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ABSTRACT 
This research aims to increase defense deterrence by tracking and shooting targets with a gun mounted on a 

quadruped robot in rough terrain and different environmental conditions. The dynamic movements of the system 

were modelled as planarly and it was used in walking movement. PID control was used to control the robot leg 

joints while walking. The performance of the target tracking and firing simulations was evaluated under the 

disruptive effects due to the walking motion. The elevation angle was calculated in order to track the objects 

whose coordinates were generated at random. It was observed that the robot tracked the targets at 3°, 6° and 9° 

with a maximum error of 0.6°. In addition, shootings were made to fixed targets located at 10 different 

coordinates. The largest shot error value was observed to be 16 cm. As a result, this research will make 

significant contributions to the defense industry. 
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Bulanık Mantık Kontrolü kullanarak hedeflere atış yapan dört bacaklı 

bir robotun dinamik simülasyonu 
 

ÖZ 
Bu çalışma, savunmada caydırıcılığı artırmak için engebeli arazi ve farklı çevre koşullarında dört bacaklı bir 

robot üzerine monte edilmiş silah ile hedefleri takip etmeyi ve vurmayı amaçlamaktadır. Sistemin dinamik 

hareketleri düzlemsel olarak modellenmiş ve yürüme hareketinde kullanılmıştır. Yürürken robot bacak 

eklemlerini kontrol etmek için PID kontrolü kullanılmıştır. Yürüme hareketi nedeniyle, bozucu etkiler altında 

hedef takip ve atış simülasyonlarının başarısı incelenmiştir. Koordinatları rastgele belirlenen hedeflerin takibi 

için namlu yükseklik açısı hesaplanmıştır. Robotun hedefleri maksimum 0,6° hata ile 3°, 6° ve 9°'de takip ettiği 

gözlemlenmiştir. Ayrıca 10 farklı koordinatta bulunan sabit hedeflere atışlar yapılmıştır. Maksimum atış hatası 

değerinin 16 cm olduğu görülmüştür. Dolayısıyla bu çalışma savunma sanayisine önemli katkılar sağlayacaktır. 

 

Anahtar Kelimeler: Bulanık Kontrol, Taret Sistemi, Dört Bacaklı Robot, Namlu Stabilizasyonu, Atış 

Simülasyonu 
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I. INTRODUCTION 
 

In recent years, robotic systems have emerged in all technological areas which mankind benefit from. 

Robotic systems and products are also widely used in the defense industry [1,2]. Especially multi-

legged robots are preferred for their performance in rough terrain conditions. Multi-legged robots offer 

extra mobility compared to wheeled and other types of robots on uneven floors using foot soles used 

for each leg [3,4]. Compared to tracked and wheeled robots, legged robots perform better on rough 

terrain. [5]. In studies on legged robots, mostly four-legged robot studies [6-8] are encountered. 

Because, the speed-balance coordination of four-legged robots is more successful than robots with 6 or 

more legs. Quadruped robots have important advantages while walking on rough surfaces [9].  

 

Usage of technological weapon systems in the defense field is increasing day by day. As gun systems 

gain the ability to work outside of human control depending on the advancement of technology, the 

importance attached to automatic gun systems increases day by day under the law [10]. Gun target 

assignment is a problem that aims to increase the hit rate. It is an important expectation that the gun 

system can make a successful hit under disruptive effects [11]. Successful hits from moving vehicles 

can be achieved by barrel stabilization. The design and implementation of an active stabilization 

system for gun systems can also reduce the physiological effects stemming from soldiers' war stress 

[12]. Studies on barrel stabilization [13,14], fire control systems [15,16], target tracking [17,18] can be 

found in the literature. Studies have been carried out in this area by using different control methods for 

weapon stabilization [19-21]. 

Many studies about robotics, were controlled by a fuzzy logic method in recent years. In the literature, 

there are many studies in which the fuzzy logic method for motion and trajectory control of mobile 

and anthropoid robots, air and land autonomous robots and manipulators are used [22-32]. The idea of 

fuzzy logic was discovered and suggested by L. A. Zadeh at the University of California, Berkeley in 

1962 [33]. This discovery was considered valid when E. H. Mamdani at the University of London 

realized control applications with fuzzy logic [34]. In addition, studies on target tracking with fuzzy 

logic controller [35-37] have been done. There are also studies [38,39] in which walking motion using 

PID control method in quadruped robots. 

 

In this study, a uniaxial gun system was located on a quadruped robot's body. To determine the 

dynamic behavior of the robot, the system was planarly modeled and simulated. Joints are controlled 

by PID method for balanced walking motion of the robot. 

 
 

Figure 1. Shooting simulations of the four-legged robot towards the fixed target 
 
To ensure that the gun follows the target accurately and fires toward fixed objects while the robot was 

moving, gun barrel stabilization was created. Due to the movement of the robot, the robot body causes 
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disruptive effects on the barrel system during the shooting at the fixed target. To keep the barrel in the 

reference coordinates against these disruptive effects, the Fuzzy Logic control method is used. An 

image of the shot made towards fixed targets is given in Figure 1. In the simulations, mathematical 

equations expressing the planar dynamic behavior of the projectile were used. 

 

target calculation is made by using the hypotenuse value of the right triangle in the Pythagorean 

theorem, depending on the position error of the gun barrel in the horizontal and vertical axes with 

respect to the target. In the simulation, the robot's position relative to the fixed target constantly 

changes as the robot is walking. Therefore, since the barrel reference angle target will constantly 

change, this angle value needs to be updated for each position. 

 

The study's entire content is explained in detail in the chapters denoted by their titles. The first chapter 

provides a theoretical overview of the significance of legged robots, automatic weapon control, four-

legged robots, target identification and fire control systems, the necessity of barrel stability for 

successful shooting, and upcoming robot technologies. The kinematic study of the robot system was 

performed in the second chapter. Planar modeling was used in the third chapter to produce the 

system's dynamic behavior. The dynamic expressions of the system were then computed. The fourth 

chapter provides details on the PID control system used and the robot's "trot" walking simulation. 

Graphs of position and velocity were obtained as a result of the simulation. The control strategy based 

on fuzzy logic that was utilized to stabilize the barrel and effectively track the target is described in the 

following chapter. To offer barrel orientation to three different reference positions, control 

applications were simulated. This chapter contains the graphic results of the simulation of the system 

subjected to disruptive effects. In the sixth chapter, shooting simulations were created with many fixed 

targets that were distributed at random. These hits produced results that were shown in a table. The 

success rates of hits under particular physical conditions were looked at in the previous chapter. On 

the system, the impacts of the fuzzy logic control mechanism are discussed. 
 

II. FORWARD AND INVERSE KINEMATIC ANALYSIS 
 

 
Kinematic analysis in robotic systems is divided into two as forward and inverse kinematics. Forward 

kinematic is the determination of the end-effector configuration (position and orientation) of the robot 

for a given joint angle. Also, finding the necessary angles for the robot end-effector with a given 

position and orientation is known as inverse kinematics [40]. 

 

 
 

Figure 2. Axial placement of the robot’s one leg 
 

Denavit-Hartenberg method [41] was used to perform forward kinematic analysis. The D-H table 

created using this method was presented in Table 1. In addition, the axis set distribution of the single 

leg of the planar robot's single leg was given in Figure 2. 
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Table 1. D-H Table 
Link 𝜽 d 𝜶 a 

1 𝜃1 0 0 𝑙1 

2 𝜃3 0 0 𝑙3 

 
The transformation matrices of the joints (Ai) are calculated by the obtained D-H table. The 

transformation matrix of the shoulder joint's end-effector on the robot leg was obtained as in (1) and 

(2). As a result, forward kinematic expressions were found with the expression in (3). 

 
𝑇0

2 = 𝐴1𝐴2                             (1) 

𝑇0
2 = [

cos(𝜃1 + 𝜃3) −sin(𝜃1 + 𝜃3)
sin(𝜃1 + 𝜃3) cos(𝜃1 + 𝜃3)

    
0 𝑙1 cos 𝜃1 + 𝑙3 cos(𝜃1 + 𝜃3)
0 𝑙1 sin 𝜃1 + 𝑙3 sin(𝜃1 + 𝜃3)

0                          0
0                          0

   
                      1                                                  0

0                            1

]              (2) 

𝒑𝒙 =  𝑙1 cos 𝜃1 + 𝑙3 cos(𝜃1 + 𝜃3), 𝒑𝒚 =  𝑙1 sin 𝜃1 + 𝑙3 sin(𝜃1 + 𝜃3)     ,      𝒑𝒛 = 0        (3) 

 

The inverse kinematic expressions of the robot’s one leg were also given by using the forward 

kinematic equations obtained in (4) and (5). 

 

cos 𝜃3 =   √
𝑝𝑥

2+𝑝𝑦
2−𝑙1

2−𝑙3
2

2𝑙1𝑙3
   ,  sin 𝜃3 = ±√1 − cos 𝜃3

2      , 𝜽𝟑 = arctan (
sin 𝜃3

cos 𝜃3
)              (4) 

cos 𝜃1 =
𝑝𝑥𝑙3 cos 𝜃3+𝑝𝑥𝑙3+𝑝𝑦𝑙3 sin 𝜃3

𝑝𝑥
2+𝑝𝑦

2  ,   sin 𝜃1 = ±√1 − cos 𝜃1
2    , 𝜽𝟏 = arctan (

sin 𝜃1

cos 𝜃1
)         (5) 

 

III. DYNAMIC ANALYSIS 
 

The motion equations of the system were obtained to determine the dynamic behavior of a four-legged 

robot modeled as planarly. Robot’s physical model was shown in Figure 3. When creating the physical 

model, it is assumed that all the joints of the robot have circular motion. The robot has four legs each 

with two degrees of freedom (2DOF). In addition, the robot body has a total of 3 degrees of freedom: a 

circular motion relative to the ground, a translational movement on the vertical axis and a translational 

movement on the horizontal axis.  Finally, the gun system placed on the robot also has a single 

rotating joint. Thus, the system has 12 DOF totally. The parameter, expressed as "a" on the physical 

model, refers to the distance of the barrel system placed on the robot to body’s center. Also, "b" is the 

barrel length and α represents the amount of angular rotation of the robot body relative to the ground. 

Using the physical model given in Fig. 1, the dynamic expressions were obtained according to the 

Lagrange-Euler method. 

Figure 3. Quadruped robot’s physical model 

 

Schilling [42] argues that the use of the Lagrange-Euler method would be more efficient in achieving 

the result when creating a dynamic model of any robot mechanism. It is obtained by taking the 

difference of kinetic(T) and potential(V) energy in (6). 
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𝑑

𝑑𝑡

𝜕

𝜕𝑞𝑖̇
 𝐿(𝑞, 𝑞𝑖̇) −

𝜕

𝜕𝑞𝑖
 𝐿(𝑞, 𝑞𝑖̇) = 𝜏𝑖               1 ≤ 𝑖

≤ 𝑛 

(6) 

 

Here, n represents the DOF number, 𝑞𝑖 is the position of the moving components(legs or gun) in the 

system, i is the component index. 

