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On a Topological Operator via Local Closure Function
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Abstract. In this research, we define and study the new topological operator called Γ-boundary operator BdΓ

by merging local closure function in ideal topological spaces. We research essential properties of this operator and
we specialize Γ-boundary of some special sets, such as θ-open, ℑΓ-perfect and ℑΓ-dense. Moreover, we examine
the properties of this operator in the topology which is formed by using local closure function. Furthermore, we
compare Γ-boundary operator with the boundary operator and the ∗-boundary operator. We also show that under
what conditions Γ-boundary operator, boundary operator and ∗-boundary operator are coincide.
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1. Introduction

Operators like closure, interior and boundary operators [2] play a significant role in general topology. In 1966,
Kuratowski defined the concept of the ideal [5] and introduced the concept of the local function [5] via ideal. Moreover,
many topological operators was obtained by using local function, such as cl∗ Kuratowski closure operator [15], Ψ-
operator [8], the operator ()∗− [12], the operator ()∗Ψ [12] and ∗-boundary operator [12]. One of these operators which
was studied by Selim et al. is ∗-boundary operator Bd∗ [12]. Then, they characterized Hayashi-Samuel spaces and
hence obtained new topology by using ∗-boundary operator in [12]. Furthermore, in [1] authors defined the concept of
the local closure function and introduced the operator ΨΓ via local closure function. Then, they obtained the topologies
σ0 [1] and σ [1] by using the operator ΨΓ. In 2016, Pavlović obtained under what conditions local closure function
and local function are coincide in [11]. In 2019, Goyal and Noorie defined the concepts of the θ-closure of a set with
respect to an ideal [4] and ℑθ-closed set [4] via local closure function. Moreover, they produced a new topology τℑθ [4]
which is finer than τθ [16]. In addition to these studies, many authors considered the local closure function in detail
(see [9, 10, 13, 14]). In this paper, we present new topological operator BdΓ by transforming the ∗-boundary operator
via local closure function and we compare this operator with the boundary operator and the ∗-boundary operator. We
also obtain some important properties of this operator and study the properties of Γ-boundary of some special sets.
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2. Preliminaries

Throughout this article, (Z, τ) represents a topological space. In (Z, τ), the closure and the interior of a subset K of
Z are denoted by cl(K) and int(K), respectively. P(Z) represents the family of all subsets of Z. An ideal ℑ [5] on Z is a
nonempty collection of subsets of Z satisfying the following conditions:

(i) if K ∈ ℑ and L ⊆ K, L ∈ ℑ (heredity),
(ii) if K ∈ ℑ and L ∈ ℑ, K ∪ L ∈ ℑ (finite additivity).
An ideal topological space (Z, τ,ℑ) is a topological space (Z, τ) with an ideal ℑ on Z. If τ ∩ ℑ = {∅}, then an

ideal topological space (Z, τ,ℑ) is called Hayashi-Samuel space [3]. For a subset K of Z, K∗(ℑ, τ) = {x ∈ Z | U ∩ K <
ℑ for each U ∈ τ(x)} is called the local function [5] of K with respect to τ and ℑ, where τ(x) = {U ∈ τ | x ∈ U}. We use
K∗ instead of K∗(ℑ, τ). A Kuratowski closure operator cl∗(.), for a topology τ∗(ℑ, τ), called the ∗-topology, is defined
by cl∗(K) = K ∪ K∗(ℑ, τ) [15] and τ∗(ℑ, τ) is finer than τ. Γ(K)(ℑ, τ) = {x ∈ Z | K ∩ cl(U) < ℑ for every U ∈ τ(x)} is
called the local closure function [1] of K with respect to ℑ and τ. It is shortly denoted by Γ(K) instead of Γ(K)(ℑ, τ).
An operator ΨΓ : P(Z) 7→ τ is defined as ΨΓ(K) = Z \ Γ(Z \ K) in [1]. A subset K is called ℑΓ-perfect [13] (resp.
Γ-dense-in-itself [13], LΓ-perfect [13], RΓ-perfect [13], ℑΓ-dense [13]) if K = Γ(K) (resp. K ⊆ Γ(K), K \ Γ(K) ∈ ℑ,
Γ(K) \ K ∈ ℑ, Γ(K) = Z). A subset K is called θℑ-closed [10] if Γ(K) ⊆ K. Al-Omari and Noiri defined the topologies
on Z in [1] as follows: σ = {K ⊆ Z : K ⊆ ΨΓ(K)} and σ0 = {K ⊆ Z : K ⊆ int(cl(ΨΓ(K)))} and τθ ⊆ σ ⊆ σ0. A subset
K is called σ-open [1] (resp. σ0-open [1]) set, if K ∈ σ (resp. K ∈ σ0).

For (Z, τ) and a subset K of Z, clθ(K) = {x ∈ Z : cl(U) ∩ K , ∅ for each U ∈ τ(x)} is called the θ-closure of K [16].
The θ-interior of K [16], denoted intθ(K), consists of those points x of K such that U ⊆ cl(U) ⊆ K for some open set U
containing x. A subset K is called θ-closed [16] if K = clθ(K). The complement of a θ-closed set is called θ-open. The
family of all θ-open sets in (Z, τ) is denoted by τθ. Moreover, τθ is a topology on Z and it is coarser than τ. A subset
K is called preopen [7] if K ⊆ int(cl(K)). The complement of a preopen set is called a preclosed [7] set. A subset K is
called generalized closed (briefly, g-closed) [6] if cl(K) ⊆ U, whenever K ⊆ U and U is open.

In this paper, (Z, τ,ℑ) represents an ideal topological space.

Lemma 2.1 ( [1]). (i) In (Z, τ), cl(O) = clθ(O) for each open subset O of Z.
(ii) In (Z, τ,ℑ), K∗ ⊆ Γ(K) for K ⊆ Z.

Theorem 2.2 ( [1]). The following features are valid for M,N ⊆ Z in (Z, τ,ℑ).
(i) Γ(∅) = ∅.
(ii) If M ∈ ℑ, then Γ(M) = ∅.
(iii) Γ(M) ∪ Γ(N) = Γ(M ∪ N).
(iv) ΨΓ(M ∩ N) = ΨΓ(M) ∩ ΨΓ(N).
(v) Γ(M) = cl(Γ(M)) ⊆ clθ(M).

Theorem 2.3 ( [14]). In (Z, τ,ℑ), Γ(M ∩ N) ⊆ Γ(M) ∩ Γ(N) for M,N ⊆ Z.

