A Generalization of G-Nilpotent Units in Commutative Group Rings to Direct Product

 GroupsTurgut HANOYMAK*, Ömer KÜSMÜŞ
Van Yuzuncu Yil University, Faculty of Science, Department of Mathematics, 65080, Van, Türkiye Turgut HANOYMAK, ORCID No: 0000-0002-3822-2202, Ömer KÜSMÜŞ, ORCID No: 0000-0001-7397-0735
*Corresponding author e-mail: hturgut@yyu.edu.tr

Article Info

Received: 02.04.2022
Accepted: 29.08.2022
Online April 2023
DOI:10.53433/yyufbed. 1097581

Keywords

Direct product group, Generalization, Nilpotent, Unit

Abstract

Let $V(R G)$ denote the normalized unit group of the group ring $R G$ of a group G over a ring R. The concept of G-nilpotent unit in a commutative group ring has been defined in (Danchev, 2012). In this study, some necessary and sufficient conditions for a normalized unit group in a commutative group ring of a direct product group $G \times H$ to consist only of $G \times H$-nilpotent units have been given and especially some results which are related to groups $G \times C_{3}$ and $G \times C_{4}$ have been introduced where C_{3} and C_{4} are cyclic groups of orders 3 and 4 respectively. In this context, we can say that the paper extends the results in (Danchev, 2012). At the end, an open problem is served as a future work.

Değişmeli Grup Halkalarında G-Nilpotent Birimsel Elemanların Direkt Çarpım Gruplarma Bir Genellemesi

Makale Bilgileri

Geliş: 02.04.2022
Kabul: 29.08.2022
Online Nisan 2023
DOI:10.53433/yyufbed. 1097581

Anahtar Kelimeler

Birimsel,
Direkt çarpım grubu, Genelleme
Nilpotent

Öz: $V(R G)$, bir R halkası üzerindeki bir G grubunun $R G$ grup halkasının normalleştririlmiş birim grubunu göstersin. Değişmeli bir grup halkasındaki G nilpotent birimsel kavramı (Danchev, 2012)'de tanımlanmıştır. Bu çalışmada da, bir $G \times H$ direkt çarpım grubunun değişmeli grup halkasında normallenmiş birimsel elemanlar grubunun sadece $G \times H$-nilpotent birimsel elemanlardan oluşabilmesi için bazı gerek ve yeter şartlar verilmiştir. Ayrıca özel olarak $G \times C_{3}$ ve $G \times C_{4}$ gruplarına dair bazı sonuçlar sunulmuştur ki burada C_{3} ve C_{4} sirasıyla 3 ve 4 mertebeli devirli gruplardır. Bu bağlamda, makale (Danchev, 2012)'deki sonuçları genişletir diyebiliriz. Sonunda, gelecek çalışma için açık problem sunulmuştur.

1. Introduction

Let R be a ring and G be a group. Then the group ring $R G$ is the set of all finite sums $\sum_{g \in G} r(g) g$ where $r(g) \in R$. The operations on the ring structure $R G$ can be seen in (Sehgal, 1978; Karpilovsky, 1982; Milies \& Sehgal, 2002; Görentaş, 2020) in detail. The sets of all units that are multiplicative invertible elements and normalized units which have augmentation 1 in $R G$ are shown by $U(R G)$ and $V(R G)$ respectively (Küsmüş, 2020). Augmentation of a unit $u=\sum_{g \in G} r(g) g \in R G$ is defined as follows (Sehgal, 1978; Milies \& Sehgal, 2002):

$$
\begin{equation*}
\varepsilon(u)=\sum_{g \in G} r(g) \tag{1}
\end{equation*}
$$

Actually, one can see that $\varepsilon: R G \rightarrow R$ is a ring homomorphism with the transformation defined as in above equality. The kernel of ε is defined as follows:

$$
\begin{equation*}
\Delta(G)=\{\gamma \in R G: \varepsilon(\gamma)=0\} \tag{2}
\end{equation*}
$$

and it is generated as

$$
\begin{equation*}
\Delta(G)=\left\langle g-1: g \in G, g \neq 1_{G}\right\rangle \tag{3}
\end{equation*}
$$

which is said to be augmentation ideal of $R G$ (Sehgal, 1978; Milies \& Sehgal, 2002).
The p-primary component of a group G is generally displayed by G_{p} which consists of elements of order p^{k} for some $k \in \mathbb{N}$ and so the maximal torsion part G_{0} of G is a co-product of primary components as (Danchev, 2010 and 2012).