 

𝐿 = 𝑇 − 𝑉                                                       (7) 

𝑇 =
1

2
𝑀(𝑥̇2 + 𝑦̇2) +

1

2
𝐼𝜃̇2 +

1

2
𝑚1(𝑥̇1

2 + 𝑦̇1
2)   +

1

2
𝑚2(𝑥̇2

2 + 𝑦̇2
2) +

1

2
𝑚3(𝑥̇3

2 + 𝑦̇3
2) +

1

2
𝑚4(𝑥̇4

2 + 𝑦̇4
2)    

    +
1

2
𝑚5(𝑥̇5

2 + 𝑦̇5
2) +

1

2
𝑚6(𝑥̇6

2 + 𝑦̇6
2) +

1

2
𝑚7(𝑥̇7

2 + 𝑦̇7
2) +

1

2
𝑚8(𝑥̇8

2 + 𝑦̇8
2) +

1

2
𝑚𝑛(𝑥̇𝑛

2 + 𝑦̇𝑛
2)            (8) 

𝑉 = 𝑀𝑔𝑦 + 𝑚1𝑔𝑦1 + 𝑚2𝑔𝑦2 + 𝑚3𝑔𝑦3 + 𝑚4𝑔𝑦4 + 𝑚5𝑔𝑦5 + 𝑚6𝑔𝑦6 + 𝑚7𝑔𝑦7 + 𝑚8𝑔𝑦8 + 𝑚𝑛𝑔𝑦𝑛    (9) 

 

System’s Lagrange expression was found with (7), where the total kinetic energy of the system was 

found with (8) and the total potential energy of the system was found with (9). The explanations of the 

physical parameters in the equations were given in Nomenclature. 

 

In order to obtain the kinetic and potential energy expressions, the position equations of the robot body 

and legs must be determined as in Appendix-1. Velocity equations were calculated as a result of time-

based derivatives of position expressions of all joints. The Lagrange equation was derived from 

velocity expressions as in Appendix-2. When the Lagrange equation was adapted according to (6), the 

dynamic motion equations will be found to calculate the appropriate torque values required by all 

joints on the system. The mathematical expressions of the dynamic motion equations were also 

included in Appendix-3. The Jacobian matrix form generated in (10) should be used to transmit the 

reaction force of the ground to the robot body during the movement of the robot and to determine the 

effects of this force. 

 

[ 𝐽] = [

𝜕𝑥𝑖

𝜕𝑥

𝜕𝑥𝑖

𝜕𝑦
   

𝜕𝑦𝑖

𝜕𝑥

𝜕𝑦𝑖

𝜕𝑦
   

𝜕𝑥𝑖

𝜕𝜃
 
𝜕𝑥𝑖

𝜕𝜃1

𝜕𝑥𝑖

𝜕𝜃2
    

𝜕𝑦𝑖

𝜕𝜃

𝜕𝑦𝑖

𝜕𝜃1

𝜕𝑦𝑖

𝜕𝜃2
    

𝜕𝑥𝑖

𝜕𝜃3

𝜕𝑥𝑖

𝜕𝜃4

𝜕𝑥𝑖

𝜕𝜃5
    

𝜕𝑦𝑖

𝜕𝜃3

𝜕𝑦𝑖

𝜕𝜃4

𝜕𝑦𝑖

𝜕𝜃5
    

𝜕𝑥𝑖

𝜕𝜃6

𝜕𝑥𝑖

𝜕𝜃7

𝜕𝑥𝑖

𝜕𝜃8

𝜕𝑦𝑖

𝜕𝜃6

𝜕𝑦𝑖

𝜕𝜃7

𝜕𝑦𝑖

𝜕𝜃8

]                      (10) 

[ 𝐽] = [

𝜕𝑥𝑛

𝜕𝑥

𝜕𝑥𝑛

𝜕𝑦
   

𝜕𝑦𝑛

𝜕𝑥

𝜕𝑦𝑛

𝜕𝑦
   

𝜕𝑥𝑛

𝜕𝜃
 
𝜕𝑥𝑛

𝜕𝜃1

𝜕𝑥𝑛

𝜕𝜃2
    

𝜕𝑦𝑛

𝜕𝜃

𝜕𝑦𝑛

𝜕𝜃1

𝜕𝑦𝑛

𝜕𝜃2
    

𝜕𝑥𝑛

𝜕𝜃3

𝜕𝑥𝑛

𝜕𝜃4

𝜕𝑥𝑛

𝜕𝜃5
    

𝜕𝑦𝑛

𝜕𝜃3

𝜕𝑦𝑛

𝜕𝜃4

𝜕𝑦𝑛

𝜕𝜃5
    

𝜕𝑥𝑛

𝜕𝜃6

𝜕𝑥𝑛

𝜕𝜃7

𝜕𝑥𝑛

𝜕𝜃8

𝜕𝑦𝑛

𝜕𝜃6

𝜕𝑦𝑛

𝜕𝜃7

𝜕𝑦𝑛

𝜕𝜃8

    
𝜕𝑥𝑛

𝜕𝛼

    
𝜕𝑦𝑛

𝜕𝛼

]          (11) 

 

When the appropriate parameters were adapted to this Jacobian matrix form, the expressions showing 

the effect of the movements on the horizontal and vertical axes to the body and legs were shown in 

Appendix-4. The Jacobian matrix form, which calculates the effect of movements of the gun barrel 

with a single degree of freedom on the body was given in (11), and the gun barrel Jacobian was also 

given in Appendix 5. The numerical values of the four-legged robot's physical parameters with the gun 

barrel system were given in Table 2. 

 
Table 2. Physical Parameters of the Robot 

Parameter   Value  Parameter Value 

𝑀 

𝑙𝑔 

𝑙1, 𝑙2, 𝑙5, 𝑙6 

𝑙3, 𝑙4, 𝑙7, 𝑙8 

𝑚𝑛 

12 kg 

0.8 m 

0.24 m 

0.2 m 

0.6 kg 

 𝑚1, 𝑚2, 𝑚5, 𝑚6 

𝑚3, 𝑚4, 𝑚7, 𝑚8 

a 

b 

 

1.5 kg 

0.5 kg 

0.1 m 

0.3 m 
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IV. WALKING PATTERN AND SIMULATION WITH PID 

CONTROL OF FOUR-LEGGED ROBOT 

 
The traditional PID controller for automated systems is widely used in industry. This is because the 

PID controllers are easy to understand and implement [43]. In PID method, the control signal is 

obtained as in (12) according to the proportional (P), integral (I) and derivative (D) coefficients. 

 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
+ 𝐾𝑖 ∫ 𝑒(𝑡)

𝑡

0
𝑑𝑡                                      (12) 

 

𝐾𝑝 in equation (12) refers to the proportional coefficient, 𝐾𝑑  refers to the derivative coefficient and 𝐾𝑖 

is the integral coefficient. The integral term gives a control output that is proportional to the time 

integral of the error. This ensures that the permanent status error is zero [44]. The controller’s P, I and 

D coefficients were choosed as 𝐾𝑝=500, 𝐾𝑑=50, 𝐾𝑖 =0.1 by trial-and-error technique. 

 

Trajectory planning of the robot is done by determining the angular reference positions that the robot's 

legs need to track. PID controller was applied to the system to bring these joints into reference angles. 

Four-legged robots have four different types of gaits, such as "walking, pacing, trotting, galloping". 

The most commonly used mode of movement is the "trotting" gait. Because with this gait, the 

movement of the robot can be achieved at any desired velocity in a limited range [45]. The trot gait 

pattern shown in Fig. 4. was used for simulations [46]. Due to difficulty in walking control, many 

four-legged robot studies were performed using a "trot" gait, in which a front leg and a rear leg move 

in pairs [47]. The motion of this gait pattern has a disruptive effect on the barrel stabilization. 

Figure 4. Trot gait pattern of quadruped robots 

 

Figure 5 shows that the robot's foot follows a sinusoidal path in the horizontal and vertical axis while 

one leg steps during the trot walk.  The leg has two phases, in the air(flight) and the ground(stance). 

The robot is in the stance phase when it is in touch with the ground. When contact with the ground is 

lost, the flight phase begins.  

 
Figure 5. Robot leg’s one step trajectory 

 

The sinus function that calculates the trajectory that the robot leg should follow in flight phase was 

given in (13). hstep is leg’s height from the ground. The ω is the step movement's frequency. Ls 

   RB 

   LB 

LF: Left Forward Leg, RF: Right Forward Leg, LB: Left Back Leg, RB: Right Back Leg 
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indicates the amount of translation of the leg at x-direction in one step. If the walking time for a period 

is shown in TG, the Vr translation velocity can be calculated as shown in (14). 

ℎ𝑠 = ℎ𝑠𝑡𝑒𝑝𝑆𝑖𝑛(2𝜋𝜔𝑡)          (13) 

𝑉𝑟 =
𝐿𝑠

𝑇𝐺
                                          (14)  

 

 
 

Figure 6. Four legged robot’s trot gait simulation 

 

Quadruped robot’s trot gait was simulated. As shown in the simulation image in Fig. 6., the robot 

appears to have advanced about 4 meters. The walking motion is a 7-second simulation and results 

were given graphically in Fig. 7. According to the graphs, in the first moments of the walking, body 

center’s up-and-down oscillation amplitude on the vertical axis is observed to be around 0.05 m. 

Similarly, the body’s angular swing was around 2°-3°. These amplitudes have decreased considerably 

as of the third second of the simulation. In addition, the robot continues to move horizontally with 1 m 

/ s velocity. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Quadruped robot’s position and velocity graphs 

 

V. APPLICATION OF THE GUN BARREL STABILIZATION 

FOR A QUADRUPED ROBOT DURING WALKING WITH 

FUZZY LOGIC CONTROL METHOD 
 

The main point on which fuzzy logic controllers are based is the incorporation of an expert system 

operator's knowledge, experience, intuition, and control strategy as a knowledge base in the 

controller's design. Verbal rules based on knowledge and experience are used to carry out control 
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procedures. For example, if an expert identifies the control behaviors necessary for the system in 

verbal terms such as "small", "fast", and "slow", the rules to be created with “IF-THEN" commands 

will be obtained by using verbal terms [48]. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. The basic structure of a fuzzy logic control system 

 

Basic structure of the Fuzzy Logic control system is given in Fig. 8. [49]. Fuzzy Control System 

consists of four basic units. The concept of fuzzy logic functions like the human sense and inference 

mechanism. Fuzzy logic, unlike other classical control methods, performs the inspection by taking the 

intermediate values between two values into account. The output of the fuzzy controller consists of 

blurring input and output values using the associated membership functions. The input value has a 

different meaning through the associated membership function. 

