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Avrticle Info Abstract: Let V(RG) denote the normalized unit group of the group ring RG of
agroup G over aring R. The concept of G-nilpotent unit in a commutative group
ring has been defined in (Danchev, 2012). In this study, some necessary and
sufficient conditions for a normalized unit group in a commutative group ring of
a direct product group G X H to consist only of G x H-nilpotent units have been
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Keywords respectively. In this context, we can say that the paper extends the results in
Direct product group, (Danchev, 2012). At the end, an open problem is served as a future work.
Generalization,

Nilpotent,

Unit

Degismeli Grup Halkalarinda G-Nilpotent Birimsel Elemanlarin Direkt Carpim
Gruplarina Bir Genellemesi

Makale Bilgileri Oz: V(RG), bir R halkasi iizerindeki bir G grubunun RG grup halkasmin
normallestirilmis birim grubunu gostersin. Degismeli bir grup halkasidaki G-
nilpotent birimsel kavrami (Danchev, 2012)'de tanimlanmistir. Bu ¢alisgmada da,
bir G X H direkt ¢arpim grubunun degismeli grup halkasinda normallenmis
birimsel elemanlar grubunun sadece G X H -nilpotent birimsel elemanlardan
DOI:10.53433/yyufbed.1097581 ©lusabilmesi i¢in bazi gerek ve yeter sartlar verilmistir. Ayrica 6zel olarak G x C3

ve G X C, gruplarina dair bazi sonug¢lar sunulmustur ki burada C; ve C, sirasiyla

Gelis: 02.04.2022
Kabul: 29.08.2022
Online Nisan 2023

Anahtar Kelimeler 3 ve 4 mertebeli devirli gruplardir. Bu baglamda, makale (Danchev, 2012)’deki
Birimsel, sonuglart genisletir diyebiliriz. Sonunda, gelecek calisma icin agik problem
Direkt ¢arpim grubu, sunulmustur.
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1. Introduction

Let R be a ring and G be a group. Then the group ring RG is the set of all finite sums
YgecT(g)g where r(g) € R. The operations on the ring structure RG can be seen in (Sehgal, 1978;
Karpilovsky, 1982; Milies & Sehgal, 2002; Gorentas, 2020) in detail. The sets of all units that are
multiplicative invertible elements and normalized units which have augmentation 1 in RG are shown by
U(RG) and V(RG) respectively (Kiismiis, 2020). Augmentation of a unit u = Y ;e57(g)g € RG is
defined as follows (Sehgal, 1978; Milies & Sehgal, 2002):

£ = ) r(g) W

geG

Actually, one can see that e: RG — R is a ring homomorphism with the transformation defined
as in above equality. The kernel of ¢ is defined as follows:

A(G) ={y € RG: ¢(y) = 0} (2
and it is generated as
AG) =(g—1:g€G,g*1g) ®)

which is said to be augmentation ideal of RG (Sehgal, 1978; Milies & Sehgal, 2002).
The p-primary component of a group G is generally displayed by G,, which consists of elements

of order p* for some k € N and so the maximal torsion part G, of G is a co-product of primary
components as (Danchev, 2010 and 2012).

Go = U G, “)

All the elements of G are trivial units in V(RG) (Danchev, 2008 and 2009). An element e of a
ring R is said to be idempotent if e? = e and the set of all idempotent elements is shown by id(R)
(Gorentas, 1999). Also, we know that idempotent elements in a group ring RG have been defined as
(Danchev, 2010).

id(RG) = (Z y (R)ng :g €G) (%)
TgEl C

An element a of R is called by nilpotent if a™ = 0 for some n € N. For a ring R, N(R) is the
set of all nilpotent elements in R and is said to be nil-radical of R. For an ideal S < R, I(SG;G) is a
fundamental ideal and I(RG; H) is relative augmentation ideal of RG with respect to H < G (Danchev,
2012). As mentioned in (Kiismiis, 2020), Danchev (2012) has defined some sets such as inv(R) =
{p:p.1r € U(R)}, zd(R) = {p:pr = 0,3r € R\{0}} and supp(G) = {p: G, # 1}. He has also defined
the followings:

Definition 1.1. Letu € V(RG). Then u is said to be G-nilpotent if u = g(1 + n) for some g € G and
n € I(IN(R)G; G).

