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INTRODUCTION 

Artificial neural networks collect information about examples, make generaliza-
tions, and then make decisions about new examples using the information they 
have learned when compared to examples they have never seen. Due to these 
learning and generalization features, artificial neural networks find wide appli-
cation in many fields of science today and reveal the ability to successfully solve 
complex problems (Ergezer et al., 2003). In other words, they are computer prog-
rams that imitate biological neural networks, which are parallel and distributed 
information processing structures that are inspired by the human brain, conne-
cted to each other through weighted connections, and composed of processing 
elements, each of which has its own memory (Elmas, 2003). 

In addition to factors such as global warming and seasonal changes, the damage 
to the environment is increasing rapidly due to unsustainable resource consump-
tion. The water used for various vital activities is sent to wastewater treatment 
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plants through different methods. The estimation of the 
operating parameters of the plant in the treatment of 
water with conventional methods takes a long time and 
constitutes a significant obstacle in terms of efficiency. In 
addition to the difficulty of the treatment process in the 
wastewater treatment plants established to purify the 
wastewater and deliver it to the receiving environments, 
various models are needed for the efficient operation of 
the treatment plants (Khatae, 2009). Recently, computer 
aided methods have found wide application in environ-
mental issues. These methods can be defined as a comp-
lex system formed as a result of the interconnection of 
processors, such as many neurons in the human brain, by 
various methods. Artificial neural networks have a high 
approximation capability and have the advantage of sol-
ving problems in a short time (Kologirou, 1999; Bechtler 
et al., 2001). Especially in fields such as agriculture and 
industry, expressing physical systems with equations 
and solving mathematical models with computer aid is 
one of the problems encountered (Hanbay et al., 2006). 
In a study conducted in Canada, two ANN models, back 
propagation network and radial basis function, were de-
veloped to estimate the nitrogen content in sewage wa-
ters. In this developed model, a simulation of nitrogen 
concentration in wastewater was applied. In this simula-
tion applied, it has been shown that wastewater has fer-
tilizer potential (Sharma et al., 2003). Biological oxygen 
demand (BOD) is of great importance in terms of water 
quality in treatment plants. However, it is important to 
measure and correctly estimate this parameter from an 
environmental point of view (Hamed et al., 2004; Agu-
ilera et al., 2001). The fact that the BOD measurement 
process takes up to five days naturally increases the 
cost. Regression analysis used in the measurement is an 
important parameter in defining water quality. Howe-
ver, due to non-linear relationships, obtaining effective 
results does not provide a good modeling opportunity 
compared to traditional methods. Various methods that 
can be used for nonlinear cases are widely used today 
(ANN, BM, ASBS). With the back propagation algorithm, 
which is one of these methods, it is possible to adjust the 
weights in order to bring the margin of error to the de-
sired value. This process can be repeated until the opti-
mum solution is reached (Yurtoglu, 2005).

In recent years, ANN-based models with one or more in-
puts and one or two outputs have been used to predict 
WWTP performance and ensure plant efficiency. The le-
arning process takes place by training the samples and 
processing the input and output data. In other words, 
learning takes place by repeating the training algorithm 
until a convergence is achieved by using these data (Kes-
kin et al., 2007). In this study, with the help of Artificial 
Neural Network (ANN) techniques, the performance of 
Adana Seyhan biological wastewater treatment plant 
(WWTP) was estimated. In addition, in this estimation, 
alternative methods have been tried to be determined 
to reduce BOD measurement costs.

Artificial Neural Networks (ANNs) 

ANNs mimic the working functions of the human brain. 
They are logical software developed to produce new in-
formation by generalizing. They are also artificial systems 
that model the functions of the human brain (Öztemel, 
2012). ANNs can establish connections between memo-
rization and information, together with learning as sel-
f-learning mechanisms (Elmas, 1994) [14]. The success of 
modeling various systems by training existing data with 
ANN has increased the usability of ANN (Haykin, 1994; 
Özcalık et al., 2003).

According to the algorithm of ANN, nerve cells are arran-
ged in multiple layers to correlate between inputs and 
outputs. In an ANN model, there are three layers as input, 
hidden and output layers, and a network can have more 
than one hidden layer (Yaldız, 2006). A typical ANN mo-
del is given in Figure 1 (URL, 2019). 

Figure 1. Artificial Neural Network Model

Feed Forward Back Propagation ANN Model (FFB-
PANN)

Feedforward neural networks allow for one-way signal 
flow, and most are organized in layers (Weatherford et 
al.,2003). The outputs of cells in one layer are given as 
inputs to the next layer over weights. The input layer 
transmits the information it receives from the external 
environment to the hidden layer without making any 
changes. The network output is determined by proces-
sing the information in the hidden and output layer 
(Öztemel, 2012). In Feedback Artificial Neural Networks 
(ANNs), at least one cell’s output is given as an input to 
itself or to other cells, and usually the feedback is done 
through a delay element (Kebalcı, 2014).

MATERIALS AND METHODS

Collection of Data 

In the study, 355-day data from Adana Metropolitan Mu-
nicipality Seyhan wastewater treatment plant for 2021 
were used as material. Of the data used, 240 were evalu-
ated as training data and 115 as test data. In the establis-
hment of the ANN model, the daily chemical oxygen de-
mand (COD), daily water flow (Qw) and daily suspended 



solids (SS) parameters at the entrance of the WWTP were 
used as input parameters. The daily BOD parameter was 
determined as the output parameter. Biological oxygen 
demand (BOD) is shown as one of the most important 
parameters in the management and planning of water 
quality. The flow chart of Adana Metropolitan Municipa-
lity Seyhan Wastewater Treatment Plant is given in Figure 
2 (URL, 2019).