Definition 2.4 ( [4]). In (Z, τ,ℑ) for a subset G of Z, θ-closure of G with respect to an ideal ℑ is defined as clℑθ (G) =
G ∪ Γ(G)(ℑ, τ) and if G = clℑθ (G), then G is called to be ℑθ-closed.

Remark 2.5 ( [4]). In (Z, τ,ℑ) for a subset G of Z, Intℑθ (G) is defined as Intℑθ (G) = Z \clℑθ (Z \G) and if G = Intℑθ (G),
then G is called to be ℑθ-open. The collection of ℑθ-open sets forms a topology on Z and it is denoted by τℑθ .

Remark 2.6. In (Z, τ,ℑ) for M ⊆ Z, M is ℑθ-closed⇔ M = clℑθ (M) = Γ(M) ∪ M ⇔ Γ(M) ⊆ M ⇔ M is θℑ-closed.
Thus, the concept of ℑθ-closed set in [4] and the concept of θℑ-closed set in [10] are identical.

Proposition 2.7. In (Z, τ,ℑ) for M ⊆ Z;
(i) M is ℑθ-open⇔ Z \ M is ℑθ-closed.
(ii) M is ℑθ-open⇔ M ⊆ ΨΓ(M).
(iii) M is σ-open⇔ M is ℑθ-open.

Proof. (i) M is ℑθ-open⇔ M = Intℑθ (M) = Z \ clℑθ (Z \ M)⇔ clℑθ (Z \ M) = Z \ M ⇔ Z \ M is ℑθ-closed.
(ii) M is ℑθ-open⇔ Z \ M is ℑθ-closed (or θℑ-closed)⇔ Γ(Z \ M) ⊆ Z \ M ⇔ M ⊆ Z \ Γ(Z \ M) = ΨΓ(M).
(iii) The proof is clear. □

Corollary 2.8. In (Z, τ,ℑ), σ = τℑθ from the Proposition 2.7 (iii).
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Remark 2.9. In (Z, τ,ℑ) for K ⊆ Z, clℑθ (K) may not beℑθ-closed. Therefore, clℑθ is not a Kuratowski closure operator.

Example 2.10. Let Z = {p, q, r, s},ℑ = {∅, {p}} and τ = {∅, {s}, {p, r}, {p, r, s},Z}. In (Z, τ,ℑ), clℑθ (clℑθ (C)) , clℑθ (C),
for the set C = {r}.

Theorem 2.11 ( [1]). In (Z, τ,ℑ), Z = Γ(Z) iff cl(τ) ∩ ℑ = {∅} where cl(τ) = {cl(G) : G ∈ τ}.

Theorem 2.12 ( [14]). ΨΓ(K) ⊆ Γ(K) for each K ⊆ Z in (Z, τ,ℑ) where cl(τ) ∩ ℑ = {∅}.

Theorem 2.13. In (Z, τ,ℑ), there is a subset M of Z such that ΨΓ(M) = Γ(M) iff cl(τ) ∩ ℑ = {∅}.

Proof. (⇒) : Let M ⊆ Z such that ΨΓ(M) = Γ(M). Then Z \ Γ(Z \ M) = Γ(M) and so Z = Γ(Z \ M) ∪ Γ(M). Thus, by
the Theorem 2.2 (iii), Γ(Z) = Z. Consequently, from the Theorem 2.11, cl(τ) ∩ ℑ = {∅}.

(⇐) : Let cl(τ)∩ℑ = {∅}. From the Theorem 2.11, Γ(Z) = Z and so ΨΓ(Z) = Z \Γ(∅). In that case, by the Theorem
2.2 (i), ΨΓ(Z) = Z and thus ΨΓ(Z) = Γ(Z). □

Theorem 2.14. In (Z, τ,ℑ), if there is a subset M of Z with ΨΓ(M) , Γ(M), then one of the following statements hold:
(a) There exist x ∈ Z and U ∈ τ(x) such that U ∈ ℑ ∩ τ(x).
(b) There exists x ∈ Z such that cl(U) < ℑ for every U ∈ τ(x).

Proof. Let M be a subset of Z with ΨΓ(M) , Γ(M). Afterward, there exists an element x of Z in either ΨΓ(M) \ Γ(M)
or Γ(M) \ ΨΓ(M).

(a) If x ∈ ΨΓ(M) \ Γ(M), x < Γ(Z \ M) and x < Γ(M). Therefore, there exist G,H ∈ τ(x) with cl(G) ∩ (Z \ M) ∈ ℑ
and cl(H) ∩ M ∈ ℑ. Let U = G ∩ H. Hence, there exists U ∈ τ(x) such that cl(U) ∩ (Z \ M) ∈ ℑ and cl(U) ∩ M ∈ ℑ.
Then, [cl(U) ∩ (Z \ M)] ∪ [cl(U) ∩ M] = cl(U) ∈ ℑ. Consequently, U ∈ ℑ by the heredity.

(b) If x ∈ Γ(M) \ ΨΓ(M), x ∈ Γ(Z \ M) and x ∈ Γ(M). By the Theorem 2.2 (iii), x ∈ Γ(Z \ M) ∪ Γ(M) = Γ(Z). It
implies that cl(U) ∩ Z = cl(U) < ℑ for every U ∈ τ(x). □

3. The New Operator BdΓ

Definition 3.1. The operator BdΓ : P(Z) → τk, BdΓ(K) = Γ(K) ∩ Γ(Z \ K) is called Γ-boundary operator on (Z, τ,ℑ),
where τk = {K ⊆ Z : Z \ K ∈ τ}. For K ⊆ Z and x ∈ Z, a point x ∈ BdΓ(K) is called a Γ-boundary point of K and
BdΓ(K) is called a Γ-boundary of K in (Z, τ,ℑ).

Example 3.2. Let R be the set of all real numbers, Q be the set of all rational numbers and τu be the usual topology on
R. In the ideal topological space (R, τu, {∅}), Γ(Q) = R and Γ(R \ Q) = R and so BdΓ(Q) = R.

Remark 3.3. In (Z, τ,ℑ), for a subset K of Z, Γ-boundary of K depends on both topology τ and ideal ℑ. For example,
in an ideal topological space (R, τ, {∅}), where τ is discrete topology, BdΓ(Q) = ∅. But we know BdΓ(Q) = R in
(R, τu, {∅}) by the above example.