 

Fuzzy logic control method was used for gun barrel stabilization. The control signal was calculated at 

the output by considering the error and the derivative-error at the fuzzy logic control input. Triangular 

membership functions were used in the fuzzy logic control structure. The boundary values of the 

membership functions were determined by trial and error techniques. The rule table for input and 

output was shown in Table 3. 

 
Table 3. Rule table for membership functions 

  Derivative of the Error (de/dt) 

E
rr

o
r 

(e
) 

 dNe dZe dPe 

Ne Nu Zu Nu 

Ze Nu Zu Pu 

Pe Pu Zu Pu 

 
The membership functions specified for the error input are given in Fig. 9. Definitions of the 
expressions in Table 3 are given below; 

Ne: Negative Error, dNe: Derivative Negative Error 
Ze: Zero Error, dZe: Derivative Zero Error 
Pe: Positive Error, dPe: Derivative Positive Error 
Nu: Negative Control Output 
Zu: Zero Control Output 
Pu: Positive Control Output 
 
 

Data Base Rule Base 

Defuzzification 

Interface 

Decision-

making Unit 
Fuzzification 

Interface 

e(t) 

de(t) 

Input 

Knowledge Base 
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Figure 9. Membership functions for error input (e) 

 

The determined membership functions of the input which is the derivative of the error are given in 
Fig. 10. The membership functions of the control output are given in Fig. 11. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Membership functions for derivative error input (de/dt) 

 

 

 

 

 

 

 

 

 
Figure 11. Membership functions for control output (u) 

 
The limit values of the membership functions in the fuzzy logic control structure were determined as 

the numerical values shown in Table 4. by trial and error technique. 
 

Table 4. Limit values for membership functions 

 

p1 p2 p3 p4 p5 p6 

10 1 100 10 50 10 

 
Shooting simulations were performed at three different reference target angles 3

o
, 6

o
, and 9

o
 during the 

walking movement.  These target angles were randomly determined considering the difficulty of 

tracking targets at very narrow angles. It has been shown that by choosing small values as in the 

µ (Membership Degree) 

Input 
(Derivative Error) 

µ (Membership Degree) 

µ (Membership Degree) 

Output 
(Control) 

Input 
(Error) 
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reference angles, the robot tracks the target more precisely under the disruptive effects and makes 

successful hits on the target. Controls were made for three different target angles during walking. The 

initial barrel angle is accepted as zero in simulations. As mentioned earlier, the barrel reference angle 

is equal to the sum of the relative angle of the barrel and the relative angle of the (target=α+). 

 
Target-1; 

The system responses of the simulation trying to keep the target angle at 3
o
 relative to the ground are 

presented in Figure 12. Gun barrel’s angular position relative to the body α is oscillating in relation to 

body motions. The controller followed the target by instantly calculating the target reference angle 

with very small errors and oscillations. This error was found to be 0.57° maximum. 

 

Figure 12. System responses for target= 3
o
 in simulation 

Target-2; 

The system responses of the simulation performed while trying to keep the target angle at 6
o
 relative to 

the ground, were presented graphically in Fig. 13. The angular position error value is about 0.62°. 

Figure 13. System responses for target= 6
o
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Target-3; 

The system responses of the simulation performed while trying to keep the target angle at 9° relative to 

the ground, are showed in Fig. 14. The angular error size around the reference position is no more than 

0.6°. Shooting was made at t = 1s of the simulations. Therefore, the graphics show the part where the 

gun tracks the target until the shooting was made. It is evident from the presented graphs that the 

Fuzzy Logic controller used in the simulations can hold the barrel around the reference position very 

successfully.  

Figure 14. System responses for target= 9
o 

 

VI. SHOOTING SIMULATIONS 
 

 

The success of shooting simulations to fixed targets with random coordinates was evaluated. Hits were 

made with disruptive effects while the robot was walking. In simulations, the dynamic equations of the 

bullet used to hit the target were also taken into account. Figure 15 is the block diagram expressing the 

control loop of the system. 

Figure 15. Control loop diagram of the system 
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In the dynamics of the projectile, environmental conditions, penetration pressure at the moment of 

impact and projectile’s physical parameters were used. Related to this, the graph in Figure 16 taken 

from study [50] shows the change in bore pressure and velocity of the projectile depending on the 

length of the barrel. Bullet ballistic curves in the barrel were used. 
 

 

 

Figure 16. Features in gun barrel 
 

Looking at the Fig. 16, the pressure steadily rises to the maximum. Depending on the barrel length, the 
pressure value starts to decrease again till the bullet leaves the barrel. The time it takes for bullets to 
exit the barrel is as short as 5-10 milliseconds, depending on the rate of combustion. 
 

Table 5. Projectile features 

 

Technical properties of 9 mm parabellum bullet were used. These technical specifications were given 

in Table 5. [51]. Projectile core other than shell weighs mprojectile =8 grams. The physical model was 

shown in Fig. 17. indicates the dynamic behavior of the projectile during the planar movement. 

 Figure 17. The physical model of the projectile 

Technical Characteristics 

Spesification 

 

Cartridge Length 

Cartridge Weigth 

Velocity 

Velocity Standart Deviation 

Average shell mouth 

pressure 

Distribution 

Stanag 4090 

 

29,69 – 0,3 mm 

~12,15 g 

370 ± 10 m/s (in 16 m) 

max. 9 m/s 

max. 2850 bar 

 

max. 7,6 cm (in 46 m) 

Projectile Contact Force 

Shell Model Number 

Projectile Weight 

Shell Material 

Capsule 

min. 20,4 kgf 

9 mmx19 parabellum shell 

8 ±0,075 g 

Brass (CuZn30) 

9 mm capsule, boxer 
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The projectile core, which is accepted as the point mass, can move linearly along the x-axis and y-axis. 
The projectile fired from the gun barrel with Fthrust force leaves the barrel with Vb velocity. From this 
moment on, only the gravity and the FAero frictional force caused by the atmosphere influence the 
projectile core during its aerial movement. The thrust pressure Pb was calculated as in (15). 
 

The parameters in the model P=1500, =500, b =50 are defined numerically. It was presumed that 

the time t for projectiles leaving the barrel is within the range of (0-10) milliseconds. Since the 

shooting was made at t = 1 s, the thrust force and velocity remained constant from that moment on. 

Fthrust is calculated as in (16). Ab refers to the surface area under pressure. 

 

𝑃𝑏 = 𝑃𝑒−𝜆𝑡𝑆𝑖𝑛(2𝜋𝜔𝑏𝑡)             (15) 

𝐹𝑡ℎ𝑟𝑢𝑠𝑡 = 𝐴𝑏𝑃𝑏      (16) 

 
Planar dynamics analysis of the bullet was carried out according to Newton's laws of motion. xb is 

the equations on the horizontal axis and yb on the vertical axis. Also, g is the acceleration of gravity. 
The friction force FAero, which occurs while moving with Vb velocity in the atmosphere, is calculated 
by (19). 

 

𝑥̈𝑏 =
𝐹𝑡ℎ𝑟𝑢𝑠𝑡

𝑥 −𝐹𝐴𝑒𝑟𝑜
𝑥

𝑚𝑏𝑢𝑙𝑙𝑒𝑡
      (17) 

𝑦̈𝑏 =
𝐹𝑡ℎ𝑟𝑢𝑠𝑡

𝑦
−𝐹𝐴𝑒𝑟𝑜

𝑦
−𝑔

𝑚𝑏𝑢𝑙𝑙𝑒𝑡
       (18) 

𝐹𝐴𝑒𝑟𝑜 =
1

2
𝜌𝑆𝐶𝑑𝑉𝑏

2                                                       (19) 

Figure 18. Ballistics of projectile 

 

  is the density of air, S is the surface area perpendicular to the bullet's direction of advance. Friction 

coefficient between the projectile and the air was Cd=0.12. The temporal change of Fthrust and Vb during 

shooting simulation is given in Figure 18. The coordinates of the fixed targets were determined 

randomly, ranging from 5-12 meters horizontally and 0.5-2 meters vertically. During this one-second 

period, the barrel stabilization, which is necessary to point the gun at the target, is provided by the 

fuzzy logic control method. target was calculated instantaneously, considering the robot’s variable 

position during walking. The reference angle can be calculated by the expression (20), depending on 

the ex-gun position error in horizontal axis and the ey in vertical axis. 

 

𝛽𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑎𝑡𝑎𝑛2 (
𝑒𝑦

𝑒𝑥
) = 𝑎𝑡𝑎𝑛2 (

𝑦𝑡𝑎𝑟𝑔𝑒𝑡−𝑦𝑔𝑢𝑛

𝑥𝑡𝑎𝑟𝑔𝑒𝑡−𝑥𝑔𝑢𝑛
)                   (20) 
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System was simulated with the Runge-Kutta method. This method is frequently used in numerical 
solutions of differential equations [52]. Fig. 19. shows the simulation image of a precise hit made by 
the four-legged robot while walking.  

 
Table 6. Shooting control results of projectile 

Target 

Number 
xtarget (m) ytarget (m) Error (m) 

1 14.18 1.27 0.16 

2 12.64 0.79 0.07 

3 8.93 1.88 0.13 

4 12.56 1.94 0.06 

5 9.09 1.13 0.05 

6 6.63 1.28 0.05 

7 7.51 0.66 0.14 

8 13.12 1.90 0.10 

9 11.22 0.65 0.07 

10 9.16 1.50 0.16 

 

According to Table 6 target coordinate and error values for 10 different fixed targets were given in 

Table 6. The highest product error value is found as 0.16 m in the 1st and 10th throws. The smallest 

product error value was 0.05 m. Mean value is 0.099 m and the standard deviation is calculated as 

0.044 m. 
The main purpose of this study is to keep the barrel at the target in the face of disruptive effects. Fuzzy 

Logic control method has been applied and the success of this controller on target hit has been studied. 

Looking at Table 6, it is evident that fixed targets are chosen randomly between 5 and 15 meters in the 

horizontal axis and between 0.5 and 1.5 meters in the vertical axis. In order to see the stabilization 

success, it was required to shoot at short distance targets in the horizontal direction. Because, if the 

distance to the horizontal target is increased, the bullet reaches the target with a greater deviation due 

to gravity. 

Figure 19. Shooting control simulation of projectile 

 

VII. RESULTS AND RECOMMENDATIONS 
 

In this work, a DOF-equipped gun turret was mounted on a four-legged robot. The main objective is to 

guide the gun toward the target, track the target, and assure accurate striking while stabilizing the gun 

barrel while the robot is moving. A planar model of the system was used. Considering that walking 

and shooting simulations require a planar model. Additionally, it serves as the foundation for 

experiments. Trot walking patterns were used to simulate movement. The robot body's oscillation 

during this walking was perceived as having a disruptive effect on the gun turret. The barrel was 

pointed at the target using a fuzzy logic control mechanism under this disruptive impact. Trial and 

error technique was used to determine the controller's parameters. According to the results, the 

maximum product error value in shooting towards fixed targets from a four-legged robot was 0.16 m. 
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The results can be compared, and strategies to improve the success rate can be devised, by using a 

variety of control methods with diverse characteristics with the research to be done in this subject. 