$$
\begin{equation*}
G_{0}=\coprod_{p} G_{p} \tag{4}
\end{equation*}
$$

All the elements of G are trivial units in $V(R G)$ (Danchev, 2008 and 2009). An element e of a ring R is said to be idempotent if $e^{2}=e$ and the set of all idempotent elements is shown by $i d(R)$ (Görentaş, 1999). Also, we know that idempotent elements in a group ring $R G$ have been defined as (Danchev, 2010).

$$
\begin{equation*}
i d(R G)=\left\langle\sum_{r_{g} \in i d_{C}(R)} r_{g} g: g \in G\right\rangle \tag{5}
\end{equation*}
$$

An element a of R is called by nilpotent if $a^{n}=0$ for some $n \in \mathbb{N}$. For a ring $R, N(R)$ is the set of all nilpotent elements in R and is said to be nil-radical of R. For an ideal $S \leq R, I(S G ; G)$ is a fundamental ideal and $I(R G ; H)$ is relative augmentation ideal of $R G$ with respect to $H \leq G$ (Danchev, 2012). As mentioned in (Küsmüş, 2020), Danchev (2012) has defined some sets such as $\operatorname{inv}(R)=$ $\left\{p: p .1_{R} \in U(R)\right\}, z d(R)=\{p: p r=0, \exists r \in R \backslash\{0\}\}$ and $\operatorname{supp}(G)=\left\{p: G_{p} \neq 1\right\}$. He has also defined the followings:

Definition 1.1. Let $u \in V(R G)$. Then u is said to be G-nilpotent if $u=g(1+n)$ for some $g \in G$ and $n \in I(N(R) G ; G)$.

Definition 1.2. $V(R G)$ is called G-nilpotent if

$$
\begin{equation*}
V(R G)=G \times(1+I(N(R) G ; G)) \tag{6}
\end{equation*}
$$

Under these definitions, Danchev (2012) has formally shown that $V(R G)$ is G-nilpotent if and only if $V(S G)=G$ where $S=R / N(R)$.

By the way, we deal with defining a novel type of units which are lifted from nilpotent elements because nilpotents are also special type elements in a group ring and we have a lot of information and motivation related to nilpotents and nil-radical of a ring in the corresponding literature. We already have some type of units which are well-known such as Bass cyclic units, bicyclic units, etc. By this reason, it is better to generate novel types of units using other type of elements in a group ring.

2. Material and Methods

In this section, we give some motivation and definitions related to the direct products of two commutative groups.

Let G and H be two commutative groups with p-primary and q-primary components G_{p} and H_{q} respectively. Utilizing maximal torsion parts of G and H, we show the maximal torsion part of the direct product $D=G \times H$ as follows:

$$
\begin{equation*}
D_{0}=\coprod_{p} \coprod_{q} G_{p} \times H_{q}=\coprod_{q} G_{p} \times \coprod_{q} H_{q} \tag{7}
\end{equation*}
$$

where p and q are prime integers (Küsmüş, 2019).
Due to the fact that $G_{p}=1$ means that G has no p-primary component, we indicate by the notation $G_{p} \times H_{q}=1$ that G or H has no p-primary or q-primary components respectively (Küsmüş, 2020).

$$
\begin{equation*}
\operatorname{supp}_{C}(G \times H)=\left\{p q: G_{p} \times H_{q} \neq 1\right\} \tag{8}
\end{equation*}
$$

is said to be the support of $G \times H$ (Küsmüş,2020).
Besides, we use the sets

$$
\begin{equation*}
z d_{C}(R)=\{p q: \exists 0 \neq r \in R, p q r=0\} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{inv}_{C}(R)=\{p q: p q .1 \in U(R)\} \tag{10}
\end{equation*}
$$

are defined in (Küsmüş, 2020).
Throughout the paper, we also need the following propositions and definitions related to the ring R.

Proposition 2.1. Let R be a commutative and unital ring and $N(R)$ be the nil-radical of R. Then (Danchev, 2012).

$$
\begin{equation*}
U(R / N(R))=\{r+N(R): r \in U(R)\} \tag{11}
\end{equation*}
$$

Proposition 2.2. Since R is a commutative and unital ring (Danchev, 2012),

$$
\begin{equation*}
\operatorname{inv}(R)=\operatorname{inv}(R / N(R)) \tag{12}
\end{equation*}
$$

Definition 2.3. Let \wp be the set of all prime integers. Then (Danchev, 2012),

$$
\begin{equation*}
n p(R)=\{p \in \wp: \exists s \in R / N(R), p s \in N(R)\} \tag{13}
\end{equation*}
$$

Corollary 2.4. $n p(R)=z d(R / N(R))($ Danchev, 2012 $)$.
We know that a ring R has nontrivial idempotents if and only if $R / N(R)$ has nontrivial idempotents as well. Actually, we can lift idempotent elements of a ring R from the nil-radical $N(R)$ (Bourbaki, 1989). Hence, if the quotient ring $R / N(R)$ has nontrivial idempotents, we can say R has so as well. Now, we can define $G \times H$-nilpotent units since $G \times H$ is the direct product of groups G and H.

