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ABSTRACT

In this paper, it’s introduced the curves lying on parallel-like surface Mf of a surface M in
Euclidean space. Taking into account the definition of the parallel-like surface it’s obtained
parametric expression of these curves and examinated Darboux frame for these curves which
we call image curves. And finally the curves lying on the surfaces M and Mf are compared by
considering their geodesic and normal curvatures, the geodesic torsion.
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1. Introduction

Parallel-like surfaces were first described by Tarakcı and Hacısalihoğlu in 2002 and named with surfaces at
a constant distance from the edge of regression on a surface [11]. The authors have obtained by considering
a surface instead of a curve in the paper written by Hans Vogler in 1963. Hans Vogler have defined notion
of curve at a constant distance from the edge of regression on a curve. In 2004, Tarakcı and Hacısalihoğlu
have computed for parallel-like surfaces some properties and theorems given for parallel surfaces [12]. After
this work, it’s made many articles by different authors on parallel-like surfaces. In 2010, Sağlam and Kalkan
have searched parallel-like surfaces in E3

1 Minkowski space [10]. In 2015, Yurttançıkmaz and Tarakcı have
established a relationship between focal surfaces and parallel-like surfaces. They were able to find the focal
surfaces of a given surface by means of parallel-like surfaces [13]. In 2016, Çakmak and Tarakcı have examined
parallel-like surfaces of surface of revolution and they have worked curves on these surfaces in another paper
[1, 2]. In this study, the Darboux frame of curves lying on parallel-like surfaces in E3 will be investigated.

The differential geometry of curves and surfaces has attracted the attention of geometers from past to present.
Therefore, many studies have been done on this subject [3, 6]. The differential geometry of the curves lying on
the surfaces, on the other hand, is important since the properties of the surface in question must also be taken
into account when examining the differential geometric properties of the curve [4, 5, 7, 8]. In the theory of
surfaces, the Darboux frame constructed at any non-umbilical point of the surface can be viewed as an analog
of the Frenet frame. In this paper first, image curve on parallel-like surface of a surfaceM which denoted byMf

has been found and then, calculating Darboux frame for this image curve it has been compared the geodesic
curvatures, the normal curvatures, the geodesic torsions of reference curve on M and its image curve on Mf

and expressed the relationships between these two curves [14].

2. Preliminaries

Let α be a unit speed curve lying on the surface M in E3 and s be arc length of the curve α, i.e.
∥∥∥α′

(s)
∥∥∥ = 1.

Suppose that Z is a unit normal vector of the surface M and T is unit tangent vector field of the curve α.
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Considering the vector field Y defined by Y = Z × T, set of {T, Y, Z} create orthonormal frame which is called
Darboux frame for partner of curve-surface (α,M).

Thus, the geodesic curvature κg, the normal curvature κn, the geodesic torsion tr of the curve α(s) can be
calculated as follows [9]

κg =
〈
α

′′
(s), Y

〉
(2.1)

κn =
〈
α

′′
(s), Zα(s)

〉
(2.2)

tr = −
〈
Z

′

α(s), Y
〉
. (2.3)

Besides, the derivative formulas of the Darboux frame of (α,M) is given by T
′

Y
′

Z
′

 =

 0 κg κn
−κg 0 tr
−κn −tr 0

 T
Y
Z

 . (2.4)

In addition, given a arbitrary curve β(s) on the surface M under the condition
∥∥∥β′

(s)
∥∥∥ = c, the geodesic

curvature κg, the normal curvature κn, the geodesic torsion tr of the curve β(s) can be calculated as follows

κg =
1

c2

〈
β

′′
(s), Y

〉
(2.5)

κn =
1

c2

〈
β

′′
(s), Zβ(s)

〉
(2.6)

tr = −1

c

〈
Z

′

β(s), Y
〉
. (2.7)

Furthermore, in the differential geometry of surfaces, for a curve α(s) lying on a surface M the followings are
well-known

i) α(s) is a principal line ⇐⇒ tr = 0,
ii) α(s) is an asymptotic curve ⇐⇒ κn = 0,
iii) α(s) is a geodesic curve ⇐⇒ κg = 0.