Example 3.4. Let Z = {p, q, r, s},ℑ1 = {∅, {r}},ℑ2 = {∅, {p}} and τ = {∅, {s}, {p, r}, {p, r, s},Z}. In (Z, τ,ℑ1), if
G = {p, q, s}, then BdΓ(G) = ∅, but BdΓ(G) = {p, q, r} in (Z, τ,ℑ2).

Proposition 3.5. In (Z, τ,ℑ) for K ⊆ Z;
(i) If ℑ = {∅}, then BdΓ(K) = clθ(K) ∩ clθ(Z \ K).
(ii) If ℑ = P(Z), then BdΓ(K) = ∅.

Proof. The proof is clear. □

Theorem 3.6. In (Z, τ,ℑ), BdΓ(K) = Γ(K) \ ΨΓ(K) for K ⊆ Z.

Proof. BdΓ(K) = Γ(K) ∩ [Z \ (Z \ Γ(Z \ K))] = Γ(K) ∩ (Z \ ΨΓ(K)) = Γ(K) \ ΨΓ(K). □

Theorem 3.7. In (Z, τ,ℑ) for K ⊆ Z, if x is a Γ-boundary point of K, then cl(U) < ℑ for all U ∈ τ(x). But the reverse
of this requirement is not true in general.

Proof. Let x ∈ BdΓ(K). Then, x ∈ Γ(Z \ K) and x ∈ Γ(K). By the Theorem 2.2 (iii), x ∈ Γ(Z \ K) ∪ Γ(K) = Γ(Z). It
implies that cl(U) ∩ Z = cl(U) < ℑ for every U ∈ τ(x). □

Example 3.8. Let Z = {p, q, r, s},ℑ = {∅, {p}} and τ = {∅, {p}, {s}, {p, q}, {p, s}, {p, q, s},Z}. In (Z, τ,ℑ), if K = {q},
then BdΓ(K) = {p, q, r}. Although cl(U) < ℑ for all U ∈ τ(s), s < BdΓ(K).
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Theorem 3.9. In (Z, τ,ℑ) for K ⊆ Z and x ∈ Z, x is a Γ-boundary point of K iff for every U ∈ τ(x), cl(U)∩ K < ℑ and
cl(U) ∩ (Z \ K) < ℑ.

Proof. x ∈ BdΓ(K)⇔ x ∈ Γ(K) and x ∈ Γ(Z \ K)⇔ cl(U) ∩ K < ℑ and cl(U) ∩ (Z \ K) < ℑ for every U ∈ τ(x). □

Theorem 3.10. In (Z, τ,ℑ) for K ⊆ Z, BdΓ(K) = ∅ iff Γ(K) ⊆ ΨΓ(K).

Proof. BdΓ(K) = ∅⇔ Γ(K) ⊆ Z \ Γ(Z \ K) = ΨΓ(K). □

Theorem 3.11. Let cl(τ) ∩ ℑ = {∅} in (Z, τ,ℑ). Then BdΓ(K) = ∅ iff Γ(K) = ΨΓ(K) for K ⊆ Z.

Proof. Let cl(τ) ∩ ℑ = {∅}. Then we know that by the Theorem 2.12, ΨΓ(K) ⊆ Γ(K) for each K ⊆ Z. Therefore, the
proof is obvious from the Theorem 3.10. □

Corollary 3.12. In (Z, τ,ℑ) for K ⊆ Z, if BdΓ(K) = K, then cl(U) < ℑ for each x ∈ K and for each U ∈ τ(x).

Proof. It is clear by the Theorem 3.7. □

Remark 3.13. The reverse of the Corollary 3.12 may not be true in general.

Example 3.14. For (Z, τ,ℑ) in the Example 2.10, if D = {s}, then cl(U) < ℑ for each U ∈ τ(s), but BdΓ(D) = {q, s} , D.

Corollary 3.15. In (Z, τ,ℑ), if there is a nonempty subset K of Z such that BdΓ(K) = K, Z < ℑ, that is, ℑ , P(Z).

Proof. It is trivial by the Corollary 3.12. □

Theorem 3.16. If BdΓ(K) = Z, then both K and Z \ K are ℑΓ-dense for K ⊆ Z in (Z, τ,ℑ).

Proof. Let K ⊆ Z such that BdΓ(K) = Z. It implies that Γ(K) = Z and Γ(Z \ K) = Z. As a consequence, both K and
Z \ K are ℑΓ-dense. □

Theorem 3.17. In (Z, τ,ℑ), the followings hold for K, L ⊆ Z :
(a) BdΓ(∅) = ∅.
(b) BdΓ(Z) = ∅.
(c) If K ∈ ℑ, then BdΓ(K) = ∅.
(d) BdΓ(K ∪ L) ⊆ BdΓ(K) ∪ BdΓ(L).
(e) (K ∩ BdΓ(L)) ∪ BdΓ(K ∪ L) ∪ (L ∩ BdΓ(K)) ⊆ BdΓ(K) ∪ BdΓ(L).
(f) If BdΓ(K) = ∅, then K ∩ Γ(K) ⊆ Intℑθ (K).
(g) BdΓ(K) = Γ(Z \ K) \ ΨΓ(Z \ K) = BdΓ(Z \ K).
(h) Z \ BdΓ(K) = ΨΓ(K) ∪ ΨΓ(Z \ K).
(i) Z = BdΓ(K) ∪ ΨΓ(K) ∪ ΨΓ(Z \ K) = BdΓ(Z \ K) ∪ ΨΓ(K) ∪ ΨΓ(Z \ K).

Proof. (a) By the Theorem 2.2 (i), BdΓ(∅) = ∅.
(b) By the Theorem 2.2 (i), BdΓ(Z) = ∅.
(c) If K ∈ ℑ, then by the Theorem 2.2 (ii), BdΓ(K) = ∅ ∩ Γ(Z \ K) = ∅.
(d) By the Theorem 2.2 (iii), BdΓ(K ∪ L) = (Γ(K) ∪ Γ(L)) ∩ Γ((Z \ K) ∩ (Z \ L)). Then, from the Theorem 2.3,

BdΓ(K ∪ L) ⊆ (Γ(K) ∪ Γ(L)) ∩ (Γ(Z \ K) ∩ Γ(Z \ L)) = (Γ(K) ∩ Γ(Z \ K) ∩ Γ(Z \ L)) ∪ (Γ(L) ∩ Γ(Z \ K) ∩ Γ(Z \ L)) ⊆
(Γ(K) ∩ Γ(Z \ K)) ∪ (Γ(L) ∩ Γ(Z \ L)) = BdΓ(K) ∪ BdΓ(L).