Definition 2.5. Let $u \in V(R(G \times H))$. Then u is said to be $G \times H$-nilpotent if $u=g h(1+n)$ for some $g \in G, h \in H$ and $n \in I(N(R) G \times H ; G \times H)$, we say $V(R(G \times H))$ is $G \times H$-nilpotent if every units in $V(R(G \times H))$ is $G \times H$-nilpotent.

In the next section, we investigate some necessary and sufficient conditions for the normalized unit group $V(R(G \times H))$ to has only $G \times H$-nilpotent units.

3. Results

Firstly, we should note that $C_{n}=\left\langle x: x^{n}=1\right\rangle$ denotes a cyclic group with a generator x of order n throughout the section. Now, recall some definitions in (Küsmüş, 2020) such as
i) $\operatorname{supp}_{C}(G \times H)=\left\{p q: G_{p} \times H_{q} \neq 1\right\}$
ii) $z d_{C}(R)=\{p q: \exists 0 \neq r \in R, p q r=0\}$
iii) $i n v_{C}(R)=\left\{p q: p q \cdot 1_{R} \in U(R)\right\}$

Theorem 3.1. $V(R(G \times H))$ is $G \times H$-nilpotent $\Leftrightarrow R$ is indecomposable and reduced,

$$
\begin{equation*}
V\left(R / N(R)(G \times H)_{0}\right)=(G \times H)_{0} \tag{14}
\end{equation*}
$$

and the followings hold:
i. $G \times H$ has only maximal torsion part or ii. $G \times H \neq(G \times H)_{0}$ and

$$
\begin{equation*}
\operatorname{supp}_{C}(D) \cap\left[\operatorname{inv}_{C}(R) \cup z d_{C}(R)\right]=\emptyset \tag{15}
\end{equation*}
$$

Proof. First, assume that $V(R(G \times H))$ is $G \times H$-nilpotent and R is decomposable. Then, there exists a nontrivial $r \in i d(R)$. Thus, we can generate a nontrivial unit in the unit group $V(R / N(R)(G \times H))$ such as

$$
\begin{equation*}
u=u(r, g, h)=1_{R / N(R)}-(r+N(R))+(r+N(R)) g h \in V\left(\frac{R}{N(R)} G \times H\right) \backslash(G \times H) \tag{16}
\end{equation*}
$$

with the inverse

$$
\begin{equation*}
u^{-1}=1_{R / N(R)}+(r+N(R))\left(-1+(g h)^{-1}\right) \tag{17}
\end{equation*}
$$

This contradicts with Prop. 6 in (Danchev, 2012). Similarly, if we assume that R has a nontrivial nilpotent element, then

$$
\begin{equation*}
v=1_{\frac{R}{N(R)}}+(f+N(R))-(f+N(R)) g h \tag{18}
\end{equation*}
$$

is a nontrivial unit where $f \notin N(R)$. This condradiction also shows that R has to be reduced. We know that

$$
\begin{equation*}
V\left(\frac{R}{N(R)} D_{0}\right) \subseteq V\left(\frac{R}{N(R)} D\right) \tag{19}
\end{equation*}
$$

and also $V(R / N(R) D))=D$ by the assumption. Therefore,

$$
\begin{equation*}
V\left(\frac{R}{N(R)}(G \times H)_{0}\right)=V\left(\frac{R}{N(R)}(G \times H)_{0}\right) \cap G \times H=(G \times H)_{0} \tag{20}
\end{equation*}
$$

and if $G \times H=(G \times H)_{0}$, we are done. Let us assume that $G \times H \neq(G \times H)_{0}$ and

$$
\begin{equation*}
\operatorname{supp}_{C}(G \times H) \cap \operatorname{inv}_{C}(R) \neq \emptyset \tag{21}
\end{equation*}
$$

In this case, we obtain

$$
\begin{equation*}
e=\frac{1}{p q}\left(1+g h+\cdots+g h^{o(g h)-1}\right)=e^{2} \tag{22}
\end{equation*}
$$

which is a nontrivial idempotent where $p q \in \operatorname{supp}_{C}(G \times H) \cap \operatorname{inv}_{C}(R)$. So we can attain a nontrivial unit as above using $e \in i d(R)$ which is a contradiction. Hence,

$$
\begin{equation*}
\operatorname{supp}_{C}(G \times H) \cap \operatorname{inv}_{C}(R)=\varnothing \tag{23}
\end{equation*}
$$