3. Parallel-like Surfaces

Definition 3.1. Let M and Mf be two surfaces in E3 Euclidean space and ZP be a unit normal vector and
TPM be tangent space at point P of the surface M and {XP , YP } be an orthonormal bases of TPM. Take a unit
vector EP = d1XP + d2YP + d3ZP , where d1, d2, d3 ∈ R are constant and d21 + d22 + d23 = 1. If there is a function
f defined by,

f :M →Mf , f(P ) = P + rEP

where r ∈ R, then the surface Mf is called parallel-like surface of the surface M.

Here, if d1 = d2 = 0, then EP = ZP and so M and Mf are parallel surfaces. Now, we represent
parametrization for parallel-like surface of the surface M . Let (ϕ,U) be a parametrization of M, so we can
write that

ϕ : U ⊂ E2 →M.

(u, v) ϕ(u, v)

In the case {ϕu, ϕv} is a bases of TPM , then we can write that EP = d1ϕu + d2ϕv + d3ZP . Where, ϕu, ϕv are
respectively partial derivatives of ϕ according to u and v. Since Mf = {f(P ) : f(P ) = P + rEP } , a parametric
representation of Mf is

ψ(u, v) = ϕ(u, v) + rE(u, v).

Thus, it’s obtained

Mf = {ψ(u, v) : ψ(u, v) = ϕ(u, v) + r (d1ϕu(u, v) + d2ϕv(u, v) + d3Z(u, v))}
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and if we get rd1 = λ1, rd2 = λ2, rd3 = λ3, then we have

Mf =

{
ψ(u, v) : ψ(u, v) = ϕ(u, v) + λ1ϕu(u, v) + λ2ϕv(u, v) + λ3Z(u, v),

λ21 + λ22 + λ23 = r2

}
Calculation of ψu and ψv gives us that

ψu = ϕu + λ1ϕuu + λ2ϕvu + λ3Zu

ψv = ϕv + λ1ϕuv + λ2ϕvv + λ3Zv

(3.1)

Here ϕuu, ϕvu, ϕuv, ϕvv, Zu, Zv are calculated as like as [11]. Suppose that parameter curves are curvature lines
of M and let u and v be arc length of these curves. Thus, following equations are obtained

ϕuu = −κ1Z
ϕvv = −κ2Z
ϕuv = ϕvu = 0
Zu = κ1ϕu
Zv = κ2ϕv

(3.2)

From 3.1 and 3.2, we find
ψu = (1 + λ3κ1)ϕu − λ1κ1Z

ψv = (1 + λ3κ2)ϕv − λ2κ2Z

and {ψu, ψv} be a bases of χ(Mf ). If we denote by Zf unit normal vector of Mf , then Zf is

Zf =
[ψu, ψv]

∥[ψu, ψv]∥
=
λ1κ1 (1 + λ3κ2)ϕu + λ2κ2 (1 + λ3κ1)ϕv + (1 + λ3κ1) (1 + λ3κ2)Z√

λ21κ
2
1 (1 + λ3κ2)

2
+ λ22κ

2
2 (1 + λ3κ1)

2
+ (1 + λ3κ1)

2
(1 + λ3κ2)

2

where, κ1, κ2 are principal curvatures of the surface M. If

A =

√
λ21κ

2
1 (1 + λ3κ2)

2
+ λ22κ

2
2 (1 + λ3κ1)

2
+ (1 + λ3κ1)

2
(1 + λ3κ2)

2

we can write
Zf =

λ1κ1 (1 + λ3κ2)

A
ϕu +

λ2κ2 (1 + λ3κ1)

A
ϕv +

(1 + λ3κ1) (1 + λ3κ2)

A
Z

Here in case of κ1 = κ2 and λ3 = − 1
κ1

= − 1
κ2

since ψu and ψv are not linear independent, Mf is not regular
surface. We will not consider this case [11].