(e) We know that (K ∩ BdΓ(L))∪ BdΓ(K ∪ L)∪ (L∩ BdΓ(K)) ⊆ BdΓ(L)∪ BdΓ(K ∪ L)∪ BdΓ(K). From the Theorem
3.17 (d), BdΓ(L)∪ BdΓ(K ∪ L)∪ BdΓ(K) ⊆ BdΓ(L)∪ BdΓ(K) = BdΓ(K)∪ BdΓ(L). Thus, (K ∩ BdΓ(L))∪ BdΓ(K ∪ L)∪
(L ∩ BdΓ(K)) ⊆ BdΓ(K) ∪ BdΓ(L).

(f) Let BdΓ(K) = ∅. Then, Γ(K) ⊆ ΨΓ(K) by the Theorem 3.10. Assume that an element x of Z is not in Intℑθ (K).
Then x ∈ clℑθ (Z \ K) = (Z \ K) ∪ Γ(Z \ K). If x ∈ Z \ K, then x < K and so x < K ∩ Γ(K). If x ∈ Γ(Z \ K), then
x < ΨΓ(K). Since Γ(K) ⊆ ΨΓ(K), x < Γ(K) and so x < K ∩ Γ(K). Therefore, we can say that: when x < Intℑθ (K),
x < K ∩ Γ(K) and so K ∩ Γ(K) ⊆ Intℑθ (K).

(g) By the Theorem 3.6, BdΓ(Z \ K) = Γ(Z \ K) \ ΨΓ(Z \ K) = Γ(Z \ K) \ (Z \ Γ(Z \ (Z \ K))) = BdΓ(K).
(h) Z \ BdΓ(K) = (Z \ Γ(K)) ∪ (Z \ Γ(Z \ K)) = ΨΓ(Z \ K) ∪ ΨΓ(K).
(i) Z = (Z \ BdΓ(K))∪ BdΓ(K). By the Theorem 3.17 (h), Z = ΨΓ(Z \K)∪ΨΓ(K)∪ BdΓ(K) and so Z = ΨΓ(Z \K)∪

ΨΓ(K) ∪ BdΓ(Z \ K) from the Theorem 3.17 (g). □
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Remark 3.18. For subsets K, L of Z in (Z, τ,ℑ), although BdΓ(K) = ∅, K may not be in ℑ. Furthermore, BdΓ(K) ∪
BdΓ(L) may not be equivalent to BdΓ(K ∪ L). Similarly, BdΓ(K) ∩ BdΓ(L) may not be equivalent to BdΓ(K ∩ L).

Example 3.19. For (Z, τ,ℑ) in the Example 2.10, if H = {q, r, s}, then BdΓ(H) = ∅, but H < ℑ. If D = {s} and L = {q},
then BdΓ(D ∪ L) = {p, q, r}, BdΓ(D) = {q, s} and BdΓ(L) = Z, but BdΓ(D) ∪ BdΓ(L) , BdΓ(D ∪ L). If M = {q, s} and
N = {r, s}, then BdΓ(M ∩ N) = {q, s}, BdΓ(M) = {p, q, r} and BdΓ(N) = Z, but BdΓ(M) ∩ BdΓ(N) , BdΓ(M ∩ N).

Theorem 3.20. BdΓ(K) ∪ BdΓ(L) = BdΓ(K \ L) ∪ BdΓ(K ∩ L) ∪ BdΓ(L \ K) for K, L ⊆ Z in (Z, τ,ℑ).

Proof. (⇒) : (a) By the Theorem 3.17 (g), BdΓ(K ∩ L) = BdΓ(Z \ (K ∩ L)) = BdΓ((Z \ K) ∪ (Z \ L)). Then by the
Theorem 3.17 (d) and (g), BdΓ(K ∩ L) = BdΓ((Z \ K) ∪ (Z \ L)) ⊆ BdΓ(Z \ K) ∪ BdΓ(Z \ L) = BdΓ(K) ∪ BdΓ(L).

(b) BdΓ(K \ L) = BdΓ(K ∩ (Z \ L)) = Γ(K ∩ (Z \ L)) ∩ Γ(Z \ [K ∩ (Z \ L)]) = Γ(K ∩ (Z \ L)) ∩ Γ((Z \ K) ∪ L). By
the Theorem 2.3 and the Theorem 2.2 (iii), Γ(K ∩ (Z \ L)) ∩ Γ((Z \ K) ∪ L) ⊆ (Γ(K) ∩ Γ(Z \ L)) ∩ (Γ(Z \ K) ∪ Γ(L)).
Then BdΓ(K \ L) ⊆ (Γ(K) ∩ Γ(Z \ L)) ∩ (Γ(Z \ K) ∪ Γ(L)) = (Γ(K) ∩ Γ(Z \ L) ∩ Γ(Z \ K)) ∪ (Γ(K) ∩ Γ(Z \ L) ∩ Γ(L)) ⊆
(Γ(K) ∩ Γ(Z \ K)) ∪ (Γ(Z \ L) ∩ Γ(L)) = BdΓ(K) ∪ BdΓ(L).

(c) In a similar way to (b), BdΓ(L \ K) ⊆ BdΓ(K) ∪ BdΓ(L).
Hence, from (a), (b) and (c), BdΓ(K \ L) ∪ BdΓ(K ∩ L) ∪ BdΓ(L \ K) ⊆ BdΓ(K) ∪ BdΓ(L)...(1)
(⇐) : BdΓ(K) ∪ BdΓ(L) = BdΓ((K \ L) ∪ (K ∩ L)) ∪ BdΓ((L \ K) ∪ (K ∩ L)). Then by the Theorem 3.17 (d),

BdΓ(K) ∪ BdΓ(L) ⊆ (BdΓ(K \ L) ∪ BdΓ(K ∩ L)) ∪ (BdΓ(L \ K) ∪ BdΓ(K ∩ L)). So BdΓ(K) ∪ BdΓ(L) ⊆ BdΓ(K \ L) ∪
BdΓ(L \ K) ∪ BdΓ(K ∩ L)...(2).

Consequently, from (1) and (2), BdΓ(K) ∪ BdΓ(L) = BdΓ(K \ L) ∪ BdΓ(K ∩ L) ∪ BdΓ(L \ K). □

Theorem 3.21. The following statements hold for K, L ⊆ Z in (Z, τ,ℑ):
(a) BdΓ(K) ∪ BdΓ(L) = BdΓ(K ∩ L) ∪ BdΓ(K \ L) ∪ BdΓ(K ∪ L).
(b) BdΓ(K) ∪ BdΓ(K △ L) = BdΓ(K \ L) ∪ BdΓ(K ∩ L) ∪ BdΓ(L \ K).