On the other hand, if

$$
\begin{equation*}
\operatorname{supp}_{C}(G \times H) \cap z d_{C}(R) \neq \emptyset \tag{24}
\end{equation*}
$$

then

$$
\begin{equation*}
(r+N(R))\left(1-g_{p} h_{q}\right)^{p q}=0_{R / N(R)} \tag{25}
\end{equation*}
$$

where $p q r=0, g_{p} \in G_{p} \leq G$ and $h_{q} \in H_{q} \leq H$. Thus

$$
\begin{equation*}
u=1+(r+N(R))\left(1-g_{p} h_{q}\right) \tag{26}
\end{equation*}
$$

is a nontrivial unit in $V(R / N(R)(G \times H))$ which is another contradiction. So it has to be realized that $\operatorname{supp}_{C}(G \times H) \cap z d_{C}(R)=\emptyset$. Conversely, let R be an indecomposable and reduced ring and also

$$
\begin{equation*}
\operatorname{supp}_{C}(G \times H) \cap\left[\operatorname{inv_{C}}(R) \cup z d_{C}(R)\right]=\emptyset \tag{27}
\end{equation*}
$$

We have

$$
\begin{equation*}
V\left(\frac{R}{N(R)}(G \times H)_{0}\right) \cap(G \times H)=(G \times H)_{0} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
V\left(\frac{R}{N(R)} G \times H\right)=V\left(\frac{R}{N(R)}(G \times H)_{0}\right)(G \times H) \tag{29}
\end{equation*}
$$

(May, 1976, p. 491). Extending the group epimorphism $\pi: G \times H \rightarrow \frac{G \times H}{(G \times H)_{0}}$ over the quotient ring $R / N(R)$ to

$$
\begin{equation*}
\pi: R / N(R)(G \times H) \rightarrow R / N(R)\left(\frac{G \times H}{(G \times H)_{0}}\right) \tag{30}
\end{equation*}
$$

we get the inclusion

$$
\begin{equation*}
V\left(\frac{R}{N(R)} G \times H\right) \subseteq V\left(R / N(R)\left(\frac{G \times H}{(G \times H)_{0}}\right)\right. \tag{31}
\end{equation*}
$$

Utilizing Lemma 4. in (May, 1976), one can notice that

$$
\begin{equation*}
V\left(\frac{R}{N(R)}\left(\frac{G \times H}{(G \times H)_{0}}\right)\right)=\frac{G \times H}{(G \times H)_{0}}\left(1+N\left(\frac{R}{N(R)}\left(\frac{G \times H}{(G \times H)_{0}}\right)\right)^{0}\right) \tag{32}
\end{equation*}
$$

Here, we denote the nilpotent elements which have augmentation 0 by $N\left(\frac{R}{N(R)}\left(\frac{G \times H}{(G \times H)_{0}}\right)\right)^{0}$. On the other hand, owing to the fact that

$$
\begin{equation*}
1+N\left(\frac{R}{N(R)}\left(\frac{G \times H}{(G \times H)_{0}}\right)\right)^{0}=\pi\left(1+N\left(\frac{R}{N(R)} G \times H\right)^{0}\right) \subseteq \pi\left(V\left(\frac{R}{N(R)}\left(\frac{G \times H}{(G \times H)_{0}}\right)\right)\right) \tag{33}
\end{equation*}
$$

we attain

$$
\begin{equation*}
\frac{G \times H}{(G \times H)_{0}}\left(1+N\left(\frac{R}{N(R)}\left(\frac{G \times H}{(G \times H)_{0}}\right)\right)^{0}\right) \subseteq \pi\left(\frac{G \times H}{(G \times H)_{0}}\right) \pi\left(V\left(\frac{R}{N(R)}\left(\frac{G \times H}{(G \times H)_{0}}\right)\right)\right) \tag{34}
\end{equation*}
$$

and so

$$
\begin{equation*}
\frac{G \times H}{(G \times H)_{0}}\left(1+N\left(\frac{R}{N(R)}\left(\frac{G \times H}{(G \times H)_{0}}\right)\right)^{0}\right) \subseteq \pi\left(\frac{G \times H}{(G \times H)_{0}} V\left(\frac{R}{N(R)}\left(\frac{G \times H}{(G \times H)_{0}}\right)\right)\right) \tag{35}
\end{equation*}
$$

This means that

$$
\begin{equation*}
\pi\left(V\left(\frac{R}{N(R)}\left(\frac{G \times H}{(G \times H)_{0}}\right)\right)\right) \subseteq \pi\left(\frac{G \times H}{(G \times H)_{0}} V\left(\frac{R}{N(R)}\left(\frac{G \times H}{(G \times H)_{0}}\right)\right)\right) \tag{36}
\end{equation*}
$$