4. Darboux Frame of Curves on Parallel-like Surfaces

Let α(s) be first parameter curve of the surface M. In this study, since parameter curves are regarded as
curvature lines, α(s) is also curvature line. Because principal directions relating to different curvature lines of
the surface M are orthogonal, we can take as

ϕu = α
′
(s) = T

and
ϕv = Y.

Under these conditions, we can use Darboux frame {T, Y, Z} in place of orthonormal frame {ϕu, ϕv, Z}. If we
consider definition of parallel-like surface of the surface M, parametric representation of the curve β which is
image of the curve α is

β(s) = α(s) + λ1T + λ2Y + λ3Z. (4.1)

Now, we calculate Darboux frame
{
T f , Y f , Zf

}
for partner of curve-surface

(
β,Mf

)
. It is clear that

T f =
β

′
(s)

∥β′(s)∥

dergipark.org.tr/en/pub/iejg 124

https://dergipark.org.tr/en/pub/iejg


S. Yurttançıkmaz & Ö. Tarakcı

If we take derivative according to s of eq.4.1, we find

β
′
(s) = α

′
(s) + λ1T

′
+ λ2Y

′
+ λ3Z

′

and if considering that α(s) is a principal line and so tr = 0 equations 2.4 are substituted in this equation, we
obtain

β
′
(s) = (1− κgλ2 − κnλ3)T + κgλ1Y + κnλ1Z (4.2)

where
∥∥∥β′

(s)
∥∥∥ = c =

√
(1− κgλ2 − κnλ3)

2
+ λ21

(
κ2g + κ2n

)
. Thus, we find

T f =
(1− κgλ2 − κnλ3)

c
T +

κgλ1
c

Y +
κnλ1
c

Z. (4.3)

Moreover, we know already that

Zf =
λ1κ1 (1 + λ3κ2)

A
T +

λ2κ2 (1 + λ3κ1)

A
Y +

(1 + λ3κ1) (1 + λ3κ2)

A
Z. (4.4)

For orthonormal frame
{
T f , Y f , Zf

}
, if we consider that Y f = Zf × T f , we get

Y f =

[
κnλ1λ2 (κ2 + λ3K)− κgλ1

(
1 + λ3H + λ23K

)
Ac

]
T

+

[(
1 + λ3H + λ23K

)
(1− κgλ2 − κnλ3)− κnλ

2
1 (κ1 + λ3K)

Ac

]
Y (4.5)

+

[
κgλ

2
1 (κ1 + λ3K)− λ2 (κ1 + λ3K) (1− κgλ2 − κnλ3)

Ac

]
Z

where K = κ1κ2 , H = κ1 + κ2 are Gauss curvature and mean curvature of the surface M , respectively.
Now, we calculate the geodesic curvature κfg , the normal curvature κfn, the geodesic torsion tfr of the curve

β(s). We will use to calculate these curvatures following equations

κfg =
1

c2

〈
β

′′
(s), Y f

〉
(4.6)

κfn =
1

c2

〈
β

′′
(s), Zf

〉
(4.7)

tfr = −1

c

〈(
Zf

)′

, Y f
〉

(4.8)

Firstly we find vector β
′′
(s). If we take derivative of eq.4.2 according to s and use equations 2.4, we obtain

β
′′
(s) =

(
−λ2κ

′

g − λ3κ
′

n − λ1κ
2
g − λ1κ

2
n

)
T

+
(
λ1κ

′

g + κg (1− κgλ2 − κnλ3)
)
Y (4.9)

+
(
λ1κ

′

n + κn (1− κgλ2 − κnλ3)
)
Z.