Figure 2. Wastewater Treatment Process Step by Step

The statistical analysis results of the data obtained from 
the treatment plant used as the material in the study are 
given in Table 1. In the table, the Xave, Sx, Cv, Csx, xmin, 
and xmax parameters show the mean, standard devia-
tion, variance, skewness, minimum and maximum va-
lues of each data, respectively. As seen in Table 1, while 
the most variable data was seen in SS, the relationship 
between COD and BOD parameters changed linearly. It is 
seen that the water flow rate (Qw) is inversely proportio-
nal to the BOD (R2=-0.294).

Application of the FFBP ANN Model

Analysis of 355 data consisting of COD, SS and Qw and 
BOD from an output vector was considered in the study. 
The data used did not give very good results in predic-
ting the ANN model. For this reason, the data were nor-
malized and divided into two groups to form training 
and test sets between 0 and 1. In the study, 240 of the 
two groups formed from 355 data sets were used as tra-

ining sets and 115 as test sets. The estimated network 
structure of the model applied in the study is given in 
Figure 3.

Figure 3. Network Structure Estimated in Artificial Neu-
ral Networks Model for WWTP Process Control

In the study, statistical functions of correlation coefficient 
(R2), mean square error (RMSE) and mean absolute error 
(MAE) were used to evaluate the error levels of the data 
used (Landeras et al., 2008; Traore et al., 2010; Trejo-Perea 
et al., 2009; Yılmaz et al., 2008). The equations used in the 
calculation of the correlation coefficient (R2), mean squa-
re error (RMSE) and mean absolute error (MAE) statistical 
functions are given below;

In the equation;
m, the number of data tested,
Oi, predicted data in neural network,
yi, the calculated amount of data.

In the equation;
Xn , Normalized data value,
Xmin,  the min value of the data to be normalized,
Xmax,  the max value of the data to be normalized.
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Table 1. Data Used in the Study and Statistical Analysis
Data BOD (mg/l) COD (mg/l) SS (mg/l) Qw (m3/day)
Xaverage 228.978 384.299 209.041 154494.274
Sx 74.197 136.920 104.294 7625.813
Cv(Sx/Xaverage) 0.324 0,356 0.499 0.049
CSX -0.120 -0.576 0.433 -0.777
Xmin 63 131.000 58 106999
Xmax 474 880 766 178279
Correlation with BOD 
(R)

1.000 0.906 0.605 -0.294
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In this equation;
y  , the average of the calculated amount of data (yi).

01 aa += xy
In the equation;
x, the argument (amount of data),
α0,  intersection,
α1,  denotes slope.

RMSE, the Root of Mean Squared Errors

CONCLUSION

Performing Sensitivity Analysis Using FFBP ANN 
Model

The selection of the input parameters to be used in the 
FFBP ANN model is important for the performance of the 
model (Elmas, 2007). Sensitivity analysis, which gives the 
BOD estimation and the most effective input combina-
tions, was found using the IBGYYSA model (Table 2). In 
the BOD estimation, almost most of the input parame-
ters were determined to be important compared to the 
stability analysis. As can be seen in Figures 4 a-b-c, as a 
result of the calculation of the efficiency degrees in the 
BOD estimation, it was determined that the most effecti-
ve parameter was COD, while the least effective parame-
ter was Qw.

Table 2. Determining the Most Effective FFBP ANN Model 
Using Sensitivity Analysis

MAE (%) RMSE R2

COD+SS+Qw 10.32 722.21 0.891
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Figures 4 a-b-c. Determining the Performance of Input 
Parameters in Estimating BOD with FFBPANN

Determining the Most Appropriate FFBP ANN Model

RMSE and R2 performance functions are used to deter-
mine the active FFBP ANN model. The number of hidden 
layer neurons was determined as 4 from the test set per-
formance values as a result of various trials, as shown in 
Table 3. The ANN (4-4-1) model with the highest perfor-
mance was determined.

In the study, the model was tested after the FFBPANN 
model was trained. It can also be seen from the trend 
graphs that the estimated values of FFBPANN as a result 
of the tests performed with BOD are very close to the ob-
served values (Figure 5).

Figure 5. Comparison of BOD Estimates with Measured 
BODs in the FFBP ANN Model

RESULTS

In this study, using the FFBPANN model, the values of 355 
daily BOD amounts (R2) for 2021 at the entrance of Ada-
na-Seyhan wastewater treatment plant were found to be 
0.906 for COD, -0.294 for Qw and 0.605 for SS. The R2 va-
lue was determined as 0.891, the MAE value was 10.32%, 
and the RMSE value was 722.21 in the network struc-
tures where the best results were obtained for the test 
and training data (in the 4-4-1 ANN model). These values 
show that the ANN model used in the study gives very 
successful results. As a result of calculating the efficiency 
degrees in BOD estimation by using all of the inputs used 
for all models, it was determined that the most effective 
parameter was COD, while the least effective parameter 
was Qw. In addition, it was determined that the use of 
ANNs in BOD estimation of all input parameters (COD, 
SS and Qw) in the sensitivity analysis performed for the 
determination of the most effective model, because an 
effective FFBPANN model depends on the input para-
meters, gives much better results than the conventional 
models. Well-trained ANN parameters are important for 
the wastewater treatment processes used in WWTPs to 
give reliable estimates. In this study, it has been conclu-
ded that the ANN model is successful in estimating the 
BODs of WWTPs in terms of reliable and realistic results, 
and that effective analyzes with simulation of nonlinear 
behavior can be used as a good performance evaluation 
tool in terms of reducing operating costs.
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