Since the inverse of the above inclusion is clear, one can conclude that

$$
\begin{equation*}
\pi\left(V\left(\frac{R}{N(R)}\left(\frac{G \times H}{(G \times H)_{0}}\right)\right)\right)=\pi\left(\frac{G \times H}{(G \times H)_{0}} V\left(\frac{R}{N(R)}\left(\frac{G \times H}{(G \times H)_{0}}\right)\right)\right) \tag{37}
\end{equation*}
$$

and thus the image of $V\left(\frac{R}{N(R)} G \times H\right)-(G \times H) V\left(\frac{R}{N(R)}(G \times H)_{0}\right)$ under π is 0 . This shows that

$$
\begin{equation*}
V\left(\frac{R}{N(R)} G \times H\right)-(G \times H) V\left(\frac{R}{N(R)}(G \times H)_{0}\right) \tag{38}
\end{equation*}
$$

is in the kernel of π. We also know that

$$
\begin{equation*}
\operatorname{Ker} \pi \subseteq V\left(\frac{R}{N(R)}(G \times H)_{0}\right) \tag{39}
\end{equation*}
$$

Then

$$
\begin{equation*}
V\left(\frac{R}{N(R)} G \times H\right) \subseteq(G \times H) V\left(\frac{R}{N(R)}(G \times H)_{0}\right)+V\left(\frac{R}{N(R)}(G \times H)_{0}\right) \tag{40}
\end{equation*}
$$

To sum up, we have the inclusion

$$
\begin{equation*}
V\left(\frac{R}{N(R)} G \times H\right) \subseteq(G \times H) V\left(\frac{R}{N(R)}(G \times H)_{0}\right) \tag{41}
\end{equation*}
$$

As the converse of this inclusion is apparent, the equation

$$
\begin{equation*}
V\left(\frac{R}{N(R)} G \times H\right)=(G \times H) V\left(\frac{R}{N(R)}(G \times H)_{0}\right) \tag{42}
\end{equation*}
$$

hold. Substituting the assumption

$$
\begin{equation*}
V\left(\frac{R}{N(R)}(G \times H)_{0}\right)=(G \times H)_{0} \tag{43}
\end{equation*}
$$

into the above equation, we have indicated that

$$
\begin{equation*}
V\left(\frac{R}{N(R)} G \times H\right)=(G \times H) \tag{44}
\end{equation*}
$$

as claimed.

Theorem 3.2. Let G and H be Abelian groups where $|H|=3$. Then, $V(R(G \times H))$ is $G \times H$-nilpotent if and only if
i) $V(R / N(R) G)=G$,
ii) $1+3\left(a^{2}+b^{2}+a b+a+b\right) \in V\left(\frac{R}{N(R)}\right) \Leftrightarrow(a, b) \in\{(0,0),(-1,0),(0,-1)\}$.

Proof. \Rightarrow : Assume that $V(R(G \times H))$ has only $G \times H$-nilpotent units. In this case, we equivalently have $V(R / N(R)(G \times H))=G \times H$. Define a group epimorphism over $G \times H \simeq G \times\left\langle x: x^{3}=1\right\rangle$ as

$$
\begin{equation*}
\chi: G \times H \rightarrow G, \chi(g, h)=g \tag{45}
\end{equation*}
$$

Extending linearly χ over group ring, we attain

$$
\begin{equation*}
\bar{\chi}: R / N(R)(G \times H) \longrightarrow R / N(R) G \tag{46}
\end{equation*}
$$

with an element $\gamma=\sum_{g h \in G \times H}\left(r_{g h}+N(R)\right) g h$ which has the image

$$
\begin{equation*}
\bar{\chi}(\gamma)=\sum_{g h \in G \times H}\left(r_{g h}+N(R)\right) g \tag{47}
\end{equation*}
$$

Restricting $\bar{\chi}$ to the unit groups yields

$$
\begin{equation*}
\chi_{V}: V(R / N(R)(G \times H)) \rightarrow V(R / N(R) G) \tag{48}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{Ker} \chi_{V}=V\left(1+\Delta_{\frac{R}{N(R) G}}(H)\right)=\left(1+\left\langle 1-x, 1-x^{2}\right\rangle\right) \cap V(R / N(R)(G \times H)) \tag{49}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{V(R / N(R)(G \times H))}{V\left(1+\Delta_{\frac{R}{N(R)} G}(H)\right)} \simeq V\left(\frac{R}{N(R)} G\right) \tag{50}
\end{equation*}
$$