Furthermore we find vector
(
Zf

)′

. If we take derivative of eq.4.4 according to s and use equations 2.4, we
obtain

(
Zf

)′

=


Aλ1

(
κ

′

1 + λ3K
′
)
−Bλ1 (κ1 + λ3K)

−κgλ2A (κ2 + λ3K)− κnA
(
1 + λ3H + λ23K

)
A2

T

+

Aλ2

(
κ

′

2 + λ3K
′
)
−Bλ2 (κ2 + λ3K) + κgλ1A (κ1 + λ3K)

A2

Y (4.10)

+

A
(
λ3H

′
+ λ23K

′
)
−B

(
1 + λ3H + λ23K

)
+ κnλ1A (κ1 + λ3K)

A2

Z
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where

B = A
′
=

1

A
[λ21κ1κ

′

1 + λ22κ2κ
′

2 + λ3

(
λ21κ

′

1 + λ22κ
′

2

)
K + λ3

(
λ21κ1 + λ22κ2

)
K

′

+
(
λ21 + λ22

)
λ23KK

′
+
(
1 + λ3H + λ23K

) (
λ3H

′
+ λ23K

′
)
].

So, if we substitute equations 4.5 and 4.9 into eq.4.6, we obtain

κfg =
1

Ac3
{κgλ1

(
λ2κ

′

g + λ3κ
′

n

) (
1 + λ3H + λ23K

)
+
(
1 + λ3H + λ23K

)
(1− κgλ2 − κnλ3)

(
λ1κ

′

g + κg (1− κgλ2 − κnλ3)
)

−κnλ2 (κ2 + λ3K)
(
(1− κgλ2 − κnλ3)

2
+ λ1

(
λ2κ

′

g + λ3κ
′

n

))
(4.11)

+λ21
(
κ2n + κ2g

) (
κg

(
1 + λ3H + λ23K

)
− κnλ2 (κ2 + λ3K)

)
−κ

′

nλ1λ2 (κ2 + λ3K) (1− κgλ2 − κnλ3)

+λ31 (κ1 + λ3K)
(
κ

′

nκg − κnκ
′

g

)
}.

Also, if we substitute equations 4.4 and 4.9 into eq.4.7, we obtain

κfn =
1

Ac2
{λ1 (κ1 + λ3K)

(
−λ2κ

′

g − λ3κ
′

n − λ1
(
κ2n + κ2g

))
+
(
λ1κ

′

n + κn (1− κgλ2 − κnλ3)
) (

1 + λ3H + λ23K
)

(4.12)

+λ2 (κ2 + λ3K)
(
λ1κ

′

g + κg (1− κgλ2 − κnλ3)
)
}.

And finally, if we substitute equations 4.5 and 4.10 into eq.4.8, we obtain

tfr = − 1

A3c2
{κnκgAλ1

((
1 + λ3H + λ23K

)2 − λ22 (κ2 + λ3K)
2
)

−Aλ2 (κ2 + λ3K) (1− κgλ2 − κnλ3)
(
κnλ1 (κ1 + λ3K) +

(
λ3H

′
+ λ23K

′
))

+Aλ21

(
κ

′

1 + λ3K
′
) (
κnλ2 (κ2 + λ3K)− κg

(
1 + λ3H + λ23K

))
+Aλ2

(
κ

′

2 + λ3K
′
) (

1 + λ3H + λ23K
)
(1− κgλ2 − κnλ3) (4.13)

+Aκgλ1 (κ1 + λ3K)
(
1 + λ3H + λ23K

)
(1− κgλ2 − κnλ3)

+Aλ1λ2
(
κ2g − κ2n

)
(κ2 + λ3K)

(
1 + λ3H + λ23K

)
−κnAλ21λ2 (κ1 + λ3K)

(
κ

′

2 + λ3K
′
)

+Aκgλ
2
1 (κ1 + λ3K)

(
λ3H

′
+ λ23K

′
)
}.

