

GUFBD / GUJS (2023) 13(2): 386-404 doi: 10.17714/gumusfenbil.1213317 Research Article

* Ahmet Arif AYDIN; arif.aydin@inonu.edu.tr

ISSN: 2146-538X e-ISSN: 2146-538X https://dergipark.org.tr/tr/pub/gumusfenbil

A comparison of Apache Solr and Elasticsearch technologies in support of large-

scale data analysis

Büyük ölçekli veri analizini desteklemek için Apache Solr ve Elasticsearch teknolojilerinin

karşılaştırması

Ayşenur DENİZ

, Muhammed Mehdi ELÖMER
,

, Ahmet Arif AYDIN
*,

Inonu University, Faculty of Engineering, Department of Computer Engineering, 44280, Malatya

• Received: 01.12.2022 • Accepted: 10.03.2023

Abstract

In the era of big data, data has never been more important because it contains hidden insights. Additionally, it is necessary

and challenging to extract usable information from enormous volumes of data. When attempting to perform data

processing and analytics in a variety of domains, developers of data-intensive systems have consequently met several

challenges. In addition, full-text search is one of the most significant components of big data processing and analytics for

discovering fragments of required data among large volumes of data. Due to the importance of the subject, this article

begins with an examination of the characteristics, capabilities, and technical comparisons of full-text search technologies,

followed by a systematic comparison of Apache Solr and Elasticsearch in terms of indexing times and queries on three
separate datasets. According to our findings, based on default configuration, Apache Solr has better performance when

looking at indexing times measured on three machines with different hardware specifications. Likewise, Apache Solr

outperforms Elasticsearch in seven out of ten search queries. Regarding our results, on computers with restricted hardware

resources, we recommend utilizing Apache Solr instead of Elasticsearch. In addition, this study provides researchers and

developers of data-intensive systems with a complete comparison and suggestions for choosing the most effective full-

text search engine for their task.

Keywords: Apache Lucene, Apache Solr, Big data, Elasticsearch, Full-text search, Searching

Öz

Büyük veri çağında, gizli içgörüler içerdiği için veriler hiç bu kadar önemli olmamıştı. Ayrıca, çok büyük hacimli

verilerden kullanılabilir bilgileri çıkarmak zaruri ve zordur. Çeşitli alanlarda veri işleme ve analitiği gerçekleştirmeye

çalışırken, veri yoğunluklu sistem geliştiricileri çok çeşitli zorluklarla karşılaşmaktadır. Ayrıca, tam metin arama, büyük

veriler içinde gerekli verilerin istenilen kısımlarını ortaya çıkarmak için büyük veri işleme ve analitiğinin en önemli

bileşenlerinden biridir. Konunun önemi nedeniyle bu makale, tam metin arama teknolojilerinin özelliklerinin,

yeteneklerinin ve teknik karşılaştırmalarının incelenmesiyle başlamakta, ardından Apache Solr ve Elasticsearch'ün

indeksleme süreleri üç ayrı veri seti kullanılarak sorgulama açısından sistematik bir karşılaştırması ile devam etmektedir.

Bulgularımıza göre, karşılaştırılan teknolojilerin varsayılan konfigürasyonlarını baz alarak, Apache Solr, farklı donanım

özelliklerine sahip üç makinede ölçülen indeksleme sürelerine bakıldığında daha iyi performansa sahiptir. Aynı şekilde,
on arama sorgusunun yedisinde Apache Solr Elasticsearch'ten daha iyi performans göstermektedir. Sonuçlarımıza göre,

kısıtlı donanım kaynaklarına sahip bilgisayarlarda, Elasticsearch yerine Apache Solr kullanmanızı öneririz. Buna ek

olarak, bu çalışma, araştırmacılara, veri yoğunluklu sistem geliştiricilerine, gerçekleştirecekleri görevleri için en uygun

tam metin arama teknolojisini seçmeleri için eksiksiz bir karşılaştırma ve öneriler sağlamaktadır.

Anahtar kelimeler: Apache Lucene, Apache Solr, Büyük veri, Elasticsearch, Tam metin arama, Arama

https://dergipark.org.tr/tr/pub/gumusfenbil
https://orcid.org/0000-0003-0895-9171
https://orcid.org/0000-0003-4000-333X
https://orcid.org/0000-0002-4124-7275

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

387

1. Introduction

With the advancement of technology, ubiquitous internet access, and affordability, the rate of data growth

continues to accelerate. Various sources, services, software tools, and hardware devices have been generating

large amounts of data in various formats, sizes, and speeds. The data that reached exabytes and zettabytes
became known as “Big Data” (Halevi & Moed, 2012). Big data is defined as large amounts of data that cannot

be processed at once and require sophisticated processing tools, technologies, and methods. The daily

production of vast quantities of diverse data types from numerous sources (Domo Company, 2022) increases

the significance of big data since data includes hidden insight for organizations to stay competitive in the job
market. In the context of big data, big data is described with five Vs. These properties consist of volume

(amounts of data), velocity (speed of incoming data), veracity (trustworthiness), variety (various types and

different forms), and value (beneficial information) (Lashkaripour, 2020). Each one of these characteristics
has introduced various challenges for the developers of data-intensive systems. To handle these challenges,

various tools have been developed to handle streaming, storage, and analytics with the purpose of fulfilling

domain requirements and user needs (Rao et al., 2018).

In this era of big data, gleaning useful information out of large amounts of data in a reasonable amount of time

is crucial since time is money. Moreover, one size does not fit all; various demands, different data types,

diverse time restrictions and priorities, and the available resources of the underlying hardware all have an
impact on software developers’ choices on technology, methods, and approach selection when developing a

data-intensive system to perform actions quickly as demanded by the user. Thus, choosing a set of appropriate

tools for a data processing job is a vital task since the technology choice impacts the entire data processing
task. In addition, searching is another important concept to find related portions of a data set regarding user

requests (Barrenechea et al., 2017). On the other hand, it is very difficult to get results quickly with traditional

methods due to the large amount of data. Therefore, new technologies are needed to perform analysis on large

amounts of big data.