and we form a short exact sequence $A \xrightarrow{i} B \xrightarrow{\chi_{V}} C$ where
$A=V\left(1+\Delta_{R / N(R) G}(H)\right), B=V(R / N(R)(G \times H))$ and $C=V(R / N(R) G)$. Splitting $A \xrightarrow{i} B \xrightarrow{\chi_{V}} C$, we obtain a decomposition as $B=A \times C$. One can notice that if

$$
\begin{equation*}
V(R / N(R)(G \times H))=G \times H \tag{51}
\end{equation*}
$$

then $A=H$ and $C=V(R / N(R) G)=G$. Now, we should also explore necessary and sufficient conditions to be

$$
\begin{equation*}
A=V\left(1+\Delta_{R / N(R) G}(H)\right)=H \tag{52}
\end{equation*}
$$

Actually, since

$$
\begin{equation*}
A=1+\Delta_{\frac{R}{N(R)} G}(H) \cap V\left(\frac{R}{N(R)}(G \times H)\right) \tag{53}
\end{equation*}
$$

a unit

$$
\begin{equation*}
u=1+a(1-x)+b\left(1-x^{2}\right) \in\left\langle x: x^{3}=1\right\rangle \tag{54}
\end{equation*}
$$

if and only if

$$
\begin{align*}
u v=u\left[1+c(1-x)+d\left(1-x^{2}\right)\right]= & 1+(1-x)(a+c+2 a c+b c+a d-b d) \tag{55}\\
& +\left(1-x^{2}\right)(b+d-a c+b c+a d+2 b d)=1
\end{align*}
$$

for some $v=1+c(1-x)+d\left(1-x^{2}\right)$ where $a, b, c, d \in R / N(R) G$. Then, we can constitute a system of linear equations as

$$
\begin{align*}
& a+c+2 a c+b c+a d-b d=0 \tag{56}\\
& b+d-a c+b c+a d+2 b d=0 \tag{57}
\end{align*}
$$

so its matrix equivalent $A\binom{c}{d}=\binom{-a}{-b}$ where

$$
A=\left(\begin{array}{cc}
1+2 a+b & a-b \tag{58}\\
b-a & 1+a+2 b
\end{array}\right)
$$

has a unique solution $\binom{c}{d}$ if and only if A is an invertible matrix so we can onclude that

$$
\begin{equation*}
\operatorname{det} A=1+3\left(a^{2}+b^{2}+a b+a+b\right) \tag{59}
\end{equation*}
$$

must be a unit in $V(R / N(R) G)$ because of the formula $A^{-1}=\frac{1}{\operatorname{detA}} \operatorname{adj}(A)$. Hence,

$$
\begin{equation*}
1+a(1-x)+b\left(1-x^{2}\right) \in\left\langle x: x^{3}=1\right\rangle \tag{60}
\end{equation*}
$$

and $\operatorname{det} A \in V(R / N(R) G)$ yields all of the following possible cases.

Case 1:

$1+a(1-x)+b\left(1-x^{2}\right)=1$ if and only if $(a, b)=(0,0)$.

Case 2:

$1+a(1-x)+b\left(1-x^{2}\right)=x$ if and only if $(a, b)=(-1,0)$.
Case 3:
$1+a(1-x)+b\left(1-x^{2}\right)=x^{2}$ if and only if $(a, b)=(0,-1)$.
So we get $i i$) in the hypothesis.
Corollary 3.3. Let G and H be Abelian groups where $|H|=3$ and char $R=3$. Then, $V(R(G \times H))$ has only $G \times H$-nilpotent units if and only if

$$
\begin{equation*}
V(R G)=G \times(1+I(N(R) G ; G)) \tag{61}
\end{equation*}
$$

and $\operatorname{Ker} \chi=\left\langle 1-x, 1-x^{2}\right\rangle_{S}$ such that

$$
\begin{equation*}
S \times S=\left\{(0, \mu): \mu \in \mathbb{Z}_{3}\right\} \cup\left\{(\mu, 0): \mu \in \mathbb{Z}_{3}\right\} \tag{62}
\end{equation*}
$$

Proof. If char $R=3, \operatorname{det} A$ is

$$
\begin{equation*}
1+3\left(a^{2}+b^{2}+a b+a+b\right)=1_{R / N(R)} \tag{63}
\end{equation*}
$$