Proof. (a) BdΓ(K) ∪ BdΓ(L) = BdΓ(K) ∪ BdΓ(Z \ L) by the Theorem 3.17 (g). From the Theorem 3.20, BdΓ(K) ∪
BdΓ(Z \ L) = BdΓ(K \ (Z \ L))∪ BdΓ(K ∩ (Z \ L))∪ BdΓ((Z \ L) \ K). Then BdΓ(K)∪ BdΓ(L) = BdΓ(K ∩ L)∪ BdΓ(K \
L) ∪ BdΓ((Z \ L) ∩ (Z \ K)) = BdΓ(K ∩ L) ∪ BdΓ(K \ L) ∪ BdΓ(Z \ (K ∪ L)) = BdΓ(K ∩ L) ∪ BdΓ(K \ L) ∪ BdΓ(K ∪ L)
from the Theorem 3.17 (g).

(b) BdΓ(K) ∪ BdΓ(K △ L) = BdΓ(K \ (K △ L)) ∪ BdΓ((K △ L) \ K) ∪ BdΓ(K ∩ (K △ L)) by the Theorem 3.20. Then
BdΓ(K) ∪ BdΓ(K △ L) = BdΓ(K \ [(K \ L) ∪ (L \ K)]) ∪ BdΓ([(K \ L) ∪ (L \ K)] \ K) ∪ BdΓ(K ∩ [(K \ L) ∪ (L \ K)]) =
BdΓ(K ∩ [Z \ (K \ L)] ∩ [Z \ (L \ K)]) ∪ BdΓ([(K \ L) ∪ (L \ K)] ∩ (Z \ K)) ∪ BdΓ([K ∩ (K \ L)] ∪ [K ∩ (L \ K)]) =
BdΓ(K ∩ [(Z \ K) ∪ L] ∩ [(Z \ L) ∪ K]) ∪ BdΓ([(K \ L) ∩ (Z \ K)] ∪ [(L \ K) ∩ (Z \ K)]) ∪ BdΓ(K \ L) = BdΓ((K ∩ L) ∩
[(Z \ L) ∪ K]) ∪ BdΓ((L \ K) ∩ (Z \ K)) ∪ BdΓ(K \ L) = BdΓ(K \ L) ∪ BdΓ(K ∩ L) ∪ BdΓ(L \ K). □

Corollary 3.22. In (Z, τ,ℑ) for K, L ⊆ Z, BdΓ(K) ∪ BdΓ(L) = BdΓ(K ∩ L) ∪ BdΓ(K \ L) ∪ BdΓ(K ∪ L) = BdΓ(K) ∪
BdΓ(K △ L) = BdΓ(K \ L) ∪ BdΓ(K ∩ L) ∪ BdΓ(L \ K).

Proof. It is clear by the Theorem 3.20 and Theorem 3.21. □

Theorem 3.23. BdΓ(K) = Γ(Z \ K) iff Z \ Γ(K) ⊆ ΨΓ(K) for K ⊆ Z in (Z, τ,ℑ).

Proof. BdΓ(K) = Γ(Z \ K)⇔ Γ(Z \ K) ⊆ Γ(K)⇔ Z \ Γ(K) ⊆ Z \ Γ(Z \ K) = ΨΓ(K). □

Theorem 3.24. If K is an ℑΓ-dense subset of Z, then BdΓ(K) = Γ(Z \ K) in (Z, τ,ℑ).

Proof. Let K be an ℑΓ-dense subset of Z. Then, Γ(K) = Z. Thus, BdΓ(K) = Z ∩ Γ(Z \ K) = Γ(Z \ K). □

Remark 3.25. The reverse of the Theorem 3.24 may not be true in general.

Example 3.26. In the ideal topological space (R, P(R),ℑ f ), where ℑ f is the ideal of finite subsets of R, although
BdΓ(R) = ∅ = Γ(R \ R), R is not ℑΓ-dense.

Theorem 3.27. In (Z, τ,ℑ), if K is an ℑθ-closed subset of Z, BdΓ(K) ⊆ K \ ΨΓ(K).

Proof. Let K be an ℑθ-closed subset of Z. Then, Γ(K) ⊆ K. Thus, BdΓ(K) ⊆ K ∩ Γ(Z \K) = K ∩ [Z \ (Z \ Γ(Z \K))] =
K ∩ (Z \ ΨΓ(K)) = K \ ΨΓ(K). □

Remark 3.28. The reverse of the Theorem 3.27 may not be true in general.
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Example 3.29. Let Z = {p, q, r, s},ℑ = {∅, {r}} and τ = {∅, {s}, {p, r}, {p, r, s},Z}. In (Z, τ,ℑ), if G = {p, q, s},
BdΓ(G) = ∅ = G \ ΨΓ(G). Although BdΓ(G) ⊆ G \ ΨΓ(G), the set G is not ℑθ-closed.

Corollary 3.30. In (Z, τ,ℑ), if K is an ℑθ-closed subset of Z, BdΓ(K) ⊆ K.

Proof. It is clear by the Theorem 3.27. □

Remark 3.31. The reverse of the Corollary 3.30 may not be true in general.

Example 3.32. In the Example 2.10, for (Z, τ,ℑ), if H = {q, r, s}, then BdΓ(H) = ∅ and Γ(H) = Z. Although
BdΓ(H) ⊆ H, H is not ℑθ-closed.

Theorem 3.33. If BdΓ(K) ⊆ K and ΨΓ(K) = ∅, then K is ℑθ-closed for K ⊆ Z in (Z, τ,ℑ).

Proof. Suppose that BdΓ(K) ⊆ K ⊆ Z and ΨΓ(K) = ∅. Then, Γ(K) \ ΨΓ(K) ⊆ K by the Theorem 3.6. Therefore,
Γ(K) \ ∅ = Γ(K) ⊆ K. Thus, K is ℑθ-closed. □

Theorem 3.34. If K is an ℑθ-open subset of Z, then BdΓ(K) ⊆ Γ(K) \ K in (Z, τ,ℑ).

