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   Abstract 
 

In this work, the set of quasi-primary ideals of a commutative ring with identity is equipped with a 

topology and is called the quasi-primary spectrum. Some topological properties of this space are 

examined. Further, a sheaf of rings on the quasi-primary spectrum is constructed and it is shown that 

this sheaf is the direct image sheaf with respect to the inclusion map from the prime spectrum of a 

ring to the quasi-primary spectrum of the same ring. 

 
 

 

 

1. Introduction* 

 

The set of all prime ideals of a commutative ring 𝑅, 

called the prime spectrum of 𝑅, denoted by 𝑆𝑝𝑒𝑐(𝑅), is a 

well-known concept in commutative algebra. This set is 

equipped with the famous Zariski topology, where closed 

sets are defined as 

𝑉(𝐼) = {𝑃 ∈ 𝑆𝑝𝑒𝑐(𝑅): 𝐼 ⊆ 𝑃} 

for any ideal, 𝐼 of 𝑅. Topological properties of 𝑆𝑝𝑒𝑐(𝑅) 

are widely examined throughout the years and can be 

found in many of the standard commutative algebra and 

algebraic geometry references. Besides, there is a famous 

sheaf construction, named the structure sheaf, on 𝑆𝑝𝑒𝑐(𝑅) 

which is a very useful tool to connect algebraic geometry 

and commutative algebra. For details of the structure sheaf, 

the reader may consult [1-3]. 

In [4], the authors generalized the Zariski topology on 

𝑆𝑝𝑒𝑐(𝑅) to the set of primary ideals of a commutative ring 

𝑅, denoted by 𝑃𝑟𝑖𝑚(𝑅), and they called it the primary 

spectrum of 𝑅. They defined the closed sets as  

𝑉𝑟𝑎𝑑(𝐼) = {𝑄 ∈ 𝑃𝑟𝑖𝑚(𝑅): 𝐼 ⊆ √𝑄} 

 
* Corresponding Author: aysen.ozbay@ankarabilim.edu.tr 

 

for any ideal 𝐼 of 𝑅 where √𝑄 denotes the radical of 𝑄. 

They showed that these closed sets satisfy axioms of a 

topology on 𝑃𝑟𝑖𝑚(𝑅). They investigated some topological 

properties of this space and compared them with the well-

known properties of 𝑆𝑝𝑒𝑐(𝑅). We note that, since any 

prime ideal is primary and equal to its radical, the space 

𝑆𝑝𝑒𝑐(𝑅) is in fact a subspace of 𝑃𝑟𝑖𝑚(𝑅). 

When [4] is examined in detail, it can be realized that 

the given topological construction depends only on the fact 

that the radical of a primary ideal is prime. So, this 

topology is in fact valid on a much larger set, the set of 

ideals whose radicals are prime. These types of ideals are 

first introduced by L. Fuchs in [5]. He named them quasi-

primary ideals. We aim to investigate the set of quasi-

primary ideals of a commutative ring 𝑅 equipped with a 

topology similar to the one defined in [4] and to construct a 

sheaf of rings on this topological space. 

In Section 2, after observing certain general 

topological aspects of the quasi-primary spectrum, we deal 

with irreducibility and irreducible components of this 

space. Moreover, we examine the disconnectedness of the 

space and finally prove that the dimension of the quasi-

primary spectrum of a Noetherian local ring is finite. In 
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Section 3, we construct a sheaf of rings on the quasi-

primary spectrum of and prove that this sheaf is actually 

the direct image sheaf under the inclusion map from the 

prime spectrum to the quasi-primary spectrum. 

 

2. The Quasi-Primary Spectrum of a Ring 

 

Throughout this paper, all rings are commutative with 

identity. In this section, we define a topology on the set of 

all quasi-primary ideals of a ring and examine some 

properties of this topological space. 

First, we present some (known) properties of quasi-

primary ideals we need in the rest of the paper. Let 𝑅 be a 

ring. Following [5], an ideal 𝐼 of 𝑅 is called quasi-primary 

if the radical of 𝐼, denoted by √𝐼 is prime.  