Theorem 4.1. Let M be a surface in E3 and Mf be parallel-like surface of the surface M that formed along directions of
EP lying in plane Sp {Y, Z} , i.e. λ1 = 0. Recall that the curve β on the surface Mf is image curve of the curve α lying
on M, then curvatures of κfg , κfn, tfr for partner of curve-surface

(
β,Mf

)
are as follows

κfg =
κg

(
1 + λ3H + λ23K

)
− λ2κn (κ2 + λ3K)

Ac
(4.14)

κfn =
κn

(
1 + λ3H + λ23K

)
+ λ2κg (κ2 + λ3K)

Ac
(4.15)

tfr = − λ2
A3c

{A
(
κ

′

2 + λ3K
′
) (

1 + λ3H + λ23K
)

(4.16)

−A (κ2 + λ3K)
(
λ3H

′
+ λ23K

′
)
}.
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Proof. If we substitute λ1 = 0 in equations 4.11, 4.12, 4.13, we can easily hold equations 4.14, 4.15, 4.16.

Corollary 4.1. Let the curve α lying on M be geodesic curve. Providing λ1 = 0, the curve β which is image curve of the
curve α is an asymptotic curve if and only if α is an asymptotic curve.

Corollary 4.2. Let the curve α lying on M be asymptotic curve. Providing λ1 = 0, the curve β which is image curve of
the curve α is a geodesic curve if and only if α is a geodesic curve.

Theorem 4.2. Let M be a surface in E3 and Mf be parallel-like surface of the surface M that formed along directions
of EP lying in plane Sp {T,Z} , i.e. λ2 = 0. Then curvatures of κfg , κfn, tfr for partner of curve-surface

(
β,Mf

)
are as

follows

κfg =
1

Ac3
{κgλ1

(
1 + λ3H + λ23K

) (
λ3κ

′

n + λ1κ
2
g + λ1κ

2
n

)
+κ

′

gλ1 (1− κnλ3)
(
1 + λ3H + λ23K

)
(4.17)

+κg (1− κnλ3)
2 (

1 + λ3H + λ23K
)

+λ31 (κ1 + λ3K)
(
κ

′

nκg − κnκ
′

g

)
}.

κfn =
1

Ac2
{λ1 (κ1 + λ3K)

(
−λ3κ

′

n − λ1κ
2
g − λ1κ

2
n

)
(4.18)

+
(
1 + λ3H + λ23K

) (
λ1κ

′

n + κn (1− κnλ3)
)
}.

tfr = − 1

A3c2
{Aκnκgλ1

(
1 + λ3H + λ23K

)2
+Aκgλ1 (1− κnλ3) (κ1 + λ3K)

(
1 + λ3H + λ23K

)
(4.19)

−Aκgλ21
(
1 + λ3H + λ23K

) (
κ

′

1 + λ3K
′
)

+Aκgλ
2
1 (κ1 + λ3K)

(
λ3H

′
+ λ23K

′
)
}.

Proof. If we substitute λ2 = 0 in equations 4.11, 4.12, 4.13, we can easily hold equations 4.17, 4.18, 4.19.

Corollary 4.3. Providing λ2 = 0, the curve β lying on Mf is a geodesic curve if and only if α lying on M is a geodesic
curve.

Corollary 4.4. Providing λ2 = 0, the curve β lying on Mf is a principal line if and only if α lying on M is a geodesic
curve.

Corollary 4.5. Let the curve α lying on M be geodesic curve. Providing λ2 = 0, the curve β which is image curve of the
curve α is an asymptotic curve if and only if α is an asymptotic curve.

Theorem 4.3. Let M be a surface in E3 and Mf be parallel-like surface of the surface M that formed along directions
of EP lying in plane Sp {T, Y } , i.e. λ3 = 0. Then curvatures of κfg , κfn, tfr for partner of curve-surface

(
β,Mf

)
are as

follows

κfg =
1

Ac3
{
(
−λ2κ

′

g − λ1κ
2
g − λ1κ

2
n

)
(κnκ2λ1λ2 − κgλ1)

+
(
λ1κ

′

g + κg (1− κgλ2)
) (

1− κgλ2 − κnκ1λ
2
1

)
(4.20)

+
(
λ1κ

′

n + κn (1− κgλ2)
) (
κgκ1λ

2
1 − λ2κ2 (1− κgλ2)

)
}.