Proof. Let K be an ℑθ-open subset of Z. Later on, by the Proposition 2.7 (i), Z \ K is ℑθ-closed. Hence clℑθ (Z \ K) =
Z\K, that is, (Z\K)∪Γ(Z\K) = Z\K. It implies that Γ(Z\K) ⊆ Z\K. Thus, we can say that BdΓ(K) ⊆ Γ(K)∩(Z\K) =
Γ(K) \ K. □

Remark 3.35. The reverse of the Theorem 3.34 may not be true in general.

Example 3.36. For (Z, τ,ℑ) in the Example 3.29, if K = {r}, then BdΓ(K) = ∅ ⊆ Γ(K) \ K but K is not ℑθ-open.

Theorem 3.37. If K is ℑΓ-dense and BdΓ(K) ⊆ Γ(K) \ K, then K is ℑθ-open for K ⊆ Z in (Z, τ,ℑ).

Proof. Suppose that K is ℑΓ-dense subset of Z and BdΓ(K) ⊆ Γ(K) \ K. Then, BdΓ(K) ⊆ Γ(K) ∩ (Z \ K) and so
Z \ [Γ(K)∩ (Z \ K)] ⊆ Z \ (Γ(K)∩ Γ(Z \ K)). Thus (Z \ Γ(K))∪ K ⊆ (Z \ Γ(K))∪ (Z \ Γ(Z \ K)) = (Z \ Γ(K))∪ΨΓ(K).
Then as K is ℑΓ-dense, (Z \Z)∪K ⊆ (Z \Z)∪ΨΓ(K). It implies that K ⊆ ΨΓ(K) and so K is ℑθ-open by the Proposition
2.7 (ii). □

Corollary 3.38. For each θ-open subset U of Z in (Z, τ,ℑ), BdΓ(U) ⊆ Γ(U) \ U.

Proof. Let U be a θ-open subset of Z. As τθ ⊆ σ, U ∈ σ and so U is ℑθ-open by the Proposition 2.7 (iii). Then,
BdΓ(U) ⊆ Γ(U) \ U from the Theorem 3.34. □

Corollary 3.39. If K is both ℑθ-open and ℑθ-closed subset of Z, BdΓ(K) = ∅ in (Z, τ,ℑ).

Proof. Assume that K is both ℑθ-open and ℑθ-closed subset of Z. Subsequently, BdΓ(K) ⊆ Γ(K)\K from the Theorem
3.34 and BdΓ(K) ⊆ K \ ΨΓ(K) by the Theorem 3.27. Therefore, BdΓ(K) ⊆ (Γ(K) \ K) ∩ (K \ ΨΓ(K)) = ∅ and so
BdΓ(K) = ∅. □

Remark 3.40. In general, the reverse of the Corollary 3.39. may not be true. Look at the Example 3.29.

Theorem 3.41. If K is ℑΓ-perfect subset of Z, then BdΓ(K) = K \ ΨΓ(K) in (Z, τ,ℑ).

Proof. It is clear by the Theorem 3.6 and the definition of ℑΓ-perfect set. □

Remark 3.42. The reverse of the Theorem 3.41 may not be true in general.

Example 3.43. For (Z, τ,ℑ) in the Example 2.10, if H = {q, r, s}, then BdΓ(H) = ∅, H \ ΨΓ(H) = H \ Z = ∅ and
Γ(H) = Z. Although BdΓ(H) = H \ ΨΓ(H), H is not ℑΓ-perfect.

Theorem 3.44. In (Z, τ,ℑ) for K ⊆ Z, if Z \ K is ℑΓ-dense and BdΓ(K) = K \ ΨΓ(K), then K is ℑΓ-perfect.

Proof. Assume that Z \K is ℑΓ-dense and BdΓ(K) = K \ΨΓ(K). Then Z = Γ(Z \K) and so K \ΨΓ(K) = K∩Γ(Z \K) =
K ∩ Z = K. Moreover, BdΓ(K) = Γ(K) ∩ Z = Γ(K). K = Γ(K), since BdΓ(K) = K \ ΨΓ(K). Consequently, K is
ℑΓ-perfect. □

Theorem 3.45. For K ⊆ Z, if K ⊆ BdΓ(K), then K is Γ-dense-in-itself in (Z, τ,ℑ).

Proof. The proof is clear. □
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Remark 3.46. The inverse of the Theorem 3.45 may not be true.

Example 3.47. For (Z, τ,ℑ) in the Example 2.10, if E = {q, r}, then BdΓ(E) = {q, s} and Γ(E) = Z. Although E is
Γ-dense-in-itself, E is not a subset of BdΓ(E).

4. The Relations of the Operator BdΓ with the Operator Bd and Bd∗

Definition 4.1 ( [2]). In (Z, τ), the boundary operator Bd : P(Z) → τk is defined as Bd(K) = cl(K) ∩ cl(Z \ K) for
K ⊆ Z.

Definition 4.2 ( [12]). In (Z, τ,ℑ), the operator Bd∗ : P(Z) → τk is defined as Bd∗(K) = K∗ ∩ (Z \ K)∗ for a subset K
of Z and it is called ∗-boundary operator on (Z, τ,ℑ). If x ∈ Bd∗(K), then the point x is called ∗-boundary point of K.

In [12], a new topology is obtained on Z by using ∗-boundary operator and it is shown that k1 : P(Z) → P(Z),
k1(K) = K ∪ Bd∗(K) is a closure operator for this topology.

Theorem 4.3 ( [2]). In (Z, τ) for a subset K of Z;
(i) x ∈ Bd(K) iff x ∈ cl(K) \ int(K) for x ∈ Z.
(ii) Bd(K) = ∅ iff K is both open and closed.

Remark 4.4. In (Z, τ), Bd(Bd(K)) ⊆ Bd(K) for K ⊆ Z.

Theorem 4.5 ( [12]). (Z, τ,ℑ) is Hayashi-Samuel if and only if Bd∗(K) = Bd(K) for each open subset K of Z.

Remark 4.6. In an ideal topological space, the operator BdΓ may not provide the important properties of the boundary
operator Bd. For example, the statements of clℑθ (K) \ Intℑθ (K) = BdΓ(K) and BdΓ(BdΓ(K)) ⊆ BdΓ(K) may not be true
in (Z, τ,ℑ) for a subset K of Z. Similarly, although BdΓ(K) = ∅, the set K may be neither ℑθ-open nor ℑθ-closed. Look
at the Corollary 3.39 and the Example 3.29.