 

Lemma 2.1 Let 𝐼 be an ideal of a ring 𝑅 and 𝑆 a 

multiplicative subset of 𝑅. Denote the localization of 𝑅 

with respect to 𝑆 by 𝑅𝑆.  

i. If 𝐼 is primary, then 𝐼 is quasi-primary.  

ii. If 𝐼 is a quasi-primary ideal, the 𝐼 has only one 

minimal prime ideal. 

iii. If 𝐼𝑅𝑆 is a quasi-primary ideal of 𝑅𝑆, then 𝐼𝑅𝑆 ∩ 𝑅 is 

a quasi-primary ideal of 𝑅.  

iv. If 𝐼 is a quasi-primary ideal of 𝑅 such that √𝐼 ∩ 𝑆 =

∅, then 𝐼𝑅𝑆 is a quasi-primary ideal of 𝑅𝑆.  

   

Proof. (i) and (ii) is obvious. For (iii) and (iv) it is enough 

to observe that √𝐼𝑅𝑆 = √𝐼𝑅𝑆.                                            □ 

 

Let  

𝑄𝑃𝑟𝑖𝑚(𝑅) = {𝐼 ⊆ 𝑅: 𝐼 is a quasi-primary ideal}. 

For any subset 𝑆 of 𝑅, let us define the set  

 𝑉𝑞(𝑆) = {𝑄 ∈ 𝑄𝑃𝑟𝑖𝑚(𝑅): 𝑆 ⊆ √𝑄}. 

Observe that, for any subset 𝑆 of 𝑅, if 𝐼 = (𝑆) we have 

𝑉𝑞(𝑆) = 𝑉𝑞(𝐼). If 𝑆 = {𝑎} for 𝑎 ∈ 𝑅, we write 𝑉𝑞(𝑆) =

𝑉𝑞(𝑎). 

In [4], the authors defined a topology on the set 

𝑃𝑟𝑖𝑚(𝑅) of primary ideals of a commutative ring using 

the sets 𝑉𝑟𝑎𝑑(𝐼) = {𝑄 ∈ 𝑃𝑟𝑖𝑚(𝑅): 𝐼 ⊆ √𝑄} as the closed 

sets. In this construction, they only used the property that a 

primary ideal has a prime radical. So, we realized that the 

topology axioms for closed sets are in fact satisfied by the 

sets  

 𝑉𝑞(𝐼) = {𝑄 ∈ 𝑄𝑃𝑟𝑖𝑚(𝑅): 𝐼 ⊆ √𝑄} 

where 𝐼 any ideal of 𝑅. Thus, 𝑄𝑃𝑟𝑖𝑚(𝑅) is a topological 

space with closed sets 𝑉𝑞(𝐼) where 𝐼 is an ideal of 𝑅. Since 

any primary ideal is quasi-primary, we have 𝑃𝑟𝑖𝑚(𝑅) as a 

subspace of 𝑄𝑃𝑟𝑖𝑚(𝑅). 

For the sake of completeness, we note some 

properties (from Proposition 2.2 to Corollary 2.6) of 𝑉𝑞(𝐼) 

without proofs. For details, see [4]. 

 

Proposition 2.2 Let 𝐼, 𝐽 be ideals of 𝑅 and {𝐼𝜆}𝜆∈𝛬 a family 

of ideals of 𝑅. Then the followings hold:   

i. If 𝐼 ⊆ 𝐽, then 𝑉𝑞(𝐽) ⊆ 𝑉𝑞(𝐼).  

ii. 𝑉𝑞(0) = 𝑄𝑃𝑟𝑖𝑚(𝑅) and 𝑉𝑞(𝑅) = ∅.  

iii. 𝑉𝑞(𝐼 ∩ 𝐽) = 𝑉𝑞(𝐼𝐽) = 𝑉𝑞(𝐼) ∪ 𝑉𝑞(𝐽).  

iv. 𝑉𝑞(∑𝜆∈Λ 𝐼𝜆) = ⋂𝜆∈Λ 𝑉𝑞(𝐼𝜆).  

v. 𝑉𝑞(𝐼) = 𝑉𝑞(√𝐼).  

 

Proof. Similar to [4, Remark 2.1] and [4, Proposition 2.3]. 

□ 

 

Corollary 2.3 The family {𝑉𝑞(𝐼): 𝐼 𝑖𝑠 𝑎𝑛 𝑖𝑑𝑒𝑎𝑙 𝑜𝑓 𝑅} 

satisfies the axioms of closed sets of a topology on 

𝑄𝑃𝑟𝑖𝑚(𝑅).  