So, one can clearly deduce that $V\left(1+\operatorname{Ker} \chi_{V}\right)$ is $\left\{1+a(1-x)+b\left(1-x^{2}\right): a, b \in R / N(R) G\right\}$ and thus $V\left(1+\operatorname{Ker} \chi_{V}\right)=H$ if and only if at least one of a and b has to be 0 . This requires

$$
\begin{equation*}
S \times S=\left\{(0, \mu): \mu \in \mathbb{Z}_{3}\right\} \cup\left\{(\mu, 0): \mu \in \mathbb{Z}_{3}\right\} \tag{64}
\end{equation*}
$$

as claimed.
Theorem 3.4. Let G and H be Abelian groups with $|H|=4$ which is cyclic. Then, $V(R(G \times H))$ has not only $G \times H$-nilpotent units if and only if $V\left(\frac{R}{N(R)} G\right) \neq G$ or there exists a unit of the form

$$
\begin{equation*}
u(a, b, c)=(1+2 a+2 c)\left(1+2 a^{2}+4 b^{2}+2 c^{2}+4 a b+4 b c+2 a+4 b+2 c\right) \tag{65}
\end{equation*}
$$

where $a, b, c \in R / N(R) G$.
Proof. Utilizing the epimorphisms in the previous theorem, we can set the same short exact sequence there. In this case, $V(R(G \times H))$ has not only $G \times H$-nilpotent units if and only if

$$
\begin{equation*}
V(R / N(R) G) \neq G \tag{66}
\end{equation*}
$$

or

$$
\begin{equation*}
V\left(1+\Delta_{R / N(R) G}(H)\right) \neq H \tag{67}
\end{equation*}
$$

where $H=\left\langle x: x^{3}=1\right\rangle$. Let

$$
\begin{equation*}
u=1+a(1-x)+b\left(1-x^{2}\right)+c\left(1-x^{3}\right) \tag{68}
\end{equation*}
$$

be a unit in $V\left(1+\Delta_{R / N(R) G}(H)\right)$ with the inverse $v=1+d(1-x)+e\left(1-x^{2}\right)+f\left(1-x^{3}\right)$. Then $V\left(1+\Delta_{R / N(R) G}(H)\right) \neq H$ if and only if u is nontrivial and $u v$ is

$$
\begin{equation*}
1+(1-x) \beta_{1}+\left(1-x^{2}\right) \beta_{2}+\left(1-x^{3}\right) \beta_{3}=1 \tag{69}
\end{equation*}
$$

where

$$
\begin{align*}
& \beta_{1}=(a+d+2 a d+b d+c d+a e-c e+a f-b f) \tag{70}\\
& \beta_{2}=(b+e-a d+b d+a e+2 b e+c e+b f-c f) \tag{71}\\
& \beta_{3}=(c+f-b d+c d-a e+c e+a f+b f+2 c f) \tag{72}
\end{align*}
$$

In this case, $u v=1$ if and only if $M\left(\begin{array}{l}d \\ e \\ f\end{array}\right)=\left(\begin{array}{l}-a \\ -b \\ -c\end{array}\right)$ has a unique solution $\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$ where M is

$$
\left(\begin{array}{ccc}
1+2 a+b+c & a-c & a-b \tag{73}\\
b-a & 1+a+2 b+c & b-c \\
c-b & c-a & 1+a+b+2 c
\end{array}\right)
$$

Thus $\operatorname{det} M$ is invertible in $(R / N(R)) G$ and can be stated as

$$
\begin{equation*}
(1+2 a+2 c)\left(1+2 a^{2}+4 b^{2}+2 c^{2}+4 a b+4 b c+2 a+4 b+2 c\right) \tag{74}
\end{equation*}
$$

as claimed in the theorem.
Corollary 3.5. Let G and H be Abelian groups with $|H|=4$ which is cyclic and also char $R=2$. Then, $V(R(G \times H))$ has not only $G \times H$-nilpotent units if and only if $V(R / N(R) G) \neq G$ or
$\operatorname{Ker} \chi=\left\langle 1-x, 1-x^{2}, 1-x^{3}\right\rangle_{T}$ such that $T^{3}=\{(a, b, c): a, b, c \in R / N(R) G\}$ where at least two of a, b and c is different from $0_{R / N(R) G}$.

Proof. If $V(R(G \times H))$ has not only $G \times H$-nilpotent units and $V(R / N(R) G)=G$, then

$$
\begin{equation*}
V\left(1+\operatorname{Ker} \chi_{V}\right) \tag{75}
\end{equation*}
$$

has to consist nontrivial units. As a unit $u=1+a(1-x)+b\left(1-x^{2}\right)+c\left(1-x^{3}\right)$ has to be different from $1, x, x^{2}$ or x^{3}. In this case, one can easily check that if only one of a, b or c is $0, u$ has one of the following forms:

$$
\begin{align*}
& u=1+a(1-x)+b\left(1-x^{2}\right) \tag{76}\\
& u=1+a(1-x)+c\left(1-x^{3}\right) \tag{77}\\
& u=1+b\left(1-x^{2}\right)+c\left(1-x^{3}\right) \tag{78}
\end{align*}
$$

Thus u may has a nontrivial form which is a contradiction. Hence, in order to insure that u has to be only $1, x, x^{2}$ or x^{3}, we have to choose the parameters a, b, c as claimed.