Example 4.7. For (Z, τ,ℑ1) in the Example 3.4, if G = {p, q, s}, then BdΓ(G) = ∅, but clℑθ (G) \ Intℑθ (G) = {r}.
Moreover, for (Z, τ,ℑ2) in the Example 3.4, if C = {r}, then BdΓ(C) = {p, q, r} and BdΓ(BdΓ(C)) = {q, s}, but
BdΓ(BdΓ(C)) ⊈ BdΓ(C).

Remark 4.8. In an ideal topological space, there is not inclusion between Γ-boundary of a set and boundary of a set.
For (Z, τ,ℑ) in the Example 2.10, BdΓ(L) = Z and Bd(L) = {q} for the set L = {q}. Similarly, for the set K = {p} in this
ideal topological space, BdΓ(K) = ∅ and Bd(K) = {p, q, r}. As a result, BdΓ(L) ⊈ Bd(L) and Bd(K) ⊈ BdΓ(K).

Theorem 4.9. In (Z, τ,ℑ), BdΓ(K) ⊆ Bd(K) for each θ-open subset K of Z.

Proof. Let K be a θ-open subset of Z. Then, Z \ K is θ-closed and thus K is an open set. By the Theorem 2.2 (v),
BdΓ(K) ⊆ clθ(K) ∩ clθ(Z \ K). From the Lemma 2.1 (i), BdΓ(K) ⊆ cl(K) ∩ clθ(Z \ K) = cl(K) ∩ (Z \ K). Since Z \ K is
θ-closed, it is closed. So BdΓ(K) ⊆ cl(K) ∩ cl(Z \ K) = Bd(K). □

Theorem 4.10. In (Z, τ,ℑ), Bd∗(K) ⊆ BdΓ(K) for each subset K of Z.

Proof. It is clear by the Lemma 2.1 (ii). □

Remark 4.11. In (Z, τ,ℑ), BdΓ(K) may not be a subset of Bd∗(K) for a subset K of Z. For instance, for the ideal
topological space in the Example 2.10, for the set F = {p, q}, Bd∗(F) = {q} and BdΓ(F) = Z.

The collection of closed-discrete subsets ℑcd, the collection of relatively compact subsets ℑk, the collection of
nowhere dense subsets ℑn and the collection of meager subsets ℑm are an ideal on Z for (Z, τ).

Theorem 4.12 ( [11]). In (Z, τ,ℑ), each of the following conditions implies, the local function and the local closure
function are equivalent.

(1) τ has a clopen base β.
(2) τ is T3.
(3) ℑ = ℑcd.
(4) ℑ = ℑk.
(5) ℑn ⊆ ℑ.
(6) ℑ = ℑm.
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Theorem 4.13 ( [14]). In (Z, τ,ℑ), each of the following conditions implies, the local function and the local closure
function are equivalent.

(1) τ has a clopen base β.
(2) τ is T3.
(3) ℑ = ℑcd.
(4) ℑ = ℑk.
(5) ℑn ⊆ ℑ.
(6) ℑ = ℑm.
(7) Every open set is preclosed in (Z, τ).
(8) Every open set is closed in (Z, τ).
(9) Every open set is g-closed in (Z, τ).
(10) Every preopen set is closed in (Z, τ).

Corollary 4.14. By the above theorem, each of the above conditions (1)-(10) implies Bd∗(K) = BdΓ(K) for each K ⊆ Z
in (Z, τ,ℑ).

Corollary 4.15. Let (Z, τ,ℑ) be a Hayashi-Samuel space. In the Theorem 4.13, each of the conditions (1)-(10) implies
Bd∗(K) = BdΓ(K) = Bd(K) for each open subset K of Z.

Proof. It is obvious by the Corollary 4.14 and the Theorem 4.5. □

5. New Operators

Definition 5.1. The operator ()ΓR : P(Z)→ P(Z) is defined as follows KΓR = Γ(K) \ K for K ⊆ Z in (Z, τ,ℑ).

Theorem 5.2. The following conditions hold for K, L ⊆ Z in (Z, τ,ℑ).
(a) ∅ΓR = ∅.
(b) K ∩ KΓR = ∅.
(c) (K ∪ L)ΓR = (KΓR \ L) ∪ (LΓR \ K).
(d) KΓR ∪ LΓR = (KΓR ∩ L) ∪ (K ∪ L)ΓR ∪ (K ∩ LΓR).

Proof. (a) ∅ΓR = Γ(∅) \ ∅ = ∅ by the Theorem 2.2 (i).
(b) K ∩ KΓR = K ∩ (Γ(K) \ K) = ∅.
(c) (K ∪ L)ΓR = (Γ(K)∪ Γ(L))∩ [(Z \ K)∩ (Z \ L)] by the Theorem 2.2 (iii). Then (K ∪ L)ΓR = [Γ(K)∩ (Z \ K)∩ (Z \

L)] ∪ [Γ(L) ∩ (Z \ K) ∩ (Z \ L)] = [(Γ(K) \ K) ∩ (Z \ L)] ∪ [(Γ(L) \ L) ∩ (Z \ K)] = (KΓR \ L) ∪ (LΓR \ K).
(d) (K ∩ LΓR)∪ (K ∪ L)ΓR ∪ (KΓR ∩ L) = [K ∩ (Γ(L) \ L)]∪ [Γ(K ∪ L) \ (K ∪ L)]∪ [(Γ(K) \K)∩ L]. By the Theorem 2.2

(iii), (K ∩ LΓR)∪ (K ∪ L)ΓR ∪ (KΓR ∩ L) = [K ∩Γ(L)∩ (Z \ L)]∪ [(Γ(K)∪Γ(L))∩ (Z \K)∩ (Z \ L)]∪ [Γ(K)∩ (Z \K)∩ L] =
[K∩Γ(L)∩ (Z \L)]∪ [Γ(K)∩ (Z \K)∩ (Z \L)]∪ [Γ(L)∩ (Z \K)∩ (Z \L)]∪ [Γ(K)∩ (Z \K)∩L] = ([Γ(L)∩ (Z \L)]∩ [K∪
(Z \K)])∪ ([Γ(K)∩ (Z \K)]∩ [(Z \L)∪L]) = [(Γ(L)\L)∩Z]∪ [(Γ(K)\K)∩Z] = (Γ(L)\L)∪ (Γ(K)\K) = KΓR∪LΓR. □

Theorem 5.3. The following conditions hold for K ⊆ Z in (Z, τ,ℑ).
(a) If K is ℑθ-open, then BdΓ(K) ⊆ KΓR.
(b) If Z \ K is ℑΓ-perfect, then BdΓ(K) = KΓR.