 

This topology is called Zariski topology on 

𝑄𝑃𝑟𝑖𝑚(𝑅) and the space 𝑄𝑃𝑟𝑖𝑚(𝑅) is named as the 

quasi-primary spectrum of 𝑅. We note that any open set in 

𝑄𝑃𝑟𝑖𝑚(𝑅) is of the form 𝑄𝑃𝑟𝑖𝑚(𝑅)\𝑉𝑞(𝑆) for some 

subset 𝑆 of 𝑅. 

Consider the set 𝑈𝑎 = 𝑄𝑃𝑟𝑖𝑚(𝑅)\𝑉𝑞(𝑎) for any 𝑎 ∈

𝑅.  

 

Theorem 2.4 Let 𝑅 be a ring. The family {𝑈𝑎}𝑎∈𝑅 is a base 

for the Zariski topology on 𝑄𝑃𝑟𝑖𝑚(𝑅).  

 

Proof. Similar to [4, Theorem 3.1].                                    □ 

 

Note that 𝑈0 = ∅ and 𝑈𝑟 = 𝑄𝑃𝑟𝑖𝑚(𝑅) for every unit 

𝑟 ∈ 𝑅.  

 

Theorem 2.5 Let 𝑅 be a ring and 𝑎, 𝑏 ∈ 𝑅. The followings 

hold: 

i. √(𝑎) = √(𝑏) if and only if 𝑈𝑎 = 𝑈𝑏.  

ii. 𝑈𝑎𝑏 = 𝑈𝑎 ∩ 𝑈𝑏 .  

iii. 𝑈𝑎 = ∅ if and only if 𝑎 is nilpotent.  

iv. 𝑈𝑎 is quasi-compact.  

  

Proof. Similar to [4, Theorem 3.2].                                    □ 

 

Corollary 2.6 Let 𝑅 be a ring. The space 𝑄𝑃𝑟𝑖𝑚(𝑅) is 

quasi-compact.  

 

Quasi-primary ideals were firstly introduced and 

examined thoroughly in [5]. It is generally studied on rings 

satisfying maximal conditions; in other words, every 

ascending chain of ideals is finite. It is also noted that the 

   

 



Neslihan Ayşen ÖZBAY et al. / Koc. J. Sci. Eng., 6(2): (2023) 89-93 

91 

quasi-primary ideals in rings satisfying maximal conditions 

can be characterized as follows: A quasi-primary ideal is 

either a power of a prime ideal or an intermediate ideal 

between two powers of one and the same prime ideal. In 

view of this fact, the following theorem is given for rings 

satisfying maximal condition. 

 

Theorem 2.7 [5, Theorem 4] If 𝑄1 and 𝑄2 are quasi-

primary ideals having the radicals 𝑃1 and 𝑃2 respectively, 

and 𝑃1 ⊆ 𝑃2. Then 𝑄1𝑄2 is also quasi-primary having the 

radical 𝑃1.  

 

Theorem 2.8 Let 𝑅 be a ring satisfying maximal condition 

and 𝑄1 and 𝑄2 be quasi-primary ideals of 𝑅 such that 

𝑄1 ⊆ 𝑄2. If 𝑄1 ∈ 𝑉𝑞(𝐼), then 𝑄1𝑄2 ∈ 𝑉𝑞(𝐼) for any ideal 𝐼 

of 𝑅.  

  

Proof. Let 𝐼 be an ideal and 𝑄1, 𝑄2 two quasi-primary 

ideals such that 𝑄1 ⊆ 𝑄2 in a ring 𝑅 satisfying maximal 

condition. Suppose 𝑄1 ∈ 𝑉𝑞(𝐼). Then 𝐼 ⊆ √𝑄1 ⊆ √𝑄2 by 

the assumption. So, we obtain 𝐼 ⊆ √𝑄1𝑄2 by Theorem 2.7, 

which yields 𝑄1𝑄2 ∈ 𝑉𝑞(𝐼).                                                □ 

 

It is known that Theorem 2.7 has no analogue in 

primary ideal theory. Similarly, Theorem 2.8 does not valid 

for the primary spectrum as can be seen in the following 

example. 