Definition 1.2. V(RG) is called G-nilpotent if

V(RG) =G x (1+ I(N(R)G; G)) (6)
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Under these definitions, Danchev (2012) has formally shown that V(RG) is G-nilpotent if and only if
V(SG) = G where S = R/N(R).

By the way, we deal with defining a novel type of units which are lifted from nilpotent elements
because nilpotents are also special type elements in a group ring and we have a lot of information and
motivation related to nilpotents and nil-radical of a ring in the corresponding literature. We already have
some type of units which are well-known such as Bass cyclic units, bicyclic units, etc. By this reason, it
is better to generate novel types of units using other type of elements in a group ring.

2. Material and Methods

In this section, we give some motivation and definitions related to the direct products of two
commutative groups.
Let G and H be two commutative groups with p-primary and g-primary components G, and H,

respectively. Utilizing maximal torsion parts of G and H, we show the maximal torsion part of the direct
product D = G X H as follows:

Do =] [ [ xHa=] [ =] [H )
14 q q q

where p and q are prime integers (Kiismis, 2019).

Due to the fact that G, = 1 means that G has no p-primary component, we indicate by the
notation G, X H, = 1 that G or H has no p-primary or g-primary components respectively (Kiismiis,
2020).

suppc(G X H) = {pq: G, x Hy # 1} (8)
is said to be the support of G x H (Kiismiis,2020).
Besides, we use the sets
9)
zd:(R) = {pq: 30 #r € R,pqr = 0}
and
inve(R) = {pq: pq.1 € URR)} (10)
are defined in (Kiismiis, 2020).
Throughout the paper, we also need the following propositions and definitions related to the
ring R.
Proposition 2.1. Let R be a commutative and unital ring and N(R) be the nil-radical of R. Then
(Danchev, 2012).
U(R/N(R)) = {r + N(R):r € U(R)} (11)

Proposition 2.2. Since R is a commutative and unital ring (Danchev, 2012),

inv(R) = inv(R/N(R)) (12)

Definition 2.3. Let g be the set of all prime integers. Then (Danchev, 2012),

np(R) ={p € :Is € R/N(R),ps € N(R)} (13)

10
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Corollary 2.4. np(R) = zd(R/N(R)) (Danchev, 2012).

We know that a ring R has nontrivial idempotents if and only if R/N(R) has nontrivial
idempotents as well. Actually, we can lift idempotent elements of a ring R from the nil-radical N(R)
(Bourbaki, 1989). Hence, if the quotient ring R/N(R) has nontrivial idempotents, we can say R has so
as well. Now, we can define G X H-nilpotent units since G x H is the direct product of groups G and H.
Definition 2.5. Let u € V(R(G X H)). Then u is said to be G x H-nilpotent if u = gh(1 + n) for some
gE€GheHandn e I(N(R)G X H; G X H),wesay V(R(G x H)) is G x H-nilpotent if every units in
V(R(G x H)) is G x H-nilpotent.

In the next section, we investigate some necessary and sufficient conditions for the normalized
unit group V(R(G x H)) to has only G x H-nilpotent units.

3. Results

Firstly, we should note that C,, = (x: x™ = 1) denotes a cyclic group with a generator x of order
n throughout the section. Now, recall some definitions in (Kiismiis, 2020) such as

i) suppc (G x H) = {pq: G, X Hy # 1}
ii) zd¢:(R) = {pq: 30 = r € R, pqr = 0}
iii) invc(R) = {pq: pq. 1g € U(R)}
Theorem 3.1. V(R(G x H)) is G x H-nilpotent < R is indecomposable and reduced,
V(R/N(R)(G x H)o) = (G x H), (14)
and the followings hold:

i.G X H has only maximal torsion part or
ii.G XxH #+ (G X H), and

suppc(D) N [inve(R) U zdc(R)] = 0 (15)
Proof. First, assume that V(R(G x H)) is G x H-nilpotent and R is decomposable. Then, there exists a

nontrivial r € id(R). Thus, we can generate a nontrivial unit in the unit group V(R/N(R)(G % H)) such
as