 

 

 
Nomenclature 

 

𝑀 Robot Body(RB)’s mass 𝛽𝑡𝑎𝑟𝑔𝑒𝑡 Barrel reference angle 

𝑥 RB’s position in horizontal axis 𝑚𝑛 Gun barrel(GB) mass 

𝑦 RB’s position in vertical axis 𝑤 Step motion’s frequency 

𝑚1−8 Leg limbs(LL)’ masses  𝐿𝑠 Step length 

𝜃 RB’s angular position to floor by 
vertical axis 

Fthrust Projectile force 

𝜃1−8 LL’s angular positions  Faero Frictional force (atmosphere and gravity) 

𝑙𝑔 RB’s length  Vb Projectile velocity 

𝑙1−8 LL’s lengths Pb Repulsion pressure 

a Gun turret length Ab Pressure surface area 
b Gun barrel length Cd Friction coefficient between projectile and 

air 

𝑥1−8 LL’s positions in horizontal axis 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 Target position on the horizontal axis 

𝑦1−8 LL’s positions in vertical axis 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 Target position on the vertical axis 

I Body’s moment of inertia  ex Horizontal position error  

𝛼 Gun barrel’s relative angular position 
to body 

ey Vertical position error  

𝑥𝑛 Gun barrel(GB) position on the 
horizontal axis 

𝑦𝑛 Gun barrel(GB) position on the vertical 
axis 
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Appendices 

1.  

𝑥1 = 𝑥 −
𝑙𝑔

2
cos 𝜃 + 𝑙1 cos 𝜃1                              (a1.1) 

𝑦1 = 𝑦 −
𝑙𝑔

2
sin 𝜃 + 𝑙1 sin 𝜃1                   (a1.2) 

𝑥2 = 𝑥 +
𝑙𝑔

2
cos 𝜃 + 𝑙2 cos 𝜃2               (a1.3) 

𝑦2 = 𝑦 +
𝑙𝑔

2
sin 𝜃 + 𝑙2 sin 𝜃2               (a1.4) 

𝑥3 = 𝑥 −
𝑙𝑔

2
cos 𝜃 + 𝑙1 cos 𝜃1 + 𝑙3 cos(𝜃1 + 𝜃3)             (a1.5) 

𝑦3 = 𝑦 −
𝑙𝑔

2
sin 𝜃 + 𝑙1 sin 𝜃1 + 𝑙3 sin(𝜃1 + 𝜃3)             (a1.6) 

𝑥4 = 𝑥 +
𝑙𝑔

2
cos 𝜃 + 𝑙2 cos 𝜃2 + 𝑙4 cos(𝜃2 + 𝜃4)             (a1.7) 

𝑦4 = 𝑦 +
𝑙𝑔

2
sin 𝜃 + 𝑙2 sin 𝜃2 + 𝑙4 sin(𝜃2 + 𝜃4)             (a1.8) 

𝑥5 = 𝑥 −
𝑙𝑔

2
cos 𝜃 + 𝑙5 cos 𝜃5               (a1.9) 

𝑦5 = 𝑦 −
𝑙𝑔

2
sin 𝜃 + 𝑙5 sin 𝜃5               (a1.10) 

𝑥6 = 𝑥 +
𝑙𝑔

2
cos 𝜃 + 𝑙6 cos 𝜃6               (a1.11) 

𝑦6 = 𝑦 +
𝑙𝑔

2
sin 𝜃 + 𝑙6 sin 𝜃6               (a1.12) 

𝑥7 = 𝑥 −
𝑙𝑔

2
cos 𝜃 + 𝑙5 cos 𝜃5 + 𝑙7 cos(𝜃5 + 𝜃7)             (a1.13) 

𝑦7 = 𝑦 −
𝑙𝑔

2
sin 𝜃 + 𝑙5 sin 𝜃5 + 𝑙7 sin(𝜃5 + 𝜃7)             (a1.14) 

𝑥8 = 𝑥 +
𝑙𝑔

2
cos 𝜃 + 𝑙6 cos 𝜃6 + 𝑙8 cos(𝜃6 + 𝜃8)             (a1.15) 

𝑦8 = 𝑦 +
𝑙𝑔

2
sin 𝜃 + 𝑙6 sin 𝜃6 + 𝑙8 sin(𝜃6 + 𝜃8)             (a1.16) 

𝑥𝑛 = 𝑥 − a sin 𝜃 + 𝑏 cos(𝛼 + 𝜃)                                     (a1.17) 
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𝑦𝑛 = 𝑦 + a cos 𝜃 + 𝑏 sin(𝛼 + 𝜃)                             (a1.18) 

 

2. 

𝑳 =
𝟏

𝟐
𝑴𝒙̇𝟐 +

𝟏

𝟐
𝑴𝒚̇𝟐 +

𝟏

𝟐
𝑰𝜽̇𝟐 +

𝒎𝟏𝒙̇𝟐

𝟐
+

𝒎𝟏𝒚̇𝟐

𝟐
+

𝒎𝟏𝒍𝒈
𝟐𝜽̇𝟐

𝟖
+

𝒎𝟏𝑳𝟏
𝟐𝜽̇𝟏

𝟐

𝟐
+

𝒎𝟏𝒍𝒈𝒙̇𝜽̇ 𝐬𝐢𝐧 𝜽

𝟐
 −𝒎𝟏𝒙̇𝒍𝟏𝜽̇𝟏 𝐬𝐢𝐧 𝜽𝟏 −

𝒎𝟏𝒍𝒈𝒚̇𝜽̇ 𝐜𝐨𝐬 𝜽

𝟐
               

    +𝒎𝟏𝒚̇𝒍𝟏𝜽̇𝟏 𝐜𝐨𝐬 𝜽𝟏 −
𝒎𝟏𝒍𝒈𝒍𝟏𝜽̇𝜽̇𝟏 𝐜𝐨𝐬(𝜽−𝜽𝟏)

𝟐
+

𝒎𝟐𝒙̇𝟐

𝟐
+

𝒎𝟐𝒚̇𝟐

𝟐
 +

𝒎𝟐𝒍𝒈
𝟐𝜽̇𝟐

𝟖
 +

𝒎𝟐𝒍𝟐
𝟐𝜽̇𝟐

𝟐

𝟐
−

𝒎𝟐𝒍𝒈𝒙̇𝜽̇ 𝐬𝐢𝐧 𝜽

𝟐
− 𝒎𝟐𝒙̇𝒍𝟐𝜽̇𝟐 𝐬𝐢𝐧 𝜽𝟐 

    +𝑚2𝑦̇𝑙2𝜃̇2 cos 𝜃2 +
𝑚2𝑙𝑔𝑦̇𝜃̇ cos 𝜃

2
 +

𝑚2𝑙𝑔𝐿2𝜃̇𝜃̇2 cos(𝜃−𝜃2)

2
 +

𝑚3𝑥̇2

2
+

𝑚3𝑦̇2

2
+

𝑚3𝑙𝑔
2

𝜃̇2

8
+

𝑚3𝑙1
2𝜃̇1

2

2
+

𝑚3𝑙3
2(𝜃̇1+𝜃̇3)2

2
 

    +
𝑚3𝑙𝑔𝑥̇𝜃̇ sin 𝜃

2
 −𝑚3𝑥̇𝑙1𝜃̇1 sin 𝜃1 − 𝑚3𝑥̇𝑙3(𝜃̇1 + 𝜃̇3) sin(𝜃1 + 𝜃3)  + 𝑚3𝑦̇𝑙1𝜃̇1 cos 𝜃1 −

𝑚3𝑙𝑔𝑦̇𝜃̇ cos 𝜃

2
 

    +𝑚3𝑦̇𝑙3(𝜃̇1 + 𝜃̇3) cos(𝜃1 + 𝜃3)  −
𝑚3𝑙𝑔𝑙1𝜃̇𝜃̇1 cos(𝜃−𝜃1)

2
−

𝑚3𝑙𝑔𝑙3𝜃̇(𝜃̇1+𝜃̇3) cos(𝜃−𝜃1−𝜃3)

2
 +𝑚3𝑙1𝑙3𝜃̇1(𝜃̇1 + 𝜃̇3) cos 𝜃3 

    +
𝑚4𝑥̇2

2
+

𝑚4𝑦̇2

2
 +

𝑚4𝑙𝑔
2

𝜃̇2

8
+

𝑚4𝑙2
2𝜃̇2

2

2
+

𝑚4𝑙4
2(𝜃̇2+𝜃̇4)2

2
−

𝑚4𝑙𝑔𝑥̇𝜃̇ sin 𝜃

2
− 𝑚4𝑥̇𝑙4(𝜃̇2 + 𝜃̇4) sin(𝜃

2
+ 𝜃4) −𝑚4𝑥̇𝑙2𝜃̇2 sin 𝜃2    

    +
𝑚4𝑙𝑔𝑦̇𝜃̇ cos 𝜃

2
 +

𝑚4𝑙𝑔𝑙2𝜃̇𝜃̇2 cos(𝜃−𝜃2)

2
 +

𝑚4𝑙𝑔𝑙4𝜃̇(𝜃̇2+𝜃̇4) cos(𝜃−𝜃2−𝜃4)

2
 +𝑚4𝑙2𝑙4𝜃̇2(𝜃̇2 + 𝜃̇4) cos 𝜃4 +

𝑚5𝑥̇2

2
+

𝑚5𝑦̇2

2
 

    +
𝑚5𝑙𝑔

2
𝜃̇2

8
+

𝑚5𝑙5
2𝜃̇5

2

2
 +

𝑚5𝑙𝑔𝑥̇𝜃̇ sin 𝜃

2
  −

𝑚5𝑙𝑔𝑦̇𝜃̇ cos 𝜃

2
 −𝑚5𝑥̇𝑙5𝜃̇5 sin 𝜃5 + 𝑚5𝑦̇𝑙5𝜃̇5 cos 𝜃5 −

𝑚5𝑙𝑔𝑙5𝜃̇𝜃̇5 cos(𝜃−𝜃5)

