝑥2 or 𝑥3. In this case, one can easily check that if only one of 𝑎, 𝑏 or 𝑐 is 0, 𝑢 has one of the 

following forms: 

 
𝑢 = 1 + 𝑎(1 − 𝑥) + 𝑏(1 − 𝑥2) 

 

(76) 

𝑢 = 1 + 𝑎(1 − 𝑥) + 𝑐(1 − 𝑥3) 
 

(77) 

𝑢 = 1 + 𝑏(1 − 𝑥2) + 𝑐(1 − 𝑥3) (78) 

 

Thus 𝑢 may has a nontrivial form which is a contradiction. Hence, in order to insure that 𝑢 has 

to be only 1, 𝑥, 𝑥2 or 𝑥3, we have to choose the parameters 𝑎, 𝑏, 𝑐 as claimed. ∎ 

 

4. Discussion and Conclusion 

 

In this study, we have firstly defined some sets using primes related to a commutative group 

ring 𝑅(𝐺 × 𝐻) which is unity of Abelian groups 𝐺 and 𝐻 inspring from (Danchev, 2012). Later, we 

have determined some necessary and sufficient conditions for 𝑉(𝑅(𝐺 × 𝐻))  to be 𝐺 × 𝐻 -nilpotent 

based on our definitions such as 𝑠𝑢𝑝𝑝𝐶(𝐺 × 𝐻), 𝑧𝑑𝐶(𝑅) and 𝑖𝑛𝑣𝐶(𝑅) in Theorem 3.1. 
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Li (1998) has proved that if 𝑅𝐺 has only trivial units, then 𝑅(𝐺 × 𝐶2) has only trivial units as 

well where 𝑅 = ℤ. So, the results on 𝐺 × 𝐶2-nilpotency of the normalized unit group 𝑉(𝑅(𝐺 × 𝐶2)) can 

be similarly obtained using his structure. In this paper, we have acquired some special necessary and 

sufficient conditions on 𝐺 × 𝐻-nilpotency of 𝑉(𝑅(𝐺 × 𝐻)) for 𝐻 = 𝐶3 and 𝐻 = 𝐶4. As a future work, 

it may possible to get some results about 𝐺 × 𝐶𝑛 for a general 𝑛. Besides, we should note that the current 

paper already gives a characterization for 𝐺1 × 𝐺2 ×⋯𝐺𝑛 since we can observe that 

 
𝐺1 × 𝐺2 ×⋯𝐺𝑛 = 𝐺1̅̅ ̅ × 𝐺2̅̅ ̅ (79) 

 

where 𝐺1̅̅ ̅ = 𝐺1 × 𝐺2 ×⋯𝐺𝑘  and 𝐺2̅̅ ̅ = 𝐺𝑘+1 × 𝐺𝑘+2 ×⋯𝐺𝑛  for 1 ≤ 𝑘 < 𝑛 . So, it is an easy 

implementation of this paper and can only be evaluated as an example. 

As widely known, units are one of exclusive elements in group rings. In addition, defining a 

new type of units creates a remarkable area in the theory of group rings. Being able to attract more 

researchers plays a crucial role by sharing ideas and open problems.  

In this context, we think that investigating necessary and sufficient conditions for 

 

𝑉(𝑅(𝐺 × 𝐻)) = 𝑉(𝑅𝐺) × (1 + 𝐼) 
 

(80) 

where 𝐼 = 𝐼(𝑁(𝑅)𝐺 × 𝐻; 𝐺 × 𝐻) can be appreciated as an open problem and so a future work. 
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