R
u=u(r,g,h) = lgnw — (r+ NR)) + (r + N(R))gh € V(WG x H)\(G x H) (16)
with the inverse
u™t = 1p/nw) + (r + N(R))(—l + (g™ 17)

This contradicts with Prop. 6 in (Danchev, 2012). Similarly, if we assume that R has a nontrivial
nilpotent element, then

v = 1%+ (f+NR)) = (f + N(R))gh (18)

is a nontrivial unit where f € N(R). This condradiction also shows that R has to be reduced. We know
that

11
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R R
and also V(R/N(R)D)) = D by the assumption. Therefore,

R

V(L(G ><H)0> = V(N(R)

NR) (G><H)0)n(;><H=(G><H)0 (20)
and if G x H = (G X H),, we are done. Let us assume that G x H # (G X H), and
suppe(G X H) ninve(R) # 0 (21)

In this case, we obtain

1 22
e= E(l + gh+ -+ gh®Wm=1) = ¢2 (22)

which is a nontrivial idempotent where pq € supp.(G X H) n inv:(R). So we can attain a nontrivial
unit as above using e € id(R) which is a contradiction. Hence,

suppc(G x H) N inve(R) = 0 (23)
On the other hand, if
suppe(G X H) N zdo(R) # @ (24)
then
(25)

(r+ N®)(1 = gphe)™ = Orynry
where pgr =0, g, € G, < G and h; € H; < H. Thus
u=1+(r+NR)A - gyhy) (26)

is a nontrivial unit in V(R/N(R)(G x H)) which is another contradiction. So it has to be realized that
suppc(G X H) N zd(R) = @. Conversely, let R be an indecomposable and reduced ring and also

suppc(G X H) N [inve(R) U zd (R)] = 0 27)
We have
R
v <W (G x H)O) N (G x H) = (G x H), 28)
and
R _ R 29
GxH

(May, 1976, p. 491). Extending the group epimorphism m: G X H —
R/N(R) to

CETON over the quotient ring

12
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we get the inclusion
R G c 1
V(m xH) V(R/N(R)((G i) (31)
Utilizing Lemma 4. in (May, 1976), one can notice that
v R GXH _ GxH LN R GxH -
N(R) <(G X H)O) " (G x H), a+ (N(R) ((G X H)O)) ) (32)

Here, we denote the nilpotent elements which have augmentation 0 by N(ﬁ ((;::) ))0. On the other
0

hand, owing to the fact that

0
R_(GxH R ° R [ GxH
1 +N<N(R) <(G xH)0)> = 7'[(1 +N(N(R)G xH) ) c n(V(N(R) (m)>) (33)
we attain
0
GxH R / GxH G x R / GxH
Gxm, TN <W<(G X H)o)> )En(ex H)o) v (N(R) ((G X H)0)>) (34)
and so
0
GXH R GxXH GxXH R GxH
CETI (W<(G X H)0)> ) &Gy, <N(R) <(G X H)()))) (35)

This means that

v R GXH c G XH v R GXH 36
( W((G X H)O) TNV ((G X H)o) ) (36)
Since the inverse of the above inclusion is clear, one can conclude that
R GxH GxH R GxH
& (V (W((G X H)0)>> - 7T(((; x H), v (N(R) ((G x H)0)>) S
and thus the image of V (N(R) G X H) —(GxH)V (ﬁ (G x H), ) under 7 is 0. This shows that
V(N(R)GXH) (GxH)v( R )(GXH)) (38)
is in the kernel of . We also know that
cv (R 39
Kern_V(N(R)(GxH)) (39)

13
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Then
v (NfR) G x H) C (G x H)WV (N?R) (G x H), ) + V(NfR) (G x H)y) (40)
To sum up, we have the inclusion
R
v (N ¢ H) C (G x H)WV (N 5 € H)0> (41)
As the converse of this inclusion is apparent, the equation
v (WG x H) — (G X H)V (W (G x H)O) (42)
hold. Substituting the assumption
v (NfR) (€ x H)O) — (G x H), (43)
into the above equation, we have indicated that
V(N?R)G xH) = (G X H) (44)

as claimed. m

Theorem 3.2. Let G and H be Abelian groups where |H| = 3. Then, V(R(G X H)) is G X H-nilpotent
if and only if

DV(R/NR)G) =G

i)1+3@+b2+ab+a+b)EV(—) & (ab) € {(0,0), (—1,0), (0, —1)}.