2
 +

𝑚6𝑥̇2

2
 

    +
𝑚6𝑦̇2

2
+

𝑚6𝑙𝑔
2

𝜃̇
2

8
+

𝑚6𝑙6
2

𝜃̇6
2

2
−

𝑚6𝑙𝑔𝑥̇𝜃̇ sin 𝜃

2
  −𝑚6𝑥̇𝑙6𝜃̇6 sin 𝜃6 +

𝑚6𝑙𝑔𝑦̇𝜃̇ cos 𝜃

2
  +𝑚6𝑦̇𝑙6𝜃̇6 cos 𝜃6 +

𝑚7𝑥̇2

2
+

𝑚7𝑦̇2

2
 

    +
𝑚7𝑙𝑔

2
𝜃̇2

8
+

𝑚7𝑙5
2𝜃̇5

2

2
+

𝑚7𝑙7
2(𝜃̇5+𝜃̇7)2

2
  −𝑚7𝑥̇𝑙5𝜃̇5 sin 𝜃5 − 𝑚7𝑥̇𝑙7(𝜃̇5 + 𝜃̇7) sin(𝜃5 + 𝜃7) +

𝑚7𝑙𝑔𝑥̇𝜃̇ sin 𝜃

2
 −

𝑚7𝑙𝑔𝑦̇𝜃̇ cos 𝜃

2
 

    +𝑚7𝑦̇𝑙5𝜃̇5 cos 𝜃5 + 𝑚7𝑦̇𝑙7(𝜃̇5 + 𝜃̇7) cos(𝜃5 + 𝜃7) −
𝑚7𝑙𝑔𝑙5𝜃̇ 𝜃̇5 cos(𝜃−𝜃5)

2
  −

𝑚7𝑙𝑔𝑙7𝜃̇(𝜃̇5+𝜃̇7) cos(𝜃−𝜃5−𝜃7)

2
 

   +𝑚7𝑙5𝑙7𝜃̇5(𝜃̇5 + 𝜃̇7) cos 𝜃7 +
𝑚8𝑥̇2

2
+

𝑚8𝑦̇2

2
+

𝑚8𝑙𝑔
2

𝜃̇2

8
 +

𝑚8𝑙6
2𝜃̇6

2

2
 +

𝑚8𝑙8
2(𝜃̇6+𝜃̇8)2

2
−

𝑚8𝑙𝑔𝑥̇𝜃̇ sin 𝜃

2
 −𝑚8𝑥̇𝑙6𝜃̇6 sin 𝜃6 

   +
𝑚8𝑙𝑔𝑦̇𝜃̇ cos 𝜃

2
 +𝑚8𝑦̇𝑙6𝜃̇6 cos 𝜃6 +𝑚8𝑦̇𝑙8(𝜃̇6 + 𝜃̇8) cos(𝜃6 + 𝜃8)  + 𝑚8𝑙6𝑙8𝜃̇6(𝜃̇6 + 𝜃̇8) cos 𝜃8 +

𝑚8𝑙𝑔𝑙6𝜃̇𝜃̇6 cos(𝜃−𝜃6)

2
 

   +
𝑚8𝑙𝑔𝑙8𝜃̇(𝜃̇6+𝜃̇8) cos(𝜃−𝜃6−𝜃8)

2
+

𝑚𝑛𝑥̇2

2
+

𝑚𝑛𝑦̇2

2
+

𝑚𝑛a2𝜃̇2

2
+

𝑚𝑛b2(𝛼̇+𝜃̇)2

2
− 𝑚𝑛𝑥̇a𝜃̇ cos θ −𝑚𝑛𝑦̇a𝜃̇ sin θ 

   −𝑚𝑛𝑥̇b(𝛼̇ + 𝜃̇) sin(𝛼 + 𝜃) + 𝑚𝑛𝑦̇b(𝛼̇ + 𝜃̇) cos(𝛼 + 𝜃)  + 𝑚𝑛ab𝜃̇(𝛼̇ + 𝜃̇) sin 𝛼 − 𝑀𝑔𝑦 − 𝑚1𝑔𝑦 + 𝑚1𝑔
𝑙𝑔

2
sin 𝜃 

   −𝑚1𝑔𝑙1 sin 𝜃1 − 𝑚2𝑔𝑦 −𝑚2𝑔
𝑙𝑔

2
sin 𝜃 − 𝑚2𝑔𝑙2 sin 𝜃2 − 𝑚3𝑔𝑦 + 𝑚3𝑔

𝑙𝑔

2
sin 𝜃 − 𝑚3𝑔𝑙1 sin 𝜃1 − 𝑚3𝑔𝑙3 sin(𝜃1 + 𝜃3) 

   −𝑚4𝑔𝑦 + 𝑚4𝑔
𝑙𝑔

2
sin 𝜃 − 𝑚4𝑔𝑙2 sin 𝜃2 −𝑚4𝑔𝑙2 sin(𝜃2 + 𝜃4) − 𝑚5𝑔𝑦 + 𝑚5𝑔

𝑙𝑔

2
sin 𝜃 − 𝑚5𝑔𝑙5 sin 𝜃5 − 𝑚6𝑔𝑦 

   −𝑚6𝑔
𝑙𝑔

2
sin 𝜃 − 𝑚6𝑔𝑙6 sin 𝜃6 −𝑚7𝑔𝑦 + 𝑚7𝑔

𝑙𝑔

2
sin 𝜃 − 𝑚7𝑔𝑙5 sin 𝜃5 − 𝑚7𝑔𝑙7 sin(𝜃5 + 𝜃7) − 𝑚8𝑔𝑦 + 𝑚8𝑔

𝑙𝑔

2
sin 𝜃 

   −𝑚8𝑔𝑙8 sin 𝜃8 − 𝑚𝑛𝑔𝑦 − 𝑚𝑛𝑔a cos 𝜃 −𝑚𝑛𝑔a sin(𝛼 + 𝜃) 

   3. 

  ∑ 𝐹𝑥 = 𝑀𝑥̈ + 𝑚1𝑥̈ +
𝑚1𝑙𝑔𝜃̈ sin 𝜃

2
+

𝑚1𝑙𝑔𝜃̇2 cos 𝜃

2
  −𝑚1𝑙1𝜃̈1 sin 𝜃1 − 𝑚1𝑙1𝜃̇1

2 cos 𝜃1 + 𝑚2𝑥̈ −
𝑚2𝑙𝑔𝜃̈ sin 𝜃

2
−

𝑚2𝑙𝑔𝜃̇
2

cos 𝜃

2
 

           −𝑚2𝑙2𝜃̈2 sin 𝜃2 − 𝑚2𝑙2𝜃̇2
2 cos 𝜃2 + 𝑚3𝑥̈ +

𝑚3𝑙𝑔𝜃̈ sin 𝜃

2
+

𝑚3𝑙𝑔𝜃̇2 cos 𝜃

2
− 𝑚3𝑙1𝜃̈1 sin 𝜃1 − 𝑚3𝑙1𝜃̇1

2
cos 𝜃1 

            −𝑚3𝑙3(𝜃̈1 + 𝜃̈3) sin(𝜃1 + 𝜃3) −𝑚3𝑙3(𝜃̇1 + 𝜃̇3)
2

cos(𝜃1 + 𝜃3) + 𝑚4𝑥̈ −
𝑚4𝑙𝑔𝜃̈ sin 𝜃

2
−

𝑚4𝑙𝑔𝜃̇2 cos 𝜃

2
    −𝑚4𝑙2𝜃̈2 sin 𝜃2 

            −𝑚4𝑙2𝜃̇2
2 cos 𝜃2 − 𝑚4𝑙4(𝜃̈2 + 𝜃̈4) sin(𝜃2 + 𝜃4) − 𝑚4𝑙4(𝜃̇2 + 𝜃̇4)

2
cos(𝜃2 + 𝜃4)+𝑚5𝑥̈ +

𝑚5𝑙𝑔𝜃̈ sin 𝜃

2
 

           +
𝑚5𝑙𝑔𝜃̇2 cos 𝜃

2
 −𝑚5𝑙5𝜃̈5 sin 𝜃5 − 𝑚5𝑙5𝜃̇5

2 cos 𝜃5 + 𝑚6𝑥̈ −
𝑚6𝑙𝑔𝜃̈ sin 𝜃

2
−

𝑚6𝑙𝑔𝜃̇2 cos 𝜃

2
 −𝑚6𝑙6𝜃̈6 sin 𝜃6 

            −𝑚6𝑙6𝜃̇6
2 cos 𝜃6 + 𝑚7𝑥̈ +

𝑚7𝑙𝑔𝜃̈ sin 𝜃

2
+

𝑚7𝑙𝑔𝜃̇2 cos 𝜃

2
 −𝑚7𝑙5𝜃̈5 sin 𝜃5 − 𝑚7𝑙5𝜃̇5

2 cos 𝜃5 

            −𝑚7𝑙7(𝜃̈5 + 𝜃̈7) sin(𝜃5 + 𝜃7) −𝑚7𝑙7(𝜃̇5 + 𝜃̇7)
2

cos(𝜃5 + 𝜃7) + 𝑚8𝑥̈ −𝑚8𝑙6𝜃̈6 sin 𝜃6 − 𝑚8𝑙6𝜃̇6
2 cos 𝜃6 

            −𝑚8𝑙8(𝜃̈6 + 𝜃̈8) sin(𝜃6 + 𝜃8) −
𝑚8𝑙𝑔𝜃̈ sin 𝜃

2
−

𝑚8𝑙𝑔𝜃̇2 cos 𝜃

2
− 𝑚8𝑙8(𝜃̇6 + 𝜃̇8)2 cos(𝜃6 + 𝜃8)  + 𝑚𝑛𝑥̈ 

            −𝑚𝑛a𝜃̈ cos 𝜃 + 𝑚𝑛a𝜃̇2 sin 𝜃 − 𝑚𝑛b(𝛼̈ + 𝜃̈) sin(𝛼 + 𝜃) − 𝑚𝑛b(𝛼̇ + 𝜃̇)2 cos(𝛼 + 𝜃)     

 

 ∑ 𝐹𝑦 = 𝑀𝑦̈ + 𝑚1𝑦̈ −
𝑚1𝑙𝑔𝜃̈ cos 𝜃

2
+

𝑚1𝑙𝑔𝜃̇2 sin 𝜃

2
+ 𝑚1𝑙1𝜃̈1 cos 𝜃1 − 𝑚1𝑙1𝜃̇1

2
sin 𝜃1 + 𝑚2𝑦̈ +

𝑚2𝑙𝑔𝜃̈ cos 𝜃

2
 −

𝑚2𝑙𝑔𝜃̇2 sin 𝜃

2
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           +𝑚2𝑙2𝜃̈2 cos 𝜃2 −𝑚2𝑙2𝜃̇2
2 sin 𝜃2 + 𝑚3𝑦̈ −