 

Example 1 Consider the residue class ring 𝑅 =

𝐾[𝑋1, 𝑋2, 𝑋3]/(𝑋1𝑋3 − 𝑋2
2) where 𝐾 is a field. It is clear 

that 𝑅 satisfies the maximal condition. Let 𝑥𝑖 denote the 

natural image of 𝑋𝑖 in 𝑅 for each 𝑖 ∈ {1,2,3}. Then, the 

ideal 𝑃 = (𝑥1, 𝑥2) is a prime ideal of 𝑅 but 𝑃2 is not 

primary [6, Example 4.12]. It is trivial that 𝑃2 is a quasi-

primary ideal of 𝑅. Now take 𝑄1 = 𝑄2 = 𝑃. Then, we see 

that 𝑃 ∈ 𝑉𝑞(𝑃) ∩ 𝑉𝑟𝑎𝑑(𝑃), however, 𝑃2 ∈ 𝑉𝑞(𝑃)\𝑉𝑟𝑎𝑑(𝑃). 

 

Now, let us determine the closure of a point 𝑄 ∈

𝑄𝑃𝑟𝑖𝑚(𝑅). The closure 𝐶𝑙(𝑄) of 𝑄 is  

𝐶𝑙(𝑄) = ⋂

𝑄∈𝑉𝑞(𝑆)

𝑉𝑞(𝑆) = ⋂

𝑆⊆√𝑄

𝑉𝑞(𝑆) = 𝑉𝑞(𝑄). 

 

Definition 2.9 A topological space 𝑋 is irreducible if 𝑋 is 

nonempty and 𝑋 cannot be written as a union of two 

proper closed subsets, or equivalently, any two nonempty 

open subsets of 𝑋 intersect.  

 

Theorem 2.10 Let 𝑅 be a ring. Then 𝑄𝑃𝑟𝑖𝑚(𝑅) is an 

irreducible space if and only if the nilradical of 𝑅, 𝒩(𝑅), 

is quasi-primary.  

Proof. Let 𝒩(𝑅) be a quasi-primary ideal and 𝑈, 𝑉 be two 

non-empty open subsets of 𝑄𝑃𝑟𝑖𝑚(𝑅). Suppose that 𝑄1 ∈

𝑈\𝑉. Then there exists a subset 𝑆 of 𝑅 such that 𝑈 =

𝑋\𝑉𝑞(𝑆). This implies 𝑄1 ∉ 𝑉𝑞(𝑆), that is, 𝑆 ⊈ √𝑄1. Then 

we get 𝑆 ⊈ √𝒩(𝑅) since 𝒩(𝑅) ⊆ √𝑄1. Hence, 𝒩(𝑅) ∉

𝑉𝑞(𝑆). Then, we obtain 𝒩(𝑅) ∈ 𝑈. In a similar way, we 

get 𝒩(𝑅) ∈ 𝑉 which yields 𝑈 ∩ 𝑉 ≠ ∅. For the converse 

part, let 𝑄𝑃𝑟𝑖𝑚(𝑅) be an irreducible space and assume 

that 𝒩(𝑅) is not quasi-primary. Then √𝒩(𝑅) is not prime. 

Then there exist 𝑎, 𝑏 ∈ 𝑅 such that 𝑎, 𝑏 ∉ √𝒩(𝑅) but 

𝑎𝑏 ∈ 𝒩(𝑅). Since 𝑎 ∈ √𝒩(𝑅), 𝑉𝑞(𝑎) ≠ 𝑄𝑃𝑟𝑖𝑚(𝑅), that 

is, 𝑈𝑎 ≠ ∅. Similarly, we get 𝑈𝑏 ≠ ∅. In addition, 𝑈𝑎𝑏 = ∅ 

since 𝑎𝑏 ∈ 𝒩(𝑅). As a result, 𝑈𝑎 ∩ 𝑈𝑏 = 𝑈𝑎𝑏 = ∅ for two 

non-empty open subsets 𝑈𝑎 and 𝑈𝑏 which means 

𝑄𝑃𝑟𝑖𝑚(𝑅) is not irreducible.                       □ 

 

 There is a one-to-one correspondence between points 

of 𝑄𝑃𝑟𝑖𝑚(𝑅) and irreducible closed subsets of 𝑄𝑃𝑟𝑖𝑚(𝑅). 