Searching is one of the most important concepts in the context of big data research, and it is performed by the

built-in searching capabilities of various data processing tools, ad-hoc codes written in various programming
languages, or full-text search technologies such as Apache Lucene, Apache Solr, and Elasticsearch. Full-text

search technologies are crucial and have been implemented in a variety of data-intensive systems (Anderson

et al., 2015), information retrieval applications (Wang et al., 2022), including search engines, e-commerce
applications, education platforms (Y. Aldailamy et al., 2018), smart city and IoT applications (Bellini et al.,

2019), including search engines, e-commerce applications, social networking platforms, mobile banking apps,

and video streaming services. Due to the significance of full-text search and utilizing the appropriate

technology for searching activities, the purpose of this article is to compare Apache Solr and Elasticsearch
technologies. We examined the indexing and search times of both technologies. We have calculated indexing

times for each technology using three distinct datasets and three distinct machines. Moreover, search times

have been computed using 10 queries for each technology on one machine which has good indexing
performance.

The organization of the paper is as follows: In Section 2, summaries of relevant research are provided. The

comparison and overview of Full-Text Search Technologies, Apache Solr, and Elasticsearch is presented in
Section 3. Section 4 provides details on the environments utilized, datasets, and queries. Section 5 presents

Apache Solr and Elasticsearch's indexing and search results. In comparison to previous research, Section 6

evaluates the indexing and search performance of Apache Solr versus Elasticsearch. In Section 7, a conclusion
is presented by summarizing the paper's contributions.

2. Related works

There are several research applications that employ Apache Solr and Elasticsearch to perform a variety of tasks

in big data processing and analytics systems. This section particularly provides articles that compare the

technologies Apache Solr and Elasticsearch.

In Oussous and Benjelloun (2022), the authors provide a detailed analysis of full-text search. It provides a

comprehensive comparison of search engines, particularly Solr and Elasticsearch, based on relevant
publications in the relevant literature. The authors analyzed existing search and indexing technologies using a

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

388

variety of factors, including use cases, indexing performance, searching, sharding, and rebalancing, data

visualization, and data sources, among others. In this work, the authors examine previous research on full-text
search and present a comprehensive technical comparison.

In Elasticsearch vs. Solr Performance: Round 2 (2015), querying and indexing speeds, ease of use, and
difficulties between Solr and Elasticsearch are analyzed in terms of configuration forms and architectures.

Similar to our study, indexing and search speed were compared for both technologies. Although similar ideas

can be reached at some points, the testing environment is different from our working environment.

In Luburić and Ivanovic (2016), the authors examine the common features and differences between Apache

Solr and Elasticsearch by comparing them. Luburić and colleagues presented a detailed and comprehensive

review by examining other published studies based on the comparison of these two technologies. Similarly, in
our study, we presented a comparison of Apache Solr and Elasticsearch based on their capabilities for indexing

performance on three machines (see Table 2 for hardware configurations) and we have conducted the search

queries through one machine that performed better indexing performance with respect to other two machines.

In Kılıç and Karabey (2016), Apache Lucene, Apache Solr, and Elasticsearch are mentioned based on their

working principles. Then, Solr and Elasticsearch are examined independently with regard to capabilities such

as full-text searching, advanced filtering, Rest API, and content insertion. In other words, Solr and
Elasticsearch are compared in terms of effectiveness, usability, speed, and security, and the advantages and

disadvantages of both search engines are outlined. Finally, both technologies are examined in terms of security

configurations and controls. A similar aspect of our study is that it compares both technologies in technical
terms. In contrast to this article, our study does not compare technology in terms of security.

In Hansen et al. (2018), the memory and time consumption, functionality, and indexing efficiency of the full-

text search processes of the search engines Solr and Elasticsearch are compared. By analyzing the outcomes
of a series of experiments, the authors demonstrate that Elasticsearch is superior over Solr in terms of index

size and indexing time, whereas Solr performs better with large-scale datasets. This paper is the most similar

to our study in terms of methodology and testing among the related literature. In contrast to other test
environments, ours is based on the most recent versions and capabilities of Apache Solr and Elasticsearch

technologies.

In Voit et al. (2017), full-text search technologies, including Apache Solr, Elasticsearch, Sphinx, and Xapian,

are compared in terms of indexing, searching, and several technical characteristics. However, it is not an article

in which a comparison is made and detailed. The conference work D.S. (2016) mentioned by the authors has

been written in Russian. Due to this, it has not been examined in depth.

In Yurtsever et al. (2022), the authors developed an application on image texts in Big Data. The best fit-for-

purpose technology is sought for a fast and effective search in these image texts. Therefore, a comparison is
made between Apache Solr and Elasticsearch technologies. In a similar way to our study, the authors compared

the search times of the two technologies in this study.

In Gonçalves and Sunye (2020), the authors provide a benchmark for Apache Solr and Elasticsearch using the
DSpace repository platform. They compare the advantages and disadvantages of these two technologies in

terms of indexing time, size of RAM used, and index size created. Unlike our work, median precision-at-10

and binary preference metrics are also compared for all search queries in Apache Solr or Elasticsearch.

3. Background: technologies for full-text search

This section provides a background on full-text search and related popular technologies. Full-text search is a

widely used search method for massive datasets. It appears in numerous areas, such as web search engines,

corporate search sites, and various data-intensive systems. In full-text search, there are two major steps:

indexing and searching. Initially, a dataset is indexed, and then based on the created indexes, various searching
requests are performed. Full-text search applications mostly use inverted indexes. Moreover, Figure 1 shows

the popularity of the top four technologies (Apache Solr, Elasticsearch, OpenSearch, and Splunk) in the

rankings for search engines by DB-Engines (DB-Engines, 2022), and Figure 1 is created with data provided

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

389

by Google Trends (Google Trends, 2022). All four technologies are based on the full-text search method.

Elasticsearch is at the top of the rankings, while Apache Solr is the third most used search engine.

Figure 1. Popularity of full-text search tools over the past year (Google Trends, 2022)

The following subsections provide detailed information about Apache Lucene, Apache Solr, and Elasticsearch

technologies.

3.1. Apache Lucene

Apache Lucene is a Java-based, open-source search library endorsed by the Apache Software Foundation

(Apache Lucene, 2022). It provides robust indexing and search functionality. It is therefore a prominent library
in terms of full-text search. Additionally, Apache Lucene has been implemented in a wide range of

programming languages, including Python (PyLucene), .Net (DotLucene), and C (CLucene). Furthermore,

there are other studies including apps like PyLucene (Lokoč et al., 2021) and DotLucene (Lakhara & Mishra,
2017).

Apache Lucene is essential since it forms the basis for the Apache Solr and Elasticsearch search engines. In

addition, Java developers may utilize Apache Lucene with ease. Also, the helpful and user-friendly interfaces
that Apache Solr and Elasticsearch have created may be viewed as abstractions that facilitate the direct usage

of Apache Lucene. During the development of Apache Lucene, system requirements are considered based on

the number of documents, the number of hits, the size of the documents, and so on. It can provide scalable and
efficient indexing. For instance, it utilizes less RAM with only 1 MB of heap, and the index is about one-third

the size of the indexed data. Moreover, the indexing process is considerably optimized.