N(R)

Proof. =: Assume that V(R(G x H)) hasonly G x H-nilpotent units. In this case, we equivalently have
V(R/N(R)(G X H)) = G x H. Define a group epimorphism over G X H =~ G x (x:x3 = 1) as

x:GxH— G, x(g,h)=g (45)
Extending linearly y over group ring, we attain
7:R/N(R)(G x H) — R/N(R)G (46)

with an elementy = Y jpeoxn (rgh + N(R)) gh which has the image

x) = Z (Tgh + N(R))g (47)
gheGxH

Restricting j to the unit groups yields
xv:V(R/N(R)(G x H)) — V(R/N(R)G) (48)

with

14
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Keryy, =V(1+A r (H)=0+{1-x1-x2))NnV(R/NR)(G x H)) (49)
N(R)G
Thus,
V(R/N(R)(G xH)) R
VA+Ar (H) NR) ) (50)

NGR)

i Xv
and we form a short exact sequence A - B — C where

A=V + Deyneryc(H)), B = V(R/N(R)(G x H)) and C = V(R/N(R)G). Splitting A—» B 55 ¢, we
obtain a decomposition as B = A X C. One can notice that if

V(R/N(R)(G xH)) =G xH (51)

then A=H and C =V(R/N(R)G) = G. Now, we should also explore necessary and sufficient
conditions to be

A=V +Ag/nwyc(H) =H (52)
Actually, since
A=1+A%G(H)OV<%(GXH)> 3)
a unit
u=1+a(l—x)+b(1—x2) € (x:x>=1) (54)
if and only if
w=u[l+c(1—x)+d(1—x2)]=1+(1—-x)(a+c+2ac+ bc+ad— bd) (55)

+(1—x*)(b+d—ac+bc+ad+2bd) =1

for some v =1+ c(1 —x) + d(1 —x?) where a,b,c,d € R/N(R)G. Then, we can constitute a
system of linear equations as

a+c+2ac+bc+ad—bd=0 (56)

b+d—ac+bc+ad+2bd=0 (57)
so its matrix equivalent A (2) = (:Z) where

_(1+2a+b a—b (58)
A_( b—a 1+a+2b)

has a unique solution (2) if and only if A is an invertible matrix so we can onclude that

detA=1+3(a?+b?>+ab+a+b) (59)

must be a unit in V(R/N(R)G) because of the formula A~ = @adj(A). Hence,

1+a(l—x)+b(1—x>) € (x:x3=1) (60)

and detA € V(R/N(R)G) yields all of the following possible cases.
15
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Case 1:

1+a(1—x)+b(1—x?) =1ifandonlyif (a, b) = (0,0).
Case 2:

1+a(l—x)+b(1—x?) =xifandonly if (a,b) = (—1,0).
Case 3:

1+a(l—x)+b(1—x2) =x?ifandonly if (a,b) = (0,—1).
So we get ii) in the hypothesis. m

Corollary 3.3. Let G and H be Abelian groups where |H| = 3 and char R = 3. Then, V(R(G X H)) has
only G x H-nilpotent units if and only if

V(RG) = G x (1 + I(N(R)G; G)) (61)
and Ker y = (1 — x,1 — x?)g such that
Sx8={(0,w):u€Zs}VU{(w0):u€ Zs} (62)
Proof. If char R = 3, detA is
1+3(a* +b*+ab+a+b) = 1g/nr (63)

So, one can clearly deduce that V(1 + Ker xy) is {1 + a(1 —x) + b(1 — x?):a,b € R/N(R)G}
and thus V(1 + Ker yy) = H if and only if at least one of a and b has to be 0. This requires

SxS={(0,m):pu€Z}V{(w0):pue€Zs} (64)

as claimed. m

Theorem 3.4. Let G and H be Abelian groups with |H| = 4 which is cyclic. Then, V(R(G X H)) has
not only G x H-nilpotent units if and only if V (%R) G) # G or there exists a unit of the form

u(a,b,c) = (1 + 2a + 2c)(1 + 2a% + 4b? + 2¢? + 4ab + 4bc + 2a + 4b + 2¢) (65)
where a,b,c € R/N(R)G.