The next theorem gives that correspondence. 

 

Theorem 2.11 Let 𝑌 be a subset of 𝑄𝑃𝑟𝑖𝑚(𝑅). Then 𝑌 is 

an irreducible closed subset of 𝑄𝑃𝑟𝑖𝑚(𝑅) if and only if 

𝑌 = 𝑉𝑞(𝑄) for some 𝑄 ∈ 𝑄𝑃𝑟𝑖𝑚(𝑅).  

  

Proof. Let 𝑌 = 𝑉𝑞(𝑄) for any 𝑄 ∈ 𝑄𝑃𝑟𝑖𝑚(𝑅). Since 

𝑉𝑞(𝑄) = 𝐶𝑙(𝑄) and 𝐶𝑙(𝑄) is irreducible, 𝑌 is an 

irreducible closed subset of 𝑄𝑃𝑟𝑖𝑚(𝑅). Conversely, let 𝑌 

be an irreducible closed subset of 𝑄𝑃𝑟𝑖𝑚(𝑅). Then 𝑌 =

𝑉𝑞(𝐼) for some ideal 𝐼 of 𝑅. Now suppose that 𝐼 ∉

𝑄𝑃𝑟𝑖𝑚(𝑅). Then √𝐼 is not prime. Then there are elements 

𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑏 ∈ 𝐼 but 𝑎, 𝑏 ∉ √𝐼. Thus, 𝑌 = 𝑉𝑞(𝐼) ⊆

𝑉𝑞(𝑎𝑏) = 𝑉𝑞(𝑎) ∪ 𝑉𝑞(𝑏). Also, 𝑉𝑞(𝑎) ≠ 𝑉𝑞(𝐼) and 𝑉𝑞(𝑏) ≠

𝑉𝑞(𝐼) due to 𝑎, 𝑏 ∉ √𝐼. Therefore, we conclude that 𝑌 is 

reducible, which contradicts our assumption.                                                                         

□                                                              

 

Let 𝐼 be an ideal of a ring satisfying maximal 

condition. Then, by [5, Theorem 5], the ideal 𝐼 is an 

intersection of a finite number of quasi-primary ideals, say 

𝑄1, … , 𝑄𝑛 with radicals 𝑃1, … , 𝑃𝑛, respectively. Hence, 

√𝐼 = ⋂𝑛
𝑖=1 √𝑄𝑖 = ⋂𝑛

𝑖=1 𝑃𝑖 , that is, there is no prime ideal 

containing 𝐼 other than 𝑃𝑖’s where 𝑖 = 1, … , 𝑛. Then, for 

any ideal 𝐼 in a ring satisfying maximal condition, every 

closed subset 𝑉𝑞(𝐼) can be written as the finite union of 

irreducible closed sets, that is,  

𝑉𝑞(𝐼) = 𝑉𝑞(𝑃1) ∪ … ∪ 𝑉𝑞(𝑃𝑛) 

by Proposition 2.2 (iii) and (v).  
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Let 𝑉 be a closed subset of a topological space 𝑋. 

Recall that a dense point of 𝑉 is called a generic point. By 

the above theorem, we conclude that every irreducible 

closed subset of 𝑄𝑃𝑟𝑖𝑚(𝑅) has a generic point. 

The maximal irreducible subsets of a topological 

space 𝑋 are called irreducible components.  

 

Theorem 2.12 Irreducible components of 𝑄𝑃𝑟𝑖𝑚(𝑅) are 

the closed sets 𝑉𝑞(𝑄) where √𝑄 is a minimal prime ideal 

of 𝑅.  

  

Proof. By Theorem 2.11, any irreducible closed subset of 

𝑄𝑃𝑟𝑖𝑚(𝑅) can be written of the form 𝑉𝑞(𝑄) for some 

quasi-primary ideal 𝑄 of 𝑅. Assume that 𝑉𝑞(𝑄) is not 

maximal. Then 𝑉𝑞(𝑄) ⊂ 𝑉𝑞(𝑄′) for some quasi-primary 

ideal 𝑄′ of 𝑅. Since 𝑉𝑞(𝑄′) = 𝑉𝑞(√𝑄′) we have √𝑄′ ⊂

√𝑄. Hence, √𝑄 is not minimal. Conversely, assume that 

√𝑄 is not a minimal prime ideal. Then there is a prime 

ideal 𝑃 of 𝑅 such that 𝑃 ⊂ √𝑄. Then we get 𝑉𝑞(𝑄) ⊂

𝑉𝑞(𝑃). Therefore, 𝑉𝑞(𝑄) is not a maximal irreducible set.              