Apache Lucene provides an inverted index mechanism that enables fast and effective access to search engines.

In Figure 2, an example of the inverted index mechanism is shown. Documents provide the set of data to be

indexed. In other words, the documents can be thought of as each row in a relational database. The expressions

in the stop word set are ignored, and the associated documents for each term are added to the inverted index
structure. For example, as in Figure 2, the expression “everything real” is searched. For this purpose, matching

documents are found for every word searched in the inverted index. In these found documents, the document

common to each expression is filtered, and a response is returned. Consequently, document 3 was returned as
the appropriate answer.

Examining the Apache Lucene library's search capabilities reveals why it is the foundation of two popular

technologies, such as Apache Solr and Elasticsearch. Apache Lucene provides an accurate, powerful, and
efficient search, and one of the prominent features (Apache Lucene, 2022) are providing ranked searching on

the principle that best results are returned first; supporting many query types, such as range queries, phrase

queries, and proximity queries; capability of searching through any field such as title, name, age; sorting
capability by any field and enabling flexible faceting, highlighting, joins and result grouping.

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

390

Figure 2. Mechanism of the inverted index

Figure 3 demonstrates the relationship between Apache Lucene and the two tools, Apache Solr and

Elasticsearch. Prior to indexing a dataset using the aforementioned methods, the dataset is pre-processed by

removing noise or filling in missing values, depending on the goals. Each technique then employs Apache

Lucene to index datasets. Lastly, different search requests from users are answered by using the search APIs
of both technologies on Apache Lucene indexed and stored datasets.

Figure 3. Apache Lucene and related technologies

3.2. Apache Solr

Apache Solr is an open-source full-text search engine that is built on Apache Lucene. It is designed to perform

a high-performance search of large datasets. One of its major advantages is that it provides a convenient

interface. Apache Solr works on text-based structured data. The data is basically indexed as JSON, but it can

also be used for other formats such as CSV and PDF. Apache Solr provides three options for indexing datasets:
through the Solr dashboard, command-line curl, and a client API.

Apache Solr is able to respond rapidly to complex queries with multi-domain and faceted searching. It also
has powerful mathematical expressions that collapse and aggregate the results. Undoubtedly, its most

important characteristic is that it can be used effectively in large-volume and data-intensive applications. It

provides the ability to work in a distributed system across multiple servers when running only one server is a
problem on large datasets. Nowadays, some well-known sites that use Apache Solr, such as Macy's, eBay, and

Zappo's, are examples of its use in high-volume and data-intensive applications (Resources Apache Solr,

2022).

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

391

Figure 4 provides an example response that is in a key-value JSON format and includes the following
responseHeader, and response. The responseHeader key reports the query parameters (params), the processing

time performed (QTime), and whether the operation was carried out without error (status). Additionally, the

response key provides information about the number (numFound) and content (docs) of documents found
following the request.

Figure 4. An example of Apache Solr response

3.3. Elasticsearch

Elasticsearch is a free and open-source JSON-based search and analytics engine written in Java and based on

Apache Lucene. Elasticsearch is an effective tool for storing, searching, and analyzing textual, quantitative,

geographic, structured, and unstructured data. Elasticsearch, recognized for its extensive and powerful REST

APIs, distributed architecture, real-time support, efficiency, flexibility, and scalability, supports 34 languages.
Using Elasticsearch, Logstash, and Kibana, it facilitates search, analysis, and visualization.

In addition, Elasticsearch is well-suited for time-sensitive use cases like security analytics and infrastructure
monitoring (Elastic Installation and Upgrade Guide [8.4], 2022). Today, it is utilized in projects such as

Elasticsearch, Mozilla, Foursquare, and GitHub for content search, data analysis, and queries. Moreover,

Figure 5 shows an example of an Elasticsearch response, which contains the time the request was submitted
(took), the status of the timeout (timed out), and the quantity and content (hits) of documents discovered.

Figure 5. An example of Elasticsearch response

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

392

3.4. Feature Comparison

This section describes the characteristics of Apache Solr and Elasticsearch. The following terminology is

utilized by both systems: field, value, document, node, core/index, collection, and documents/hits. The “field”

describes how the data is defined, whereas the value provides the information that corresponds to this
definition. It is also possible to describe it as a field-value pair. A “core” represents an Apache Solr logical

index. In other words, an instance of Solr. And this term's equivalent in Elasticsearch is “indice”. A document

with one or more fields is considered an index unit. A “collection” consists of one or more documents, and

each collection has shards or cores that create a single logical index. Additionally, each collection can provide
different and flexible settings and schema designs. A “node” describes a single instance of Apache Solr or

Elasticsearch that is operating on a physical system or server. Multiple nodes comprise a “cluster”, with each

node containing an Apache Solr or Elasticsearch instance. In Apache Solr, the result of a query is referred to
as “documents”, but in Elasticsearch it is referred to as “hits”.

Table 1 gives a comparison of Apache Solr and Elasticsearch's general features. The comparison is based on

the following characteristics: first release date, built-in functionality, developer, current release, access
protocols, supported data formats, and client libraries. Elasticsearch supports a greater variety of programming

languages than Solr. Versions 9.0.0 of Apache Solr and 8.4.2 of Elasticsearch were utilized. The Apache Solr

9.X version used requires a minimum of Java 11 and the Elasticsearch version requires a minimum of Java 17.
In our experiments, we utilized Java 17.

Table 1. Feature comparison of Apache Solr and Elasticsearch

Feature Apache Solr Elasticsearch

Release year 2004 2010

Built on Apache Lucene Apache Lucene

Developer Apache software foundation Elastic

License Open source Open source or commercial

Current version 9.0.0 8.4.2

Web admin interface Built-in With apps (Kibana, Marvel, etc.)