Proof. Utilizing the epimorphisms in the previous theorem, we can set the same short exact sequence
there. In this case, V(R(G x H)) has not only G x H-nilpotent units if and only if

V(R/N(R)G) # G (66)
or
V(L + Ag/nryg(H)) # H (67)
where H = (x: x3 = 1). Let
u=1+a(l—x)+b(1—x%)+c(1l—x3) (68)

16
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be a unit in V(14 Ag/nryc(H)) with the inverse v=1+d(1—-x)+e(l—x?)+f(1—-x3).
Then V(1 + Ag/n(r)g (H)) # H if and only if u is nontrivial and uv is

1+ -x)B+A—x)B+ (1 —x¥)B3 =1 (69)
where
B, = (a+d+2ad + bd + cd + ae — ce + af — bf) (70)
B> = (b+e —ad + bd + ae + 2be + ce + bf — cf) (71)
Bs = (c+ f — bd + cd — ae + ce + af + bf + 2cf) (72)

d —-a d
In this case, uv = 1 if and only if M (e) = (—b) has a unique solution <e) where M is

f —c f
1+2a+b+c a—c a—b
< b—a 1+a+2b+c b—c ) (73)
c—b c—a 14+a+b+2c
Thus det M is invertible in (R/N(R))G and can be stated as
(1+ 2a+2¢)(1 + 2a? + 4b% + 2¢% + 4ab + 4bc + 2a + 4b + 2¢) (74)

as claimed in the theorem. m

Corollary 3.5. Let G and H be Abelian groups with |H| = 4 which is cyclic and also char R = 2.
Then, V(R(G x H)) has not only G x H-nilpotent units if and only if V(R/N(R)G) # G or

Ker y =(1—x,1—x2,1—x3); such that T3 = {(a,b,c): a,b,c € R/N(R)G} where at least two of
a, b and c is different from Og /y (rc-

Proof. If V(R(G x H)) has not only G x H-nilpotent units and V(R/N(R)G) = G, then
V(1 + Ker yy) (75)
has to consist nontrivial units. Asaunitu = 1 + a(1 — x) + b(1 — x2?) + ¢(1 — x3) has to be different

from 1, x, x2 or x3. In this case, one can easily check that if only one of a, b or c is 0, u has one of the
following forms:

u=1+a(l—x)+b(1l—x2) (76)
u=1+a(l—x)+c(1-x% (77)
u=1+b(1—x%)+c(1—x3 (78)

Thus u may has a nontrivial form which is a contradiction. Hence, in order to insure that u has
to be only 1, x, x2 or x3, we have to choose the parameters a, b, ¢ as claimed. m

4. Discussion and Conclusion
In this study, we have firstly defined some sets using primes related to a commutative group
ring R(G x H) which is unity of Abelian groups G and H inspring from (Danchev, 2012). Later, we

have determined some necessary and sufficient conditions for V(R(G x H)) to be G x H-nilpotent
based on our definitions such as supp. (G X H), zd:(R) and inv.(R) in Theorem 3.1.
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Li (1998) has proved that if RG has only trivial units, then R(G X C,) has only trivial units as
well where R = Z. So, the results on G x C,-nilpotency of the normalized unit group V(R(G X C,)) can
be similarly obtained using his structure. In this paper, we have acquired some special necessary and
sufficient conditions on G X H-nilpotency of V(R(G x H)) for H = C; and H = C,. As a future work,
it may possible to get some results about G x C,, for a general n. Besides, we should note that the current
paper already gives a characterization for G; X G, X --- G, since we can observe that

Gy X Gy X+ Gy =Gy X Gy (79)

where Gy = G; X Gy X -Gy and G, = Gyyq X Gyp X G, for 1<k <n. So, it is an easy
implementation of this paper and can only be evaluated as an example.

As widely known, units are one of exclusive elements in group rings. In addition, defining a
new type of units creates a remarkable area in the theory of group rings. Being able to attract more
researchers plays a crucial role by sharing ideas and open problems.

In this context, we think that investigating necessary and sufficient conditions for

V(R(G x H)) =V(RG) x (1 +1) (80)
where I = I(N(R)G X H; G x H) can be appreciated as an open problem and so a future work.
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