𝑚3𝑙𝑔𝜃̈ cos 𝜃

2
+

𝑚3𝑙𝑔𝜃̇2 sin 𝜃

2
 +𝑚3𝑙1𝜃̈1 cos 𝜃1 − 𝑚3𝑙1𝜃̇1

2 sin 𝜃1 

           +𝑚3𝑙3(𝜃̈1 + 𝜃̈3) cos(𝜃1 + 𝜃3) − 𝑚3𝑙3(𝜃̇1 + 𝜃̇3)
2

sin(𝜃1 + 𝜃3) +𝑚4𝑦̈ +
𝑚4𝑙𝑔𝜃̈ cos 𝜃

2
−

𝑚4𝑙𝑔𝜃̇2 sin 𝜃

2
 

           +𝑚4𝑙2𝜃̈2 cos 𝜃2 − 𝑚4𝑙2𝜃̇2
2 sin 𝜃2 + 𝑚4𝑙4(𝜃̈2 + 𝜃̈4) cos(𝜃2 + 𝜃4) −𝑚4𝑙4(𝜃̇2 + 𝜃̇4)

2
sin(𝜃2 + 𝜃4)+𝑚5𝑦̈ 

           −
𝑚5𝑙𝑔𝜃̈ cos 𝜃

2
+

𝑚5𝑙𝑔𝜃̇2 sin 𝜃

2
 +𝑚5𝑙5𝜃̈5 cos 𝜃5 − 𝑚5𝑙5𝜃̇5

2 sin 𝜃5 + 𝑚6𝑦̈ +
𝑚6𝑙𝑔𝜃̈ cos 𝜃

2
−

𝑚6𝑙𝑔𝜃̇2 sin 𝜃

2
 

           +𝑚6𝑙6𝜃̈6 cos 𝜃6 − 𝑚6𝑙6𝜃̇6
2 sin 𝜃6 +𝑚7𝑦̈ +𝑚7𝑙5𝜃̈5 cos 𝜃5 − 𝑚7𝑙5𝜃̇5

2 sin 𝜃5 + 𝑚7𝑙7(𝜃̈5 + 𝜃̈7) cos(𝜃5 + 𝜃7) 

           −
𝑚7𝑙𝑔𝜃̈ cos 𝜃

2
+

𝑚7𝑙𝑔𝜃̇2 sin 𝜃

2
 −𝑚7𝑙7(𝜃̇5 + 𝜃̇7)

2
sin(𝜃5 + 𝜃7) + 𝑚8𝑦̈ +

𝑚8𝑙𝑔𝜃̈ cos 𝜃

2
−

𝑚8𝑙𝑔𝜃̇2 sin 𝜃

2
 

           +𝑚8𝑙6𝜃̈6 cos 𝜃6 − 𝑚8𝑙6𝜃̇6
2 sin 𝜃6 + 𝑚8𝑙8(𝜃̈6 + 𝜃̈8) cos(𝜃6 + 𝜃8) −𝑚8𝑙8(𝜃̇6 + 𝜃̇8)

2
sin(𝜃6 + 𝜃8) + 𝑚𝑛𝑦̈  

           −𝑚𝑛a𝜃̈ sin 𝜃 − 𝑚𝑛a𝜃̇2 cos 𝜃 + 𝑚𝑛b(𝛼̈ + 𝜃̈) cos(𝛼 + 𝜃) − 𝑚𝑛b(𝛼̇ + 𝜃̇)2 sin(𝛼 + 𝜃) + 𝑀𝑔  +𝑚1𝑔 + 𝑚2𝑔 

          +𝑚3𝑔 + 𝑚4𝑔 + 𝑚5𝑔 + 𝑚6𝑔 + 𝑚7𝑔 + 𝑚8𝑔 + 𝑚𝑛𝑔 

   

     𝜏  = 𝐼𝜃̈ +
𝑚1𝑙𝑔

2𝜃̈

4
+

𝑚1𝑙𝑔𝑥̈ sin 𝜃

2
 −

𝑚1𝑙𝑔𝑦̈ cos 𝜃

2
 −

𝑚1𝑙𝑔𝑙1𝜃̇̈1 cos(𝜃−𝜃1)

2
 +

𝑚1𝑙𝑔𝑙1𝜃̇1(𝜃̇−𝜃̇1) sin(𝜃−𝜃1)

2
 +

𝑚2𝑙𝑔
2𝜃̈

4
−

𝑚2𝑙𝑔𝑥̈ sin 𝜃

2
 

          +
𝑚2𝑙𝑔𝑦̈ cos 𝜃

2
+

𝑚2𝑙𝑔𝑙2𝜃̇̈2 cos(𝜃−𝜃2)

2
  −

𝑚2𝑙𝑔𝑙2𝜃̇2(𝜃̇−𝜃̇2) sin(𝜃−𝜃2)

2
+

𝑚3𝑙𝑔
2𝜃̈

4
+

𝑚3𝑙𝑔𝑥̈ sin 𝜃

2
 +

𝑚3𝑙𝑔𝑙3𝜃̇1(𝜃̇−𝜃̇1) sin(𝜃−𝜃1)

2
 

           −
𝑚3𝑙𝑔𝑙3(𝜃̈1+𝜃̈3) cos(𝜃−𝜃1−𝜃3)

2
+

𝑚3𝑙𝑔𝑙3(𝜃̇1+𝜃̇3)(𝜃̇−𝜃̇1−𝜃̇3) sin(𝜃−𝜃1−𝜃3)

2
 +

𝑚4𝑙𝑔
2𝜃̈

4
−

𝑚4𝑙𝑔𝑥̈ sin 𝜃

2
+

𝑚4𝑙𝑔𝑦̈ cos 𝜃

2
 

          +
𝑚4𝑙𝑔𝑙2𝜃̇̈2 cos(𝜃−𝜃2)

2
 −

𝑚4𝑙𝑔𝑙2𝜃̇2(𝜃̇−𝜃̇2) sin(𝜃−𝜃2)

2
+

𝑚4𝑙𝑔𝑙4(𝜃̈2+𝜃̈4) cos(𝜃−𝜃2−𝜃4)

2
 +

𝑚5𝑙𝑔
2𝜃̈

4
+

𝑚5𝑙𝑔𝑥̈ sin 𝜃

2
 

          −
𝑚4𝑙𝑔𝑙4(𝜃̇2+𝜃̇4)(𝜃̇−𝜃̇2−𝜃̇4) sin(𝜃−𝜃2−𝜃4)

2
 −

𝑚5𝑙𝑔𝑦̈ cos 𝜃

2
−

𝑚5𝑙𝑔𝑙5𝜃̇̈5 cos(𝜃−𝜃5)

2
 +

𝑚5𝑙𝑔𝑙5𝜃̇5(𝜃̇−𝜃̇5) sin(𝜃−𝜃5)

2
+

𝑚6𝑙𝑔
2𝜃̈

4
 

          −
𝑚6𝑙𝑔𝑥̈ sin 𝜃

2
+

𝑚6𝑙𝑔𝑦̈ cos 𝜃

2
+

𝑚6𝑙𝑔𝑙6𝜃̇̈6 cos(𝜃−𝜃6)

2
−

𝑚6𝑙𝑔𝑙6𝜃̇6(𝜃̇−𝜃̇6) sin(𝜃−𝜃6)

2
+

𝑚7𝑙𝑔
2𝜃̈

4
+

𝑚7𝑙𝑔𝑥̈ sin 𝜃

2
 

          −
𝑚7𝑙𝑔𝑦̈ cos 𝜃

2
−

𝑚7𝑙𝑔𝑙5𝜃̇̈5 cos(𝜃−𝜃5)

2
+

𝑚7𝑙𝑔𝑙7𝜃̇5(𝜃̇−𝜃̇5) sin(𝜃−𝜃5)

2
 −

𝑚7𝑙𝑔𝑙7(𝜃̈5+𝜃̈7) cos(𝜃−𝜃5−𝜃7)

2
 

          +
𝑚7𝑙𝑔𝑙7(𝜃̇5+𝜃̇7)(𝜃̇−𝜃̇5−𝜃̇7) sin(𝜃−𝜃5−𝜃7)

2
+

𝑚8𝑙𝑔
2𝜃̈

4
 −

𝑚8𝑙𝑔𝑥̈ sin 𝜃

2
+

𝑚8𝑙𝑔𝑦̈ cos 𝜃

2
+

𝑚8𝑙𝑔𝑙6𝜃̇̈6 cos(𝜃−𝜃6)

2
 

          −
𝑚8𝑙𝑔𝑙6𝜃̇6(𝜃̇−𝜃̇6) sin(𝜃−𝜃6)

2
+

𝑚8𝑙𝑔𝑙8(𝜃̈6+𝜃̈8) cos(𝜃−𝜃6−𝜃8)

2
−

𝑚8𝑙𝑔𝑙8(𝜃̇6+𝜃̇8)(𝜃̇−𝜃̇6−𝜃̇8) sin(𝜃−𝜃6−𝜃8)

2
      

          −
𝑚1𝑙𝑔𝐿1𝜃̇𝜃̇1 sin(𝜃−𝜃1)

2
+

𝑚2𝑙𝑔𝑙2𝜃̇𝜃̇2 sin(𝜃−𝜃2)

2
  −

𝑚3𝑙𝑔𝑙1𝜃̇𝜃̇1 sin(𝜃−𝜃1)

2
−

𝑚3𝑙𝑔𝑙3𝜃̇(𝜃̇1+𝜃̇3) sin(𝜃−𝜃1−𝜃3)

2
 

          +
𝑚4𝑙𝑔𝑙2𝜃̇𝜃̇2 sin(𝜃−𝜃2)

2
+

𝑚4𝑙𝑔𝑙4𝜃̇(𝜃̇2+𝜃̇4) sin(𝜃−𝜃2−𝜃4)

2
−

𝑚5𝑙𝑔𝑙5𝜃̇𝜃̇5 sin(𝜃−𝜃5)

2
  +

𝑚6𝑙𝑔𝑙6𝜃̇𝜃̇6 sin(𝜃−𝜃6)

2
 

         −
𝑚7𝑙𝑔𝑙5𝜃̇𝜃̇5 sin(𝜃−𝜃5)

2
−

𝑚7𝑙𝑔𝑙7𝜃̇(𝜃̇5+𝜃̇7) sin(𝜃−𝜃5−𝜃7)

2
+

𝑚8𝑙𝑔𝑙6𝜃̇𝜃̇6 sin(𝜃−𝜃6)

2
+

𝑚8𝑙𝑔𝑙8𝜃̇(𝜃̇6+𝜃̇8) sin(𝜃−𝜃6−𝜃8)

2
 

          +𝑚𝑛a2𝜃̈ + 𝑚𝑛b2𝜃̈ + 𝑚𝑛b2𝛼̈ − 𝑚𝑛𝑥̈a cos 𝜃 − 𝑚𝑛𝑥̈b sin(𝛼 + 𝜃) − 𝑚𝑛𝑦̈a sin 𝜃 + 𝑚𝑛𝑦̈b cos(𝛼 + 𝜃) +𝑚𝑛𝛼̈𝑎b sin 𝛼 