Access protocols REST API (used HTTP) REST API (used HTTP)

Data importing tools
Data import handler (DIH), Apache Tika

(PDF, Word, etc.)
Kibana (JSON, CSV, NDJSON)

Supported data

formats
CSV, XML, JSON JSON

Client libraries

Java, Python, Ruby, PHP, C# / .NET,

Scala, Perl, JavaScript / JSON, Node.js,

Clojure, Go, Rust, R, C++, Lua

B4J, C++, Clojure, ColdFusion

(CFML), Erlang, Go, Haskell, Java,

JavaScript, Kotlin, Lua, .NET, Perl,

PHP, Python, R, Ruby, Rust, Scala,

Smalltalk, Swift, Vert.x

Operating system

compatibility
All OS includes Java VM All OS with includes VM

Elasticsearch has three configuration files that are elasticsearch.yml (editing properties), jvm.options
(configuring JVM settings), and log4j2.properties (configuring logging). In the same way, there are basically

three configuration files in the Solr Core that are solrconfig.xml (configures high-level behaviors),

schema.xml/managed-schema.xml (arrangement of various definitions), and core.properties (defines certain

characteristics). When these files are examined, the default values and definitions of some properties for a
single node can be explained as follows:

- Apache Solr searches for 10 results by default and prints them to the screen.
- Elasticsearch searches for up to 10,000 but only prints 10 data to the window.

- The RAM buffer size in Apache Solr is 100 MB and the maximum number of documents that can be

buffered is 1000.

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

393

- The minimum buffer size for Elasticsearch is 48 MB.

- The cache size is defined as unlimited in the default settings of Elasticsearch.
- In the default settings of Elasticsearch, the cache size is defined as unlimited. For Apache Solr, it is

512 MB as an initial value.

In addition, Apache Solr's security settings are initially disabled, but Elasticsearch's default is enabled.

Therefore, the xpack.security.enabled, xpack.security.enrollment.enabled, and xpack.security.http.ssl

properties in elasticsearch.yml have been updated to false. Thus, the security settings for both technologies

were disabled. In this study, with the purpose of performing a fair comparison, we utilized the default
configuration (except security settings) for both technologies.

4. Environment, datasets and queries

This section includes details about our environment setup, settings, datasets, and queries. Each one is explained

in detail next.

4.1. Hardware specification and configuration

The indexing and searching operations were performed on three computers with distinct RAM, processors,
hard drives, CPU cores, and operating systems. The specifications of the machines utilized in the experiments

are presented in Table 2.

Table 2. Features of the three machines

Component Machine 1 Machine 2 Machine 3

Memory (RAM) 32 GB 16 GB 12 GB

Processor (CPU)
Intel(R) Core(TM) i7-

12700H 2.50 GHz

Intel(R) Core(TM) i7-

9750H 2.60 GHz

Intel(R) Core(TM) i5-

4210M 2.60 GHz

Storage 1 TB M.2 3.0 SSD 256 GB M.2 3.0 SSD 256 GB SATA 3.0 SSD

CPU core 14 cores 6 cores 2 cores

Operating system Win 11 Win 11 Win 10

4.2. Datasets

In this section, we present the three datasets utilized to perform a fair comparison between Apache Solr and

Elasticsearch technologies. Also, detailed information about the dimensions and contents of the three datasets

are presented next and Table 3 provides an overview of the datasets.

Table 3. Features of the three datasets

 Dataset 1 Dataset 2 Dataset 3

Name
Google Play Store Apps

(Google Play Store Apps, 2022)
Web of Science (Kowsari

et al., 2018)
Dota 2 Matches (Dota 2

Matches, 2022)

Size in MBs ~ 17 MB ~ 75 MB ~ 300 MB

Cardinality 64295 46985 1500000

Data types Text and numeric Text Numeric

Fields

App,

Translated_Review, Sentiment,

Sentiment_Polarity,

Sentiment_Subjectivity

Y, Y2, Y1, Domain, Area,

Keywords, Abstract

match_id, player_slot,

buybacks, damage,

deaths, gold_delta,

xp_end, xp_start

The dataset 1 contains user opinions about the applications in the Google Play Store (see Figure 6). There are

two files in this dataset. We only used the text-heavy one. The file has five attributes: App (application name),
Translated_Review (user opinion translated from different languages), Sentiment (positive or negative

opinion), Sentiment_Polarity, Sentiment_Subjectivity.

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

394

Figure 6. A screenshot example from dataset 1

The dataset 2 provides information on 46,985 documents with 134 categories, including seven Web of Science

parent categories (see Figure 7).

Figure 7. A screenshot example from dataset 2

Following are features of the dataset 2 as shown in Figure 7: Y1 (target value), Y2 (target value of level one-
parent label), Y (target value of level one-child label), Domain (including seven primary domains: computer

science, electrical engineering, psychology, mechanical engineering, civil engineering, medical science, and

biochemistry), Area (subdomain), Keywords (papers' keywords), Abstract (include text sequences of published

papers).

The dataset 3 includes 50000 ranked ladder matches from the Dota 2 data dump generated by Opendota (see

Figure 8). There are 19 files in the dataset, but only teamfights_players.csv is used in this study. The file has
eight properties: match_id (individual player ids), player_slot (link to other files in the dataset), buybacks,

damage, deaths, gold_delta (status of winning or losing gold), xp_end (experience at the end of the game),

xp_start (gain experience early in the game).

Figure 8. A screenshot example from dataset 3

4.3. Queries

In this section, the indexing and search queries that will be utilized in the study are explained. After explaining
the file structures employed by Apache Solr and Elasticsearch, the indexing queries are examined. Finally,

search queries were explained in detail. Moreover, there are restrictions on the kind of files that may be indexed

by Elasticsearch indexing queries. It is possible to index just New Delimited JSON (ND-JSON) files using
curl. There is no such restriction with Apache Solr; JSON, CSV, and XML files may also be indexed using a

curl query. However, in order to give a more accurate comparison with Elasticsearch, it was determined that

Apache Solr would also employ a JSON file. Figure 9 provides a simple two-document JSON file showing the
general structure of JSON files to be indexed in Apache Solr.

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

395

Figure 9. A simple example for JSON

Figure 10 depicts the two-document structure of Elasticsearch-generated ND-JSON files. In contrast to the

JSON file, the content does not begin and stop with [] brackets. Additionally, lines containing index
information ({“index”: {...}}) must be included in each document. ND-JSON is a collection of JSON items

that are separated by “\n”. Creating ND-JSON also requires cost and time.

Figure 10. A simple example for ND-JSON

Apache Solr runs on port 8983 on the local computer, and Elasticsearch runs on port 9200. As seen in Table

4, the general structures of indexing queries for both technologies are given. In Apache Solr, the core name for

the dataset to be processed is written in the core_name field, while in Elasticsearch it is written in the

indice_name field. The core/indice names used in the query structure are apps_reviews for dataset 1,
wos_papers for dataset 2, and teamfights_players for dataset 3. Subsequently, for the files to be indexed in

both Apache Solr and Elasticsearch, a file named example was created in their respective directories. In the

file posted for indexing, the json file for Apache Solr is named with core_name while in Elasticsearch the nd-
json file is generated using nd_ per indice_name. For example, the curl query for dataset 1 will be core/indice

name apps_reviews, while the file to be posted to Apache Solr will be apps_reviews.json, and the file to be

posted to Elasticsearch will be nd_apps_reviews.json. In addition, the indexing query performs the indexing
process by specifying the type of the query as POST and showing the file path.