□ 

  

Theorem 2.13 Let 𝑅 be a ring. The following are 

equivalent: 

i. 𝑄𝑃𝑟𝑖𝑚(𝑅) is disconnected.  

ii. 𝑅 ≅ 𝑅2 × 𝑅2 where 𝑅1 and 𝑅2 are nonzero rings.  

iii. 𝑅 contains an idempotent. 

 

Proof. (i)⟹(ii) Assume that 𝑄𝑃𝑟𝑖𝑚(𝑅) is disconnected. 

Then 𝑄𝑃𝑟𝑖𝑚(𝑅) = 𝑉𝑞(𝐼) ∩ 𝑉𝑞(𝐽) for some ideals 𝐼 and 𝐽 

of 𝑅 where 𝑉𝑞(𝐼) ∩ 𝑉𝑞(𝐽) = ∅. Then we have 𝐼 + 𝐽 = 𝑅 

and 𝐼 ∩ 𝐽 = 𝐼𝐽. So, we get 𝑅 = 𝑅/𝐼 × 𝑅/𝐽. 

(ii) ⟹ (iii) Assume that 𝑅 ≅ 𝑅2 × 𝑅2 where 𝑅1 and 𝑅2 are 

nonzero rings via an isomorphism 𝜙. Then 𝜙−1(1,0) is a 

nontrivial idempotent of 𝑅. 

(iii) ⟹ (i) Assume that 𝑒 ∈ 𝑅 is an idempotent. Then 

𝑄𝑃𝑟𝑖𝑚(𝑅) = 𝑋1 ∪ 𝑋2 where 𝑋1 = {𝑄 ∈ 𝑄𝑃𝑟𝑖𝑚(𝑅): 𝑒 ∈

√𝑄} and 𝑋1 = {𝑄 ∈ 𝑄𝑃𝑟𝑖𝑚(𝑅): 1 − 𝑒 ∈ √𝑄}. Observe 

that 𝑋1 ∩ 𝑋2 = ∅. Thus, 𝑄𝑃𝑟𝑖𝑚(𝑅) is disconnected.         □ 

 

The dimension of a topological space 𝑋 is the number 

𝑛 such that 𝑋 has a chain of irreducible closed sets  

𝑉1 ⊂ 𝑉2 ⊂ ⋯ ⊂ 𝑉𝑛  

and no such chain more that 𝑛 terms.  

 

Theorem 2.14 Let 𝑅 be a Noetherian local ring. Then the 

dimension of 𝑄𝑃𝑟𝑖𝑚(𝑅) is finite.  

  

Proof. Let  

𝑋1 ⊂ 𝑋2 ⊂ ⋯ ⊂ 𝑋𝑛 ⊂ ⋯ 

be a chain of irreducible subsets. This chain can be written 

as  

𝑉𝑞(𝑄1) ⊂ 𝑉𝑞(𝑄2) ⊂ ⋯ ⊂ 𝑉𝑞(𝑄𝑛) ⊂ ⋯ 

where 𝑄𝑖 ∈ 𝑄𝑃𝑟𝑖𝑚(𝑅). Let 𝑃𝑖 = √𝑄𝑖  for each 𝑖. Then we 

have  

⋯ ⊂ 𝑃𝑛 ⊂ ⋯ ⊂ 𝑃2 ⊂ 𝑃1. 

By [7, Corollary 11.11], the dimension of 𝑅 is finite. So, the 

above chain of prime ideals must terminate. Therefore, the 

dimension of 𝑄𝑃𝑟𝑖𝑚(𝑅) is finite, and in fact equal to the 

dimension of 𝑅.                                                                    □ 

 

3. A Sheaf of Rings on the Quasi-Primary 

Spectrum 

 

In this section we define a sheaf of rings on the quasi-

primary spectrum. Let 𝜙: 𝑅 → 𝑅′ be a ring 

homomorphism. For any 𝑄 ∈ 𝑄𝑃𝑟𝑖𝑚(𝑅′), it is easy to 

show that 𝑓−1(𝑄) ∈ 𝑄𝑃𝑟𝑖𝑚(𝑅). So, 𝑓 induces the map  

𝜙𝑎: 𝑄𝑃𝑟𝑖𝑚(𝑅′) → 𝑄𝑃𝑟𝑖𝑚(𝑅) 

which is called the associated map of 𝜙. 