          +𝑚𝑛𝑎b𝛼̇2 cos 𝛼 +2𝑚𝑛𝑎b𝜃̈ sin 𝛼 + 2𝑚𝑛𝑎b𝜃̇𝛼̇ cos 𝛼 − 𝑚1𝑔
𝑙𝑔

2
cos 𝜃 +𝑚2𝑔

𝑙𝑔

2
cos 𝜃 − 𝑚3𝑔

𝑙𝑔

2
cos 𝜃 + 𝑚4𝑔

𝑙𝑔

2
cos 𝜃 

          −𝑚5𝑔
𝑙𝑔

2
cos 𝜃 + 𝑚6𝑔

𝑙𝑔

2
cos 𝜃 − 𝑚7𝑔

𝑙𝑔

2
cos 𝜃 +𝑚8𝑔

𝑙𝑔

2
cos 𝜃 − 𝑚𝑛g𝑎 sin 𝜃 + 𝑚𝑛g𝑏 cos(𝛼 + 𝜃)   

       

      𝜏1 = 𝑚1𝑙1
2𝜃̈1 − 𝑚1𝑙1𝑥̈ sin 𝜃1 + 𝑚1𝑙1𝑦̈ cos 𝜃1 −

𝑚1𝑙𝑔𝑙1𝜃̈ cos(𝜃−𝜃1)

2
+

𝑚1𝑙𝑔𝑙1𝜃̇(𝜃̇−𝜃̇1) sin(𝜃−𝜃1)

2
 +𝑚3𝑙1

2𝜃̈1 + 𝑚3𝑙3
2𝜃̈3 

           +𝑚3𝑙3
2𝜃̈1 − 𝑚3𝑙1𝑥̈ sin 𝜃1 −𝑚3𝑙3𝑥̈ sin(𝜃1 + 𝜃3) + 𝑚3𝑙1𝑦̈ cos 𝜃1 + 𝑚3𝑙3𝑦̈ cos(𝜃1 + 𝜃3) −

𝑚3𝑙𝑔𝑙1𝜃̈ cos(𝜃−𝜃1)

2
 

           +
𝑚1𝑙𝑔𝑙1𝜃̇(𝜃̇−𝜃̇1) sin(𝜃−𝜃1)

2
−

𝑚3𝑙𝑔𝑙3𝜃̈ cos(𝜃−𝜃1−𝜃3)

2
 +

𝑚3𝑙𝑔𝑙3𝜃̇(𝜃̇−𝜃̇1−𝜃̇3) sin(𝜃−𝜃1−𝜃3)

2
 +2𝑚3𝑙1𝑙3𝜃̈1 cos 𝜃3 

           −2𝑚3𝑙1𝑙3𝜃̇1𝜃̇3 sin 𝜃3 + 𝑚3𝑙1𝑙3𝜃̈3 cos 𝜃3 − 𝑚3𝑙1𝑙3𝜃̇3
2 sin 𝜃3 +

𝑚1𝑙𝑔𝑙1𝜃̇𝜃̇1 sin(𝜃−𝜃1)

2
 +

𝑚3𝑙𝑔𝑙1𝜃̇𝜃̇1 sin(𝜃−𝜃1)

2
 

           +
𝑚3𝑙𝑔𝑙3𝜃̇(𝜃̇1+𝜃̇3) sin(𝜃−𝜃1−𝜃3)

2
  +𝑚1𝑔𝑙1 cos 𝜃1 + 𝑚3𝑔𝑙1 cos 𝜃1 + 𝑚3𝑔𝑙3 cos(𝜃1 + 𝜃3)  

         

    𝜏2 = 𝑚2𝑙2
2𝜃̈2 − 𝑚2𝑙2𝑥̈ sin 𝜃2 + 𝑚2𝑙2𝑦̈ cos 𝜃2 +𝑚4𝑙2

2𝜃̈2 + 𝑚4𝑙4
2𝜃̈2 + 𝑚4𝑙2

2𝜃̈4 − 𝑚4𝑙2𝑥̈ sin 𝜃2 +
𝑚2𝑙𝑔𝑙2𝜃̈ cos(𝜃−𝜃2)

2
 

         −
𝑚2𝑙𝑔𝑙2𝜃̇(𝜃̇−𝜃̇2) sin(𝜃−𝜃2)

2
  −𝑚4𝑙4𝑥̈ sin(𝜃2 + 𝜃4) + 𝑚4𝑙2𝑦̈ cos 𝜃2 +𝑚4𝑙4𝑦̈ cos(𝜃2 + 𝜃4) +

𝑚4𝑙𝑔𝑙2𝜃̈ cos(𝜃−𝜃2)

2
 

   −
𝑚4𝑙𝑔𝑙2𝜃̇(𝜃̇−𝜃̇2) sin(𝜃−𝜃2)

2
+

𝑚4𝑙𝑔𝑙4𝜃̈ cos(𝜃−𝜃2−𝜃4)

2
  −

𝑚4𝑙𝑔𝑙4𝜃̇(𝜃̇−𝜃̇2−𝜃̇4) sin(𝜃−𝜃2−𝜃4)

2
  +2𝑚4𝑙2𝑙4𝜃̈2 cos 𝜃4 
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          −2𝑚4𝑙2𝑙4𝜃̇2𝜃̇4 sin 𝜃4 + 𝑚4𝑙2𝑙4𝜃̈4 cos 𝜃4 − 𝑚4𝑙2𝑙4𝜃̇4
2 sin 𝜃4 −

𝑚2𝑙𝑔𝑙2𝜃̇𝜃̇2 sin(𝜃−𝜃2)

2
  −

𝑚4𝑙𝑔𝑙2𝜃̇𝜃̇2 sin(𝜃−𝜃2)

2
 

          −
𝑚4𝑙𝑔𝑙4𝜃̇(𝜃̇2+𝜃̇4) sin(𝜃−𝜃2−𝜃4)

2
+ 𝑚2𝑔𝑙2 cos 𝜃2 + 𝑚4𝑔𝑙2 cos 𝜃2 + 𝑚4𝑔𝑙4 cos(𝜃2 + 𝜃4) 

                 

    𝜏3 = 𝑚3𝑙3
2𝜃̈1 + 𝑚3𝑙3

2𝜃̈3 − 𝑚3𝑙3𝑥̈ sin(𝜃1 + 𝜃3) + 𝑚3𝑙3𝑦̈ cos(𝜃1 + 𝜃3) − 
𝑚3𝑙𝑔𝑙3𝜃̈ cos(𝜃−𝜃1−𝜃3)

2
 +𝑚3𝑙1𝑙3𝜃̈1 cos 𝜃3 

         +
𝑚3𝑙𝑔𝑙3𝜃̇(𝜃̇−𝜃̇1−𝜃̇3) sin(𝜃−𝜃1−𝜃3)

2
 −𝑚3𝑙1𝑙3𝜃̇1𝜃̇3 sin 𝜃3 +

𝑚3𝑙𝑔𝑙3𝜃̇(𝜃̇1+𝜃̇3) sin(𝜃−𝜃1−𝜃3)

2
 +𝑚3𝑔𝑙3 cos(𝜃1 + 𝜃3 

          +𝑚3𝑙1𝑙3𝜃̇1(𝜃̇1 + 𝜃̇3) sin 𝜃3) 

                  

    𝜏4  = 𝑚4𝑙4
2𝜃̈2 + 𝑚4𝑙4

2𝜃̈4 − 𝑚4𝑙4𝑥̈ sin(𝜃2 + 𝜃4) + 𝑚4𝑙4𝑦̈ cos(𝜃2 + 𝜃4) +
𝑚4𝑙𝑔𝑙4𝜃̈ cos(𝜃−𝜃2−𝜃4)

2
 +𝑚4𝑙2𝑙4𝜃̈2 cos 𝜃4 

         −
𝑚4𝑙𝑔𝑙4𝜃̇(𝜃̇−𝜃̇2−𝜃̇4) sin(𝜃−𝜃2−𝜃4)

2
 −𝑚4𝑙2𝑙4𝜃̇2𝜃̇4 sin 𝜃4 −

𝑚4𝑙𝑔𝑙4𝜃̇(𝜃̇2+𝜃̇4) sin(𝜃−𝜃2−𝜃4)

2
 +𝑚4𝑔𝑙4 cos(𝜃2 + 𝜃4) 

         +𝑚4𝑙2𝑙4𝜃̇2(𝜃̇2 + 𝜃̇4) sin 𝜃4 

 

   𝜏5 = 𝑚5𝑙5
2𝜃̈5 − 𝑚5𝑙5𝑥̈ sin 𝜃5 + 𝑚5𝑙5𝑦̈ cos 𝜃5 +𝑚7𝑙5

2𝜃̈5 + 𝑚7𝑙7
2𝜃̈7 + 𝑚7𝑙7

2𝜃̈5 − 𝑚7𝑙5𝑥̈ sin 𝜃5 −
𝑚5𝑙𝑔𝑙5𝜃̈ cos(𝜃−𝜃5)

2
 

          +
𝑚5𝑙𝑔𝑙5𝜃̇(𝜃̇−𝜃̇5) sin(𝜃−𝜃5)

2
  −𝑚7𝑙7𝑥̈ sin(𝜃5 + 𝜃7) + 𝑚7𝑙5𝑦̈ cos 𝜃5 + 𝑚7𝑙7𝑦̈ cos(𝜃5 + 𝜃7) −

𝑚7𝑙𝑔𝑙5𝜃̈ cos(𝜃−𝜃5)

2
 

          +
𝑚5𝑙𝑔𝑙5𝜃̇(𝜃̇−𝜃̇5) sin(𝜃−𝜃5)

2
−

𝑚7𝑙𝑔𝑙7𝜃̈ cos(𝜃−𝜃5−𝜃7)

2
 +

𝑚7𝑙𝑔𝑙7𝜃̇(𝜃̇−𝜃̇5−𝜃̇7) sin(𝜃−𝜃5−𝜃7)

2
 +2𝑚7𝑙5𝑙7𝜃̈5 cos 𝜃7 

          −2𝑚7𝑙5𝑙7𝜃̇5𝜃̇7 sin 𝜃7 +𝑚7𝑙5𝑙7𝜃̈7 cos 𝜃7 − 𝑚7𝑙5𝑙7𝜃̇7
2 sin 𝜃7 +

𝑚5𝑙𝑔𝑙5𝜃̇𝜃̇5 sin(𝜃−𝜃5)

2
 +

𝑚7𝑙𝑔𝑙5𝜃̇𝜃̇5 sin(𝜃−𝜃5)

2
 

         +
𝑚7𝑙𝑔𝑙7𝜃̇(𝜃̇5+𝜃̇7) sin(𝜃−𝜃5−𝜃7)

2
      +𝑚5𝑔𝑙5 cos 𝜃5 + 𝑚7𝑔𝑙5 cos 𝜃5 + 𝑚7𝑔𝑙7 cos(𝜃5 + 𝜃7) 

      