Table 4. General structures for indexing queries

Technology Indexing query

Apache Solr

curl -H "Content-Type: application/json" -XPOST

http://localhost:8983/solr/core_name/update -T "C:/solr-

9.0.0/example/core_name.json"

Elasticsearch
curl -H "Content-Type: application/x-ndjson" -XPOST http://localhost:9200/_bulk --

data-binary @C:/elasticsearch-8.4.2/example/nd_indice_name.json

In Table 5, a general query format for Apache Solr and Elasticsearch search operations is provided. The query

content element is shared by both technologies. Elasticsearch also uses the Kibana Query Language (KQL)
format, but the Lucene query language, which is supported by both platforms, is utilized to monitor search

times more accurately. In addition, the Elasticsearch query's track_total_hits option, which is false by default,

was changed to true. Because Apache Solr detects all results during a search, Elasticsearch does not focus on
the remaining data once it has found a particular threshold. As with Apache Solr, setting the track_total_hits

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

396

argument is essential for Elasticsearch to locate all hits. The default value of the track_total_hits option in

Elasticsearch is 10,000.

Table 5. General structures of the searching queries

Technology Searching query

Apache Solr http://localhost:8983/solr/core_name/select?q=query content

Elasticsearch http://localhost:9200/indice_name/_search?q=query content&track_total_hits=true

Table 6 demonstrates that a total of 10 queries with varying levels of complexity were executed: Q1-Q4

applied for the dataset 1, Q5-Q7 prepared for the dataset, and Q8-Q10 applied for the dataset 3. Each data

set's queries were constructed in a manner that increases query complexity. AND and OR are utilized to
query several fields. In the Lucene Query Language, the symbol * indicates that the word might be an

expression at the beginning or end, whereas the expression [number1 TO number2] specifies values between

the numbers number1 and number2.

Table 6. Searching queries used for the three datasets

Dataset Query Purpose query content

Dataset

1

Q1
List Translated_Review values equal to

‘nan’
Translated_Review:nan

Q2
List Sentiment_Subjectivity value between

0.1 and 0.746
Sentiment_Subjectivity:[0.1 TO 0.746]

Q3

List App value equal to ‘Food’ and

Sentiment value equal to ‘Positive’ and

Translated_Review value equal to ‘Full’ or
‘great’ or ‘good’ or ‘enjoy’

App:*Food* AND Sentiment:Positive

AND Translated_Review:*Full* OR
Translated_Review:*great* OR

Translated_Review:*good* OR

Translated_Review:*enjoy*

Q4

List Sentiment_Subjectivity value between

0.79 and 0.82 and Sentiment_Polarity value

equal to 0.716666667

Sentiment_Subjectivity:[0.79 TO 0.82]
AND Sentiment_Polarity:0.716666667

Dataset

2

Q5 List Keywords value equal to ‘Parkinson’ Keywords:*Parkinson*

Q6
List Keywords value equal to ‘algorithm’ or

Abstract value equal to ‘algorithm’

Keywords:*algorithm* OR

Abstract:*algorithm*

Q7
List Keywords value equal to ‘analysis’ or
Domain value equal to ‘CS’ or Abstract

value equal to ‘system’

Keywords:analysis OR Domain:*CS*

OR Abstract:system

Dataset

3

Q8 List xp_end value equal to 32417 xp_end:32417

Q9
List buybacks value equal to 1 and deaths

value equal to 1
buybacks:1 AND deaths:1

Q10

List buybacks value equal to 0 and deaths

value equal to 1 and damage value equal to

0 or gold_delta value 0

buybacks:0 AND deaths:1 AND

damage:0 OR gold_delta:0

5. Results and evaluation

This section compares and contrasts Apache Solr with Elasticsearch's indexing and search capabilities. Then,

every aspect of the comparison is described in depth.

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

397

5.1. Indexing

In this section, a comparison of Apache Solr and Elasticsearch regarding indexing is performed on three

datasets utilizing three different hardware configurations (see Table 2). First, the difference in indexing times

for the default heap size is measured. Then, the indexing times for different file sizes on the most efficient
machine (Machine 1) are compared based on and different heap sizes in GB (6, 8, 12, 16, 20, and 24) as shown

in Table 8 to learn more about how heap size affects indexing.

As shown in Table 4, indexing performance is assessed using curl requests on each system via the Windows
command line. In Figure 11, the output of a query run on command prompt is shown. To calculate the indexing

time, the timecmd command is added at the beginning of the Apache Solr and Elasticsearch curl queries given

in Table 4. This command refers to a batch file that calculates the runtime of curl queries. Command took is
the time calculated by the timecmd batch script. In this study, command took times are considered.

Figure 11. A curl query submitted in the command prompt

After the indexing queries given in Table 4 that have been run for the three datasets, Figure 12 presents

information (health status, number of replicas, count of documents) about the three indices and indices created

in Elasticsearch. This is a screenshot taken using Kibana. Likewise, Figure 13 shows the cores created in
Apache Solr and some details (the paths where the core is created and the data is found, the number of

documents, the core's active status, log dates).

Figure 12. Indices created in Elasticsearch

Figure 13. Cores created in Apache Solr

Table 7, on the default heap size, displays the indexing times for Apache Solr and Elasticsearch based on the
size of the datasets. Apache Solr's heap size is 512 MB by default, but Elasticsearch's heap size is half of its

RAM capacity. In addition, for each curl query, each indexing request was executed five times, and the average

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

398

values were computed and averaged. Before each indexation attempt, Apache Solr and Elasticsearch Tools

indexes and data are removed and parameters are reset to default.

Table 7. Indexing times (sec) for default heap size

 Machine 1 Machine 2 Machine 3

Dataset size Apache Solr Elasticsearch Apache Solr Elasticsearch Apache Solr Elasticsearch

~17 MB 2.004 3.445 2.46 4.386 5.968 11.852

~75 MB 4.36 6 5.818 6.382 11.758 20.922

~300 MB 33.012 72.752 44.426 81.37 89.028 140.788

Figure 14 illustrates a graph of the average indexing times listed in Table 7. Apache Solr outperforms
Elasticsearch on used computers in terms of average indexing speeds across three distinct datasets. As seen in

Figure 14, indexing time increases as dataset size grows.