κfn =
1

Ac2
{λ1κ1

(
−λ2κ

′

g − λ1κ
2
g − λ1κ

2
n

)
+λ2κ2

(
λ1κ

′

g + κg (1− κgλ2)
)

(4.21)

+λ1κ
′

n + κn (1− κgλ2)}.
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tfr = − 1

A3c2
{
(
Aλ1κ

′

1 −Bλ1κ1 −Aκgκ2λ2 −Aκn

)
(κnκ2λ1λ2 − κgλ1)

+
(
Aκ

′

2λ2 −Bκ2λ2 +Aκgκ1λ1

) (
1− κgλ2 − κnκ1λ

2
1

)
(4.22)

+(Aκnκ1λ1 −B)
[
κgκ1λ

2
1 − λ2κ2 (1− κgλ2)

]
}.

Proof. If we substitute λ3 = 0 in equations 4.11, 4.12, 4.13, we can easily hold equations 4.20, 4.21, 4.22.

Corollary 4.6. Let the curve α lying on M be asymptotic curve. Providing λ3 = 0, the curve β which is image curve of
the curve α is a geodesic curve if and only if α is a geodesic curve.

Corollary 4.7. Let the curve α lying on M be geodesic curve. Providing λ3 = 0, the curve β which is image curve of the
curve α is an asymptotic curve if and only if α is an asymptotic curve.

Theorem 4.4. Let M be a surface in E3 and Mf be parallel-like surface of the surface M that formed along vector field
Z, i.e. λ1 = λ2 = 0. Then curvatures of κfg , κfn, tfr for partner of curve-surface

(
β,Mf

)
are as follows

κfg =
κg

1− κnλ3
(4.23)

κfn =
κn

1− κnλ3
(4.24)

tfr = 0. (4.25)

Proof. If we substitute λ1 = λ2 = 0 in equations 4.11, 4.12, 4.13, we can easily hold equations 4.23, 4.24, 4.25.

Corollary 4.8. Providing λ1 = λ2 = 0, the curve β lying on Mf is a geodesic curve if and only if α lying on M is a
geodesic curve.

Corollary 4.9. Providing λ1 = λ2 = 0, the curve β lying on Mf is an asymptotic curve if and only if α lying on M is
an asymptotic curve.

Corollary 4.10. Providing λ1 = λ2 = 0, the curve β lying on Mf is a principal line if and only if α lying on M is a
principal line.

Theorem 4.5. Let M be a surface in E3 and Mf be parallel-like surface of the surface M that formed along vector field
Y, i.e. λ1 = λ3 = 0. Then curvatures of κfg , κfn, tfr for partner of curve-surface

(
β,Mf

)
are as follows

κfg =
(κg − λ2κnκ2)

(1− κgλ2) (λ22κ
2
2 + 1)

1
2

(4.26)

κfn =
(κn + λ2κgκ2)

(1− κgλ2) (λ22κ
2
2 + 1)

1
2

(4.27)

tfr = − κ
′

2λ2
(λ22κ

2
2 + 1) (1− κgλ2)

. (4.28)

Proof. If we substitute λ1 = λ3 = 0 in equations 4.11, 4.12, 4.13, we can easily hold equations 4.26, 4.27, 4.28.

Corollary 4.11. Let the curve α lying on M be asymptotic curve. Providing λ1 = λ3 = 0, the curve β which is image
curve of the curve α is a geodesic curve if and only if α is a geodesic curve.

Corollary 4.12. Let the curve α lying on M be geodesic curve. Providing λ1 = λ3 = 0, the curve β which is image curve
of the curve α is an asymptotic curve if and only if α is an asymptotic curve.

Theorem 4.6. Let M be a surface in E3 and Mf be parallel-like surface of the surface M that formed along vector field
T, i.e. λ2 = λ3 = 0. Then curvatures of κfg , κfn, tfr for partner of curve-surface

(
β,Mf

)
are as follows

κfg =
1

Ac3

{
κgλ

2
1

(
κ2g + κ2n + κ1

(
λ1κ

′

n + κn

))
+
(
λ1κ

′

g + κg

) (
1− κnκ1λ

2
1

)}
(4.29)

κfn =
1

Ac2

{
κn + λ1κ

′

n − λ21κ1
(
κ2g + κ2n

)}
(4.30)

tfr = − 1

A2c2

{
κgλ1

(
κn + κ1 − κ

′

1λ1

)}
. (4.31)
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Proof. If we substitute λ2 = λ3 = 0 in equations 4.11, 4.12, 4.13, we can easily hold equations 4.29, 4.30, 4.31.