For any 𝐴 ⊆ 𝑅 we have (𝜙𝑎)−1(𝑉(𝐴)) = 𝑉(𝜙(𝐴)). 

So, the map 𝜙𝑎 is continuous. 

Let 𝑆 ⊆ 𝑅 be a multiplicative subset of 𝑅. Let  

𝜙: 𝑅 → 𝑅𝑆 be the canonical homomorphism. Since  

√𝐼𝑅𝑆 = √𝐼𝑅𝑆 for any ideal 𝐼 of 𝑅, the map 𝜙𝑎 is an 

inclusion. The set 𝑈𝑆 = 𝜙𝑎(𝑄𝑃𝑟𝑖𝑚(𝑅𝑆)) is equal to the set 

of quasi-primary ideals of 𝑅 whose radicals are disjoint 

from 𝑆. There is a one-to-one correspondence between 

quasi-primary ideals of 𝑅𝑆 and quasi-primary ideals of 𝑅 

whose radicals are disjoint from 𝑆. So, the space 

𝑄𝑃𝑟𝑖𝑚(𝑅𝑆) is homeomorphic to the subspace 𝑈𝑆 of 

𝑄𝑃𝑟𝑖𝑚(𝑅). 

In particular, if 𝑆 = {𝑓𝑖: 𝑖 ∈ ℕ} then 𝑈𝑆 =

𝑄𝑃𝑟𝑖𝑚(𝑅)\𝑉𝑞(𝑓) = 𝑈𝑓. So, basis sets 𝑈𝑓 are 

homeomorphic to 𝑄𝑃𝑟𝑖𝑚(𝑅𝑓) where 𝑅𝑓 is the localization 

of 𝑅 with respect to the multiplicative subset 𝑆 = {𝑓𝑖: 𝑖 ∈

ℕ}. 

 

Lemma 3.1  𝑈𝑎 ⊆ 𝑈𝑏 if and only if 𝑎 ∈ √(𝑏) for any 

𝑎, 𝑏 ∈ 𝑅.  

  

Proof. Assume that 𝑈𝑎 ⊆ 𝑈𝑏 for some 𝑎, 𝑏 ∈ 𝑅. Then, for 

any 𝑄 ∈ 𝑄𝑃𝑟𝑖𝑚(𝑅), we have 𝑎 ∉ √𝑄 implies 𝑏 ∉ √𝑄. 

That means 𝑏 ∈ √𝑄 implies 𝑎 ∈ √𝑄. Since 𝑄𝑃𝑟𝑖𝑚(𝑅) 

contains prime ideals, this observation yields that 𝑎 ∈

√(𝑏). Conversely, assume that 𝑎 ∈ √(𝑏) for some 𝑎, 𝑏 ∈

𝑅. Let 𝑞 ∈ 𝑈𝑎. Then 𝑎 ∉ √𝑄. Since 𝑎 is contained in the 

intersection of all prime ideals that contain 𝑏, we obtain that 

𝑏 ∉ √𝑄. Therefore, we have 𝑄 ∈ 𝑈𝑏.                                  □ 
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Our aim is to construct a sheaf of rings on 

𝑄𝑃𝑟𝑖𝑚(𝑅). We assign to each open set 𝑈𝑎 the ring 

ℱ(𝑈𝑎): = 𝑅𝑎, ring of quotients with respect to the 

multiplicative subset {1, 𝑎, 𝑎2, . . . }, and define the 

restriction maps  

 𝑟𝑒𝑠𝑈𝑏,𝑈𝑎
: 𝑅𝑏 → 𝑅𝑎,      𝑟/𝑏𝑚 ↦ 𝑡𝑚𝑟/𝑎𝑛𝑚. 