Figure 14. Comparison of indexing times (sec) regarding different machines

Figure 15 illustrates the relationship between the indexing times on various computers and the heap size for

Apache Solr and Elasticsearch technologies. Machine 1 is faster at indexing than the other two computers since

it has more accessible system resources (see Table 2). Therefore, powerful computers' capabilities are
advantageous for indexing. However, it would be misleading to assert that the most efficient machine is

necessarily the best. By adjusting the heap size, the indexing performance of the two tools is now similar in

the continuing of this study.

Figure 15. Indexing performance of both technologies on different machines

Table 8 illustrates the indexing times for six different heap sizes on Machine 1, which has the best computer

resources. These are increment values that were picked at random. The objective is to compare the performance

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

399

of both tools based on the size of the heap. In this context, the reindexing times for the three datasets for the

two technologies are measured.

Table 8. A comparison of indexing times (sec) based on heap size

 Apache Solr Elasticsearch

Heap size
Dataset

1
Dataset 2 Dataset 3 Dataset 1 Dataset 2 Dataset 3

6 GB 1.976 4.574 31.788 2.768 5.398 70.106

8 GB 1.824 4.486 32.32 2.4 4.41 47.148

12 GB 1.788 4.51 32.072 3.478 6.266 70.908

16 GB 1.808 4.698 32.104 2.648 5.208 62.638

20 GB 1.868 4.772 32.528 2.396 4.378 48.038

24 GB 2.198 4.942 32.176 2.756 5.494 65.986

In Figure 16, the two technologies' indexing performances are compared regarding the size of the heap.

Considering the performance of Apache Solr, it is seen that it is not as dependent on machine features as
Elasticsearch. Increasing the heap size does not seem to noticeably affect the indexing performance of Apache

Solr. In contrast, the indexing performance has changed for Elasticsearch due to an increase in heap size.

Moreover, the performance of Elasticsearch is not linear in terms of the linearly raised heap size. It shows
better results at 8 GB and 20 GB. In this situation, too large a heap size does not always give the best

performance. In this case, there is no ideal or fixed size for manually setting the heap size. Developers need to

experiment and find a way that fits their work environment and the purpose of the project. Moreover, according

to experts, heap size should not exceed 50% of total memory. They also recommend keeping the heap size at
its default for Elasticsearch. Furthermore, while indexing, Elasticsearch prints the data to the command screen;

this situation has a slight negative impact on search time.

Figure 16. Change of indexing time according to machine heap size

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

400

As a result, according to our results, Apache Solr performs better for indexing than Elasticsearch. We can also

say that, when it comes to indexing, hardware resources are more important for Elasticsearch than for Apache
Solr.

5.2. Searching

In this study, Postman, an API platform for creating, constructing, and testing APIs, is utilized to monitor

search times. The queries (see Table 6) are provided as a request, and responses are retrieved from Postman.

It took ten attempts for each query to be answered, and the mean values of all were added to the tables. In
addition, Figure 17 shows the Postman interface and a submitted search request. URL requests were performed

using the GET method. Time found on the right side of the screenshot shows the search times used in this

study.

Figure 17. A screenshot of the Postman interface

Table 9 displays the average search time for each query and the number of records obtained for the Apache

Solr and Elasticsearch technologies when each query is submitted ten times. Pseudocode for a query is as

follows:
 1. Create query string (based on user requests)

2. Submit query request via Postman

3. Get searching time
4. Receive results

Changing the default value of the track_total_hits parameter in Elasticsearch reveals differences in search time.

The field type specifies the data type of each query field. During the search, the highest number of received
data points was 55263 in Q10. The track total hits level is therefore set to 60000, which accounts for the

quantity of data points returned by all queries. This threshold was set to 60000 in our example for testing

purposes; however, this quantity may be altered based on the datasets employed and expected outcomes.

Table 9. Comparison of searching times (sec)

Query Apache Solr
Elasticsearch / track_total_hits

Field types Result (count) = True = False

Q1 0.076 0.097 0.107 Text 26863

Q2 0.058 0.117 0.09 Numeric 26866

Q3 0.205 0.21 0.199 Text 6
Q4 0.064 0.081 0.089 Numeric 6

Q5 0.114 0.147 0.139 Text 294

Q6 0.141 0.31 0.298 Text 3955
Q7 0.089 0.09 0.117 Text 14926

Q8 0.048 0.073 0.069 Numeric 237

Q9 0.051 0.107 0.099 Numeric 26089

Q10 0.06 0.209 0.136 Numeric 55263

The searching times shown in Table 9 indicate that total hits were determined for both technologies, but only

10 values were printed. Thus, a fair comparison is achieved. While Q3 and Q7 queries have approximately the
same search time for both technologies, Q6 and Q10 queries have a significant difference. As a result, based

on our datasets and the queries, overall, Apache Solr performs better than Elasticsearch in demanding searching

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

401

jobs. Moreover, as shown in Table 9, despite the fact that the returned results for Q1 and Q2 are many times

greater than the query Q3, the retrieval times for Q1 and Q2 are faster than Q3. The fact that Q3 is a more
complex query (see Table 6) causes the search time to increase, while it is seen that the number of results and

search times are not directly proportional. In another case, Q3 and Q4 return 6 results, but for both Apache

Solr and Elasticsearch, Q4 has a better search time than Q3. When both queries given in Table 6 are examined
in the same dataset, the fields in Q3 have text content, while the fields in Q4 have numerical data. Thus, in this

case, the search time has also been significantly impacted by the data and field types. Figure 18 provides the

graphical representation of the query results presented in Table 9.

Figure 18. Results of searching times regarding to prepared queries

In Figure 18, if the track_total_hits parameter is false in Elasticsearch, it causes a decrease in the search time,

except for the queries Q1, Q4, and Q7. A more detailed search for queries Q1, Q4, and Q7 may allow for better
results, or increasing the number of trials for each query in this study may improve the search time for these

three queries. As a result, setting Elasticsearch's track_total_hits parameter to true or false also significantly

impacts the search speed. To sum up, despite these two situations, Apache Solr overall performs better than

Elasticsearch in terms of searching times.

6. Discussion and future work

In our investigation, we performed several comparisons between Apache Solr and Elasticsearch. In terms of

technical features, both technologies are significant and lead in terms of full-text search. Then, we compared

the indexing and search speeds of Apache Solr and Elasticsearch based on the queries and indexing times
described in Section 5. In terms of indexing speeds, according to our findings, Solr is superior to Elasticsearch.