4. Discussion and Conclusion

In this study, we have firstly defined some sets using primes related to a commutative group ring $R(G \times H)$ which is unity of Abelian groups G and H inspring from (Danchev, 2012). Later, we have determined some necessary and sufficient conditions for $V(R(G \times H))$ to be $G \times H$-nilpotent based on our definitions such as $\operatorname{supp}_{C}(G \times H), z d_{C}(R)$ and $\operatorname{inv} v_{C}(R)$ in Theorem 3.1.

Li (1998) has proved that if $R G$ has only trivial units, then $R\left(G \times C_{2}\right)$ has only trivial units as well where $R=\mathbb{Z}$. So, the results on $G \times C_{2}$-nilpotency of the normalized unit group $V\left(R\left(G \times C_{2}\right)\right)$ can be similarly obtained using his structure. In this paper, we have acquired some special necessary and sufficient conditions on $G \times H$-nilpotency of $V\left(R(G \times H)\right.$) for $H=C_{3}$ and $H=C_{4}$. As a future work, it may possible to get some results about $G \times C_{n}$ for a general n. Besides, we should note that the current paper already gives a characterization for $G_{1} \times G_{2} \times \cdots G_{n}$ since we can observe that

$$
\begin{equation*}
G_{1} \times G_{2} \times \cdots G_{n}=\overline{G_{1}} \times \overline{G_{2}} \tag{79}
\end{equation*}
$$

where $\overline{G_{1}}=G_{1} \times G_{2} \times \cdots G_{k}$ and $\overline{G_{2}}=G_{k+1} \times G_{k+2} \times \cdots G_{n}$ for $1 \leq k<n$. So, it is an easy implementation of this paper and can only be evaluated as an example.

As widely known, units are one of exclusive elements in group rings. In addition, defining a new type of units creates a remarkable area in the theory of group rings. Being able to attract more researchers plays a crucial role by sharing ideas and open problems.
In this context, we think that investigating necessary and sufficient conditions for

$$
\begin{equation*}
V(R(G \times H))=V(R G) \times(1+I) \tag{80}
\end{equation*}
$$

where $I=I(N(R) G \times H ; G \times H)$ can be appreciated as an open problem and so a future work.

References

Bourbaki, N. (1989). Elements of Mathematics, Commutative Algebra. Berlin, Germany: Springer.
Danchev, P. (2008). Trivial units in commutative group algebras. Extracta mathematicae, 23(1), 49-60.
Danchev, P. (2009). Trivial units in abelian group algebras. Extracta mathematicae, 24(1), 47-53.
Danchev, P. (2010). Idempotent units of commutative group rings. Communications in Algebra, 38(12), 4649-4654. doi:10.1080/00927871003742842
Danchev, P. (2012). G-nilpotent units in Abelian group rings. Commentationes Mathematicae Universitatis Carolinae, 53(2), 179-187.
Görentaş, N. (1999). A characterization of idempotents and idempotent generators of $\mathbb{Q} S_{3}$. Bulletion of pure and Applied Sciences, 2(18), 289-292.
Görentaş, N. (2020). A note on simple trinomial units in $U_{1}\left(\mathbb{Z} C_{p}\right)$. Turkish Journal of Mathematics, 44(5), 1783-1791. doi:10.3906/mat-2003-63
Karpilovsky, G. (1982). On units in commutative group rings. Archiv der Mathematik, 38, 420-422. doi:10.1007/BF01304809
Küsmüş, Ö. (2019,Aralık). Nilpotent, idempotent and units in group rings. (PhD), Yuzuncu Yıl University, Institute of Natural and Applied Science Van, Turkey.
Küsmüş, Ö. (2020). On idempotent units in commutative group rings. Sakarya University Journal of Science, 24(4), 782-790. doi:10.16984/saufenbilder. 733935
Li, Y. (1998). Units of $\mathbb{Z}\left(G \times C_{2}\right)$. Quaestiones Mathematicae, 21(3-4), 201-218. doi:10.1080/16073606.1998.9632041
May, W. (1976). Group algebras over finitely generated rings. Journal of Algebra, 39(2), 483-511. doi:10.1016/0021-8693(76)90049-1
Milies, C. P., \& Sehgal, S. K. (2002). An Introduction to Group Rings. Amsterdam, North-Holland: Kluwer.
Sehgal, S. K. (1978). Topics in group rings. New York, US: Marcel Dekker.