Proof. (a) Let K be ℑθ-open. Then Intℑθ (K) = Z \ clℑθ (Z \ K) = K. It implies that clℑθ (Z \ K) = Z \ K and so
Γ(Z \ K) ⊆ Z \ K. Therefore, BdΓ(K) ⊆ Γ(K) \ K = KΓR.

(b) Let Z \ K be ℑΓ-perfect. Then Γ(Z \ K) = Z \ K. It implies that BdΓ(K) = Γ(K) ∩ (Z \ K) = KΓR. □

Remark 5.4. The inverse of the above requirements may not be true.

Example 5.5. For (Z, τ,ℑ) in the Example 3.29, if K = {r}, then BdΓ(K) = ∅ ⊆ KΓR but K is not ℑθ-open. Similarly,
BdΓ(K) = KΓR = ∅ but Z \ K is not ℑΓ-perfect.

Theorem 5.6. A subset K of Z is ℑθ-closed iff KΓR = ∅ in (Z, τ,ℑ).

Proof. (⇒) : Assume that K is a ℑθ-closed subset of Z. In that case, Γ(K) ⊆ K. Thus, KΓR = Γ(K) \ K = ∅.
(⇐) : Assume that KΓR = ∅. Then, Γ(K) \ K = Γ(K) ∩ (Z \ K) = ∅. Therefore, (Z \ Γ(K)) ∪ K = Z and hence

Z \ K ⊆ Z \ Γ(K). It implies that Γ(K) ⊆ K. Consequently, K is ℑθ-closed. □
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Theorem 5.7. If KΓR = Z for a subset K of Z, then K is ℑΓ-dense in (Z, τ,ℑ).

Proof. Suppose that KΓR = Z. Then Z = Γ(K) \ K ⊆ Γ(K) and so Z = Γ(K). As a result, K is ℑΓ-dense. □

Remark 5.8. The inverse of the Theorem 5.7 may not be true in general.

Example 5.9. For (Z, τ,ℑ) in the Example 2.10, if L = {q}, then L is an ℑΓ-dense set but LΓR = {p, r, s} , Z.

Definition 5.10. The operator ()ΓΨΓ on (Z, τ,ℑ) is defined as: KΓΨΓ = K \ ΨΓ(K) for a subset K of Z.

Theorem 5.11. The following conditions hold for K, L ⊆ Z in (Z, τ,ℑ).
(a) ZΓΨΓ = ∅.
(b) KΓΨΓ ⊆ K.
(c) (K ∩ L)ΓΨΓ = (KΓΨΓ ∩ L) ∪ (K ∩ LΓΨΓ ).
(d) (KΓΨΓ )ΓΨΓ ⊆ KΓΨΓ .

Proof. (a) ZΓΨΓ = Z \ ΨΓ(Z) = Z \ (Z \ Γ(∅)) = Z \ (Z \ ∅) = ∅ by the Theorem 2.2 (i).
(b) KΓΨΓ = K \ ΨΓ(K) ⊆ K.
(c) (K ∩ L)ΓΨΓ = (K ∩ L) \ (ΨΓ(K) ∩ ΨΓ(L)) by the Theorem 2.2 (iv). Therefore, (K ∩ L)ΓΨΓ = (K ∩ L) ∩ [(Z \

ΨΓ(K)) ∪ (Z \ ΨΓ(L))] = [K ∩ L ∩ (Z \ ΨΓ(K))] ∪ [K ∩ L ∩ (Z \ ΨΓ(L))] = (KΓΨΓ ∩ L) ∪ (K ∩ LΓΨΓ ).
(d) (KΓΨΓ )ΓΨΓ = (K \ΨΓ(K))ΓΨΓ = (K \ΨΓ(K)) \ΨΓ(K \ΨΓ(K)) = (K \ΨΓ(K)) \ΨΓ(K ∩Γ(Z \K)). By the Theorem

2.2 (iv), (KΓΨΓ )ΓΨΓ = (K \ ΨΓ(K)) \ (ΨΓ(K) ∩ ΨΓ(Γ(Z \ K))) = (K ∩ Γ(Z \ K)) ∩ [Γ(Z \ K) ∪ (Z \ ΨΓ(Γ(Z \ K)))] =
(K ∩ Γ(Z \ K)) ∩ [Γ(Z \ K) ∪ Γ(Z \ Γ(Z \ K))] = [K ∩ Γ(Z \ K) ∩ Γ(Z \ K)] ∪ [K ∩ Γ(Z \ K) ∩ Γ(Z \ Γ(Z \ K))] ⊆
K ∩ Γ(Z \ K) = K \ ΨΓ(K) = KΓΨΓ . □

Theorem 5.12. The following conditions hold for K ⊆ Z in (Z, τ,ℑ).
(a) K is RΓ-perfect if and only if KΓR ∈ ℑ.
(b) If K is ℑΓ-perfect, then KΓR = ∅.
(c) If K is ℑΓ-dense, then KΓR = Z \ K.
(d) Z \ K is RΓ-perfect if and only if KΓΨΓ ∈ ℑ.
(e) If Z \ K is ℑΓ-perfect, then KΓΨΓ = ∅.
(f) If Z \ K is ℑΓ-dense, then KΓΨΓ = K.

Proof. (a), (b), (c) The proofs are obvious.
(d) As Γ(Z \ K) \ (Z \ K) = Γ(Z \ K) ∩ K = K \ ΨΓ(K), the proof is obvious.
(e) Let Z \ K be ℑΓ-perfect. Then Z \ K = Γ(Z \ K) and so ΨΓ(K) = K. Therefore, KΓΨΓ = ∅.
(f) Let Z \ K be ℑΓ-dense. Then Z = Γ(Z \ K) and so KΓΨΓ = K \ ΨΓ(K) = K ∩ Γ(Z \ K) = K ∩ Z = K. □

Remark 5.13. In the above theorem, inverses of the requirements (b), (c), (e) and (f) may not be true in general.

Example 5.14. For (Z, τ,ℑ) in the Example 2.10, if K = {p}, then KΓR = ∅ but K is not ℑΓ-perfect.

Example 5.15. In the ideal topological space (R, P(R),ℑ f ), although RΓR = ∅ = R \ R, Γ(R) , R and so R is not
ℑΓ-dense. Moreover, ∅ΓΨΓ = ∅ but R \ ∅ = R is neither ℑΓ-perfect nor ℑΓ-dense.
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