In addition, we observed that improving the hardware capabilities of the system utilized for Elasticsearch is

more critical. Based on a comparison of search times, Apache Solr performs better than Elasticsearch.

Moreover, the fact that both solutions are built on Apache Lucene demonstrates that they share several robust
characteristics.

Apache Solr is a project that has been established by a strong community of Apache Software Foundation.
This brought features such as faceting search, feature filtering, real-time analytics to Apache Solr in this

development process. Apache Solr is also more advantageous than Elasticsearch, which was released four

years after Apache Solr, when it comes to project development based on user feedback. Because it provided

an opportunity to take the project to a more mature stage. Nowadays, both technologies have reached a certain
level. This study demonstrates that Apache Solr is more pro-user in terms of usage and search functionality.

Because it has developed into a simpler and clearer structure. Moreover, Apache Solr seems to be good at both

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

402

indexing and searching. While hardware specifications are important for Elasticsearch, Apache Solr performs

better with the same hardware specifications. This indicates that Apache Solr is more stable.

Furthermore, we present insight comparisons between our work and previous studies on the performance

comparison of Apache Solr and Elasticsearch. Table 10 contains comparison parameters and insight for
experiences similar to this study. While studies Yurtsever et al. (2022) and D.S. (2016) have the same opinion

as our study for indexing performance, studies Elasticsearch vs. Solr Performance: Round 2 (2015), Hansen et

al. (2018), and Gonçalves and Sunye (2020) indicate that Elasticsearch has a better indexing time in terms of

indexing performance. Considering the searching times, Apache Solr is better in terms of queries per second
in Elasticsearch vs. Solr Performance: Round 2 (2015). On the other hand, according to Hansen et al. (2018),

and D.S. (2016), Elasticsearch is better at searching. At the same time, we also observed similar results as in

Hansen et al. (2018) about Elasticsearch’s use of virtual memory. In addition, some of the datasets in the
related literature were not accessible, and some were not appropriate for this study. Therefore, the numerical

values could not be compared. However, future studies may use the datasets we used in this study.

Table 10. Comparison of regarding related works

Paper Comparison criteria
Compared

technologies
Insight

Elasticsearch vs.

Solr

Performance:
Round 2 (2015)

Search test with

indexing, search test
with indexing load,

queries per second

(OPS) test

Apache Solr vs.
Elasticsearch

Regarding indexing time,
Elasticsearch is good on small data

whereas Solr is better on large data.

Elasticsearch is good to test with
indexing load. Solr is good on the

QPS test.

Hansen et al.

(2018)

Indexer and searcher
performance, use

virtual machine

Apache Solr vs.
Elasticsearch

Elasticsearch is better for index size

and indexing time. In search, first run
Elasticsearch is good, second run Solr

is better. Elasticsearch uses more

virtual memory.

Yurtsever et al.

(2022)
Insert times

Apache Solr vs.

Elasticsearch
Apache Solr is faster and better.

D.S. (2016)
Indexing speed, search

speed

Apache Solr,

Elasticsearch, Sphinx,
Xapian

Apache Solr is good for indexing,

while Elasticsearch is good for
searching.

Gonçalves and

Sunye (2020)

Indexing time, RAM

usage, index disk
space

Apache Solr vs.

Elasticsearch

Generally, Elasticsearch performs

better than Apache Solr.

In this study, we evaluated the performance of Apache Solr and Elasticsearch on individual machines. In the

future, we want to do this work in a distributed environment to develop multi-node Apache Solr and
Elasticsearch in order to evaluate the indexing and searching performance of both technologies in a distributed

environment in order to determine the various aspects of this study. In this way, we will clearly see how the

distributed indexing performance and the search process on these distributed data compare to the performance
in a single node.

7. Conclusion

In conclusion, we provide a comprehensive report on full-text search methods used for processing and

analyzing large amounts of data. Initially, the features and technical comparison of Apache Solr and

Elasticsearch technologies are provided in depth. Second, a comprehensive and fair comparison of both
systems is conducted based on indexing times and carefully designed queries on three separate textual and

numeric datasets. Furthermore, a detailed related work is provided to present similarities, differences, and our

insights on how to use Apache Solr and Elasticsearch technologies in terms of underlying hardware. According
to our results, in general Apache Solr performs better than Elasticsearch. We suggest using Apache Solr with

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

403

computers that have low hardware resources. Our work offers researchers with background information on

full-text search methods, and our findings shed light on selecting the optimal alternative for full-text searching
activities in terms of accessible hardware sources, data type, and data size.

Author contribution

Ayşenur Deniz has worked on all stages of writing, coding, making figures, studying related works, collecting

querying results, revising, and comparing technologies on different machines. Muhammed Mehdi Elömer has
worked at writing, studying related works, and collecting querying results. Ahmet Arif Aydin has worked on

entire stages of writing, editing, revising, and consulting with co-authors.

Declaration of ethical code

The authors of this article declare that the materials and methods used in this study do not require ethical

committee approval or special legal permission.

Conflicts of interest

The authors declare that they do not have any conflict of interest.

References

Anderson, K. M., Aydin, A. A., Barrenechea, M., Cardenas, A., Hakeem, M., & Jambi, S. (2015). Design

challenges/solutions for environments supporting the analysis of social media data in crisis informatics research.

2015 48th Hawaii International Conference on System Sciences, 2015-March, 163–172.

https://doi.org/10.1109/HICSS.2015.29

Apache Lucene. (2022). https://lucene.apache.org/

Barrenechea, M., Jambi, S., Aydin, A. A., Hakeem, M., & Anderson, K. M. (2017). Getting the query right for crisis

informatics design issues for web-based analysis environments. Journal of Web Engineering, 16(5), 399–432.

https://journals.riverpublishers.com/index.php/JWE/article/view/3269/2153

Bellini, P., Bugli, F., Nesi, P., Pantaleo, G., Paolucci, M., & Zaza, I. (2019). Data flow management and visual analytic

for big data smart city/IOT. Proceedings - 2019 IEEE SmartWorld, Ubiquitous Intelligence and Computing,

Advanced and Trusted Computing, Scalable Computing and Communications, Internet of People and Smart City

Innovation, SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019, 1529–1536.

https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00276

DB-Engines. (2022). https://db-engines.com/en/

Domo Company. (2022). Data Never Sleeps 9.0. https://www.domo.com/learn/infographic/data-never-sleeps-9

Dota 2 Matches. (2022). https://www.kaggle.com/datasets/devinanzelmo/dota-2-matches

D.S., S. (2016). A quick search on the projects with a high loads and a large amount of data. Modern Technologies:

Current Issues, Achievements and Innovations — Collection of Articles III International Scientific Conference /

under the General Editorship of G. Yu Gulyaev — Penza MCNS « Science and Education », 23–32.