Since, by Lemma 3.1, we have 𝑈𝑎 ⊆ 𝑈𝑏 if and only if 

𝑎𝑛 = 𝑡𝑏 for some positive integer 𝑛 and 𝑡 ∈ 𝑅, the map 

𝑟𝑒𝑠𝑈𝑏,𝑈𝑎
 is well-defined. 

For an arbitrary open set 𝑈 of 𝑄𝑃𝑟𝑖𝑚(𝑅) let  

ℱ(𝑈) = lim
⟵

ℱ(𝑈𝑎) 

where the projective limit is taken over all 𝑈𝑎 ⊆ 𝑈 relative 

to the system of homomorphisms 𝑟𝑒𝑠𝑈𝑏,𝑈𝑎
 for 𝑈𝑎 ⊆ 𝑈𝑏. 

For 𝑈 ⊆ 𝑉, each family {𝑣𝑖} ∈ ℱ(𝑉) consisting of 

𝑣𝑖 ∈ 𝑅𝑎𝑖
 with 𝑈𝑎𝑖

⊆ 𝑉 defines a subfamily {𝑎𝑗} consisting 

of the 𝑎𝑗 for those indexes 𝑗 with 𝑈𝑎𝑗
⊆ 𝑈. Then {𝑣𝑗} ∈

ℱ(𝑈). Define  

 𝑟𝑒𝑠𝑉,𝑈: ℱ(𝑉) → ℱ(𝑈),    {𝑣𝑖} ↦ {𝑣𝑗}  . 

With this construction, ℱ turns to be a sheaf of rings on 

𝑄𝑃𝑟𝑖𝑚(𝑅). In fact, this sheaf is the direct image sheaf 

under the inclusion map from 𝑆𝑝𝑒𝑐(𝑅) into 𝑄𝑃𝑟𝑖𝑚(𝑅):  

 

Theorem 3.2 The sheaf ℱ on 𝑄𝑃𝑟𝑖𝑚(𝑅) is equal to the 

direct image sheaf 𝜄∗ under the inclusion map 

𝜄: 𝑆𝑝𝑒𝑐(𝑅) → 𝑄𝑃𝑟𝑖𝑚(𝑅).  

  

Proof. The inclusion map 𝜄 is continuous. For any open set 

𝑈 of 𝑄𝑃𝑟𝑖𝑚(𝑅), direct image sheaf 𝜄∗ is defined as 

follows:  

𝜄∗(𝑈) = 𝒪(𝜄−1(𝑈)) 

where 𝒪 denotes the structure sheaf on 𝑆𝑝𝑒𝑐(𝑅). For 𝑎 ∈

𝑅, we have  

 𝜄−1(𝑈𝑎) = {𝑃 ∈ 𝑆𝑝𝑒𝑐𝑅: 𝜄(𝑃) ∈ 𝑈𝑎} 

 = {𝑃 ∈ 𝑆𝑝𝑒𝑐𝑅: 𝑃 ∈ 𝑈𝑎} 

 = {𝑃 ∈ 𝑆𝑝𝑒𝑐𝑅: 𝑎 ∉ √𝑃 = 𝑃} 

The final set is a principal open set for 𝑆𝑝𝑒𝑐(𝑅) and the 

corresponding ring for this set is 𝑅𝑎. So, we get 𝜄∗(𝑈𝑎) =

𝑅𝑎 = ℱ(𝑈𝑎). 

For 𝑈𝑎 ⊆ 𝑈𝑏, we have 𝑟𝑒𝑠𝑈𝑏,𝑈𝑎
= 𝜌𝑋𝑎

𝑋𝑏 where 𝜌𝑋𝑎

𝑋𝑏 is 

the restriction map from principal open set 𝑋𝑏 to 𝑋𝑎 of 

𝑆𝑝𝑒𝑐(𝑅) with respect to the structure sheaf 𝒪. Thus, the 

sheafs ℱ and 𝜄∗ℱ are the same.                                           □ 

Similar to the structure sheaf 𝒪 on 𝑆𝑝𝑒𝑐(𝑅), the stalk 

ℱ𝑄 of ℱ at a point 𝑄 ∈ 𝑄𝑃𝑟𝑖𝑚(𝑅) is 𝑅√𝑄. Therefore, we 

conclude that (𝑄𝑃𝑟𝑖𝑚(𝑅), ℱ) is a locally ringed space. 
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