   𝜏6  = 𝑚6𝑙6
2𝜃̈6 − 𝑚6𝑙6𝑥̈ sin 𝜃6 + 𝑚6𝑙6𝑦̈ cos 𝜃6 +𝑚8𝑙6

2𝜃̈6 + 𝑚8𝑙8
2𝜃̈6 + 𝑚8𝐿6

2 𝜃̈8 − 𝑚8𝑙6𝑥̈ sin 𝜃6 +
𝑚6𝑙𝑔𝑙6𝜃̈ cos(𝜃−𝜃6)

2
 

         −
𝑚6𝑙𝑔𝑙6𝜃̇(𝜃̇−𝜃̇6) sin(𝜃−𝜃6)

2
  −𝑚8𝑙8𝑥̈ sin(𝜃6 + 𝜃8) + 𝑚8𝑙6𝑦̈ cos 𝜃6 + 𝑚8𝑙8𝑦̈ cos(𝜃6 + 𝜃8) −

𝑚8𝑙𝑔𝑙6𝜃̇(𝜃̇−𝜃̇6) sin(𝜃−𝜃6)

2
 

        +
𝑚8𝑙𝑔𝑙8𝜃̈ cos(𝜃−𝜃6−𝜃8)

2
  +2𝑚8𝑙6𝑙8𝜃̈6 cos 𝜃8  −

𝑚8𝑙𝑔𝑙8𝜃̇(𝜃̇−𝜃̇6−𝜃̇8) sin(𝜃−𝜃6−𝜃8)

2
 −2𝑚8𝑙6𝑙8𝜃̇6𝜃̇8 sin 𝜃8 

         +𝑚8𝑙6𝑙8𝜃̈8 cos 𝜃8 − 𝑚8𝑙6𝑙8𝜃̇8
2 sin 𝜃8 −

𝑚6𝑙𝑔𝑙6𝜃̇𝜃̇6 sin(𝜃−𝜃6)

2
−

𝑚8𝑙𝑔𝑙6𝜃̇𝜃̇6 sin(𝜃−𝜃6)

2
 −

𝑚8𝑙𝑔𝑙8𝜃̇(𝜃̇6+𝜃̇8) sin(𝜃−𝜃6−𝜃8)

2
 

         +𝑚6𝑔𝑙6 cos 𝜃6 + 𝑚8𝑔𝑙6 cos 𝜃6 + 𝑚8𝑔𝑙8 cos(𝜃6 + 𝜃8) 
 

      𝜏7 =  𝑚7𝑙7
2𝜃̈5 + 𝑚7𝑙7

2𝜃̈7 − 𝑚7𝑙7𝑥̈ sin(𝜃5 + 𝜃7) + 𝑚7𝑙7𝑦̈ cos(𝜃5 + 𝜃7) −
𝑚7𝑙𝑔𝑙7𝜃̈ cos(𝜃−𝜃5−𝜃7)

2
 

           +
𝑚7𝑙𝑔𝑙7𝜃̇(𝜃̇−𝜃̇5−𝜃̇7) sin(𝜃−𝜃5−𝜃7)

2
 +𝑚7𝑙5𝑙7𝜃̈5 cos 𝜃7 − 𝑚7𝑙5𝑙7𝜃̇5𝜃̇7 sin 𝜃7 +

𝑚7𝑙𝑔𝑙7𝜃̇(𝜃̇5+𝜃̇7) sin(𝜃−𝜃5−𝜃7)

2
 

            +𝑚7𝑙5𝑙7𝜃̇5(𝜃̇5 + 𝜃̇7) sin 𝜃7 + 𝑚7𝑔𝑙7 cos(𝜃5 + 𝜃7) 

              

      𝜏8 = 𝑚8𝑙8
2𝜃̈8 + 𝑚8𝑙8

2𝜃̈8 − 𝑚8𝑙8𝑥̈ sin(𝜃6 + 𝜃8) + 𝑚8𝑙8𝑦̈ cos(𝜃6 + 𝜃8) +
𝑚8𝑙𝑔𝑙8𝜃̈ cos(𝜃−𝜃6−𝜃8)

2
 

          −
𝑚8𝑙𝑔𝑙8𝜃̇(𝜃̇−𝜃̇6−𝜃̇8) sin(𝜃−𝜃6−𝜃8)

2
  +𝑚8𝑙6𝑙8𝜃̈6 cos 𝜃8 − 𝑚8𝑙6𝑙8𝜃̇6𝜃̇8 sin 𝜃8 −

𝑚8𝑙𝑔𝑙8𝜃̇(𝜃̇6+𝜃̇8) sin(𝜃−𝜃6−𝜃8)

2
 

          +𝑚8𝑙6𝑙8𝜃̇6(𝜃̇6 + 𝜃̇8) sin 𝜃8 + 𝑚8𝑔𝑙8 cos(𝜃6 + 𝜃8)   

        

      𝜏𝑛  = 𝑚𝑛𝑏2𝛼̈ + 𝑚𝑛𝑏2𝜃̈ − 𝑚𝑛𝑏𝑥̈ sin(𝛼 + 𝜃) + 𝑚𝑛𝑏𝑦̈ cos(𝛼 + 𝜃) + 𝑚𝑛a𝑏𝜃̈ sin 𝛼 + 𝑚𝑛a𝑏𝜃̇𝛼̇ cos 𝛼 

            −𝑚𝑛a𝑏𝜃̇(𝜃̇ + 𝛼̇) cos 𝛼 + 𝑚𝑛g𝑏 cos(𝛼 + 𝜃)  

4. 

[ 𝐽𝑅𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟
] = [

1 0   
0 1   

(−𝑙𝑔/2) sin 𝜃  0 0    

   (𝑙𝑔/2) cos 𝜃 0 0    

0 0 0    
0 0 0    

0 0 0
0 0 0

]      
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[ 𝐽𝐿𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟
] = [

0 0   
1 1   

   (𝑙𝑔/2) sin 𝜃  0 0    

(−𝑙𝑔/2) cos 𝜃 0 0    

0 0 0    
0 0 0    

0 0 0
0 0 0

]      

[ 𝐽1] = [
1 0   
0 1   

    (𝑙𝑔/2) sin 𝜃 − 𝑙1 sin 𝜃1 −𝑙1 sin 𝜃1 0    

 (−𝑙𝑔/2) cos 𝜃 + 𝑙1 cos 𝜃1    𝑙1 cos 𝜃1 0    

0 0 0    
0 0 0    

0 0 0
0 0 0

]    

[ 𝐽2] = [
1 0   
0 1   

    (−𝑙𝑔/2) sin 𝜃 − 𝑙2 sin 𝜃2 0 −𝑙2. sin 𝜃2    

       (𝑙𝑔/2) cos 𝜃 + 𝑙2 cos 𝜃2 0    𝑙2. cos 𝜃2    

0 0 0    
0 0 0    

0 0 0
0 0 0

]   

[ 𝐽3] = [
1 0   
0 1   

    (𝑙𝑔/2) sin 𝜃 − 𝑙1 sin 𝜃1 − 𝑙3 sin(𝜃1+𝜃3) −𝑙1 sin 𝜃1 − 𝑙3 sin(𝜃1+𝜃3)    0 −𝑙3 sin(𝜃1+𝜃3)  0 0 0  0 0  

 (−𝑙𝑔/2) cos 𝜃 + 𝑙1 cos 𝜃1 + 𝑙3 cos(𝜃1+𝜃3)     𝑙1 cos 𝜃1 + 𝑙3 cos(𝜃1+𝜃3)  0    𝑙3 cos(𝜃1+𝜃3) 0 0 0  0 0 
]   

[ 𝐽4] = [
1 0   
0 1   

(−𝑙𝑔/2) sin 𝜃 − 𝑙2 sin 𝜃2 − 𝑙4 sin(𝜃2+𝜃4)    0 −𝑙2 sin 𝜃2 − 𝑙4 sin(𝜃2+𝜃4)      0 0   

    (𝑙𝑔/2) cos 𝜃 + 𝑙2 cos 𝜃2 + 𝑙4 cos(𝜃2+𝜃4)  0     𝑙2 cos 𝜃2 + 𝑙4 cos(𝜃2+𝜃4)   0 0 

−𝑙4 sin(𝜃2+𝜃4)    0 0    0 0
    𝑙4 cos(𝜃2+𝜃4)  0 0    0 0

] 

[ 𝐽5] = [
1 0   
0 1   

    (𝑙𝑔/2) sin 𝜃 − 𝑙5 sin 𝜃5 0 0    

 (−𝑙𝑔/2) cos 𝜃 + 𝑙5 cos 𝜃5 0 0    

0 0 −𝑙5 sin 𝜃5    
0 0    𝑙5 cos 𝜃5    

0 0 0
0 0 0

]   

[ 𝐽6] = [
1 0   
0 1   

    (−𝑙𝑔/2) sin 𝜃 − 𝑙6 sin 𝜃6 0 0    

       (𝑙𝑔/2) cos 𝜃 + 𝑙6 cos 𝜃6 0 0    

0 0 0    
0 0 0    

−𝑙6 sin 𝜃6 0 0
   𝑙6 cos 𝜃6 0 0

]      

[ 𝐽7] = [
1 0   
0 1   

    (𝑙𝑔/2) sin 𝜃 − 𝑙5 sin 𝜃5 − 𝑙7 sin(𝜃5+𝜃7)     0 0    0 0

 (−𝑙𝑔/2) cos 𝜃 + 𝑙5 cos 𝜃5 + 𝑙7 cos(𝜃5+𝜃7)  0 0    0 0

  −𝑙5 sin 𝜃5 − 𝑙7 sin(𝜃5+𝜃7)    
     𝑙5 cos 𝜃5 + 𝑙7 cos(𝜃5+𝜃7)    

0 −𝑙7 sin(𝜃5+𝜃7) 0
0 𝑙7 cos(𝜃5+𝜃7) 0

]    

[ 𝐽8] = [
1 0   
0 1   

(−𝑙𝑔/2) sin 𝜃 − 𝑙6 sin 𝜃6 − 𝑙8 sin(𝜃6+𝜃8)          0  0     0  0 0

    (𝑙𝑔/2) cos 𝜃 + 𝑙6 cos 𝜃6 + 𝑙8 cos(𝜃6+𝜃8)       0   0 0      0 0

   −𝑙6 sin 𝜃6 − 𝑙8 sin(𝜃6+𝜃8 )    0  −𝑙8 sin(𝜃6+𝜃8)
    𝑙6 cos 𝜃6 + 𝑙8 cos(𝜃6+𝜃8)    0      𝑙8 cos(𝜃6+𝜃8)

]     

 

5.  

[ 𝐽𝑛] = [
1 0   
0 1   

 −a COS 𝜃  − b sin(𝛼 + 𝜃)     0 0 0     0 0 0     0 0
−a sin 𝜃 + b COS(𝛼 + 𝜃)       0 0 0     0 0 0     0 0

   −b sin(𝛼 + 𝜃)
       b cos(𝛼 + 𝜃)

] 

 

 