Elastic Installation and Upgrade Guide [8.4]. (2022). https://www.elastic.co/guide/en/elastic-stack/8.4/index.html

Elasticsearch vs. Solr Performance: Round 2. (2015). https://www.flax.co.uk/blog/2015/12/02/elasticsearch-vs-solr-

performance-round-2/

Gonçalves, A. A. S., & Sunye, M. S. (2020). Comparison of search servers for use with digital repositories. ICEIS 2020

- Proceedings of the 22nd International Conference on Enterprise Information Systems, 1, 256–260.

https://doi.org/10.5220/0009577102560260

Google Play Store Apps. (2022). https://www.kaggle.com/datasets/lava18/google-play-store-apps

https://doi.org/10.1109/HICSS.2015.29
https://lucene.apache.org/
https://journals.riverpublishers.com/index.php/JWE/article/view/3269/2153
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00276
https://db-engines.com/en/
https://www.domo.com/learn/infographic/data-never-sleeps-9
https://www.kaggle.com/datasets/devinanzelmo/dota-2-matches
https://www.elastic.co/guide/en/elastic-stack/8.4/index.html
https://www.flax.co.uk/blog/2015/12/02/elasticsearch-vs-solr-performance-round-2/
https://www.flax.co.uk/blog/2015/12/02/elasticsearch-vs-solr-performance-round-2/
https://doi.org/10.5220/0009577102560260
https://www.kaggle.com/datasets/lava18/google-play-store-apps

Deniz et al. 2023 / Volume:13 • Issue:2 • Page: 386-404

404

Google Trends. (2022). https://trends.google.com/trends/

Halevi, G., & Moed, H. (2012). The evolution of big data as a research and scientific topic: overview of the literature.

Research Trends, 30(36), 3–6.

Hansen, J., Porter, K., Shalaginov, A., & Franke, K. (2018). Comparing open source search engine functionality,

efficiency and effectiveness with respect to digital forensic search. NISK 2018 - 11th Norwegian Information

Security Conference, 108-121.

Kılıç, U., & Karabey, I. (2016). Comparison of solr and elasticsearch among popular full-text search engines and their

security analysis. UBMK'16 - International Conference on Computer Science and Engineering, 2016 October.

https://doi.org/10.13140/RG.2.2.24563.32803

Kowsari, K., Brown, D., Heidarysafa, M., Meimandi, K. J., Gerber, M., & Barnes, L. (2018). Web of science dataset. 6.

Mendeley Data. https://doi.org/10.17632/9RW3VKCFY4.6

Lakhara, S., & Mishra, N. (2017). Desktop full-text searching based on Lucene: a review. 2017 IEEE International

Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), 2434–2438.

https://doi.org/10.1109/ICPCSI.2017.8392154

Lashkaripour, Z. (2020). The era of big data: a thorough inspection in the building blocks of future generation data

management. International Journal of Scientific and Technology Research, 9, 321–330.

Lokoč, J., Veselý, P., Mejzlík, F., Kovalčík, G., Souček, T., Rossetto, L., Schoeffmann, K., Bailer, W., Gurrin, C., Sauter,

L., Song, J., Vrochidis, S., Wu, J., & Jónsson, B. þóR. (2021). Is the reign of interactive search eternal? findings

from the video browser showdown 2020. ACM Transactions on Multimedia Computing, Communications, and

Applications, 17(3), 1–26. https://doi.org/10.1145/3445031

Luburić, N., & Ivanovic, D. (2016). Comparing Apache Solr and Elasticsearch search servers. 6th International Conference

on Information Society and Technology - ICIST 2016.

http://www.eventiotic.com/eventiotic/files/Papers/URL/icist2016_54.pdf

Oussous, A., & Benjelloun, F. (2022). A comparative study of different search and indexing tools for big data. Jordanian

Journal of Computers and Information Technology, 8(1), 1. https://doi.org/10.5455/jjcit.71-1637097759

Rao, T. R., Mitra, P., Bhatt, R., & Goswami, A. (2018). The big data system, components, tools, and technologies: a survey.

Knowledge and Information Systems, 60(3), 1165. https://doi.org/10.1007/s10115-018-1248-0

Resources Apache Solr. (2022). https://solr.apache.org/resources.html

Voit, A., Stankus, A., Magomedov, S., & Ivanova, I. (2017). Big data processing for full-text search and visualization with

elasticsearch. IJACSA - International Journal of Advanced Computer Science and Applications, 8(12).
www.ijacsa.thesai.org

Wang, J.-F., Wang, X.-F., & Li, H. (2022). Design of multimedia distance teaching auxiliary system based on MOOC

platform. ICMTMA 2022 - 14th International Conference on Measuring Technology and Mechatronics

Automation, 1179–1186. https://doi.org/10.1109/ICMTMA54903.2022.00237

Y. Aldailamy, A., Abdul Hamid, N. A. W., & Abdulkarem, M. (2018). Distributed indexing: performance analysis of Solr,

Terrier and Katta information retrievals. Malaysian Journal of Computer Science, 87–104.

https://doi.org/10.22452/mjcs.sp2018no1.7

Yurtsever, M. M. E., Özcan, M., Taruz, Z., Eken, S., & Sayar, A. (2022). Figure search by text in large scale digital

document collections. Concurrency and Computation: Practice and Experience, 34(1).
https://doi.org/10.1002/CPE.6529

https://trends.google.com/trends/
https://doi.org/10.13140/RG.2.2.24563.32803
https://doi.org/10.17632/9RW3VKCFY4.6
https://doi.org/10.1109/ICPCSI.2017.8392154
https://doi.org/10.1145/3445031
http://www.eventiotic.com/eventiotic/files/Papers/URL/icist2016_54.pdf
https://doi.org/10.5455/jjcit.71-1637097759
https://doi.org/10.1007/s10115-018-1248-0
https://solr.apache.org/resources.html
http://www.ijacsa.thesai.org/
https://doi.org/10.1109/ICMTMA54903.2022.00237
https://doi.org/10.22452/mjcs.sp2018no1.7
https://doi.org/10.1002/CPE.6529