Corollary 4.13. Let the curve α lying on M be asymptotic curve. Providing λ2 = λ3 = 0, the curve β which is image
curve of the curve α is a geodesic curve if and only if α is a geodesic curve.

Corollary 4.14. Let the curve α lying on M be geodesic curve. Providing λ2 = λ3 = 0, the curve β which is image curve
of the curve α is an asymptotic curve if and only if α is an asymptotic curve.

Corollary 4.15. Providing λ2 = λ3 = 0, if the curve α lying on M is a geodesic curve, the curve β lying on Mf is a
principal line.

Example 4.1. Consider the paraboloid surface given by parameterization ϕ : E2 → E3,

ϕ(u, v) =
(
u cos v, u sin v, u2

)
.

Using the definition of the parallel-like surfaces, the parametric expression of the parallel-like surface of the
paraboloid is found in the form

ψ(u, v) =


(
u+ λ1 − 2uλ3√

1+4u2

)
cos v − uλ2 sin v,(

u+ λ1 − 2uλ3√
1+4u2

)
sin v + uλ2 cos v,

u2 + 2uλ1 +
λ3√

1+4u2

 .

Here, if it is taken as λ1 = 1, λ2 = 2, λ3 = 3 the graphs of the paraboloid and its parallel-like surface in the same
coordinate system are as follows

Figure 1. Paraboloid(blue) and its parallel-like surface(gray)

We will examine the image curve on the parallel-like surface of the first parameter curve of paraboloid. Since
the first and second fundamental form coefficients of the paraboloid surface are F = f = 0, the parameter
curves to be taken on this surface will be the curvature lines. First parameter curve of the paraboloid surface
M is

α (u) = ϕ (u, v0) =
(
u cos v0, u sin v0, u

2
)

and image curve on parallel-like surface Mf of α is as follows

β(u) = ψ(u, v0) = ϕ (u, v0) + λ1ϕu (u, v0) + λ2ϕv (u, v0) + λ3Z (u, v0)

=


(
u+ λ1 − 2uλ3√

1+4u2

)
cos v − uλ2 sin v,(

u+ λ1 − 2uλ3√
1+4u2

)
sin v + uλ2 cos v,

u2 + 2uλ1 +
λ3√

1+4u2

 .
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Thus, the first parameter curve passing through from the point P = ϕ (u0, v0) = ϕ
(√

2, π4
)
= (1, 1, 2) on the

paraboloid and its image curve on the parallellike surface are obtained respectively as

α (u) = ϕ
(
u,
π

4

)
=

(
u√
2
,
u√
2
, u2

)
and

β(u) =


1√
2

(
u+ λ1 − uλ2 − 2uλ3√

1+4u2

)
,

1√
2

(
u+ λ1 + uλ2 − 2uλ3√

1+4u2

)
,

u2 + 2uλ1 +
λ3√

1+4u2

 .

Here, by giving special values to λ1 = 1, λ2 = 2, λ3 = 3 parametric expressions and the graphs of these curves
α and β on the surfaces M and Mf have been found as follows

Figure 2. Paraboloid(blue),its parallel-like surface(gray),parameter curve on paraboloid(red) and its image curve on paralel-like surface(black)
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[7] Önder, M., Kızıltuğ S.: Bertrand and Manheim Partner D-Curves On Parallel Surfaces in Minkowski 3-Space. Int. Journal of Geometry. 1(2),

34-45 (2012).
[8] Özkaldı, S., Yaylı Y.: Constant Angle Surfaces And Curves in E3. International Electronic Journal of Geometry. 4(1), 70-78 (2011).
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