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Abstract: Ribonucleic acids (RNA) are macromolecules found in all living cells and act as 

mediators between DNA and protein. Structurally, RNAs are more similar to the DNA. In this 

paper, we introduce a compact graph representation utilizes the Minimum Free Energy (MFE) of 

RNA molecules' secondary structure. This representation represents structural components of 

secondary RNAs as edges of the graphs, and MFE of these components represents their edge 

weights. The labeling process is used to determine these weights by considering both the MFE 

of the 2D RNA structures, and the specific settings in the RNA structures. This encoding makes 

the representation more compact by providing a unique graph representation for the secondary 

structural elements in the graph. Armed with the representation, we apply graph-based 

algorithms to categorize RNA molecules. We also present the result of the cutting-edge graph-

based methods (All Paths Cycle Embeddings (APC), Shortest Paths Kernel/Embedding (SP), 

and Weisfeiler - Lehman and Optimal Assignment Kernel (WLOA)) on our dataset [1] using this 

new graph representation. Finally, we compare the results of the graph-based algorithms to a 

standard bioinformatics algorithm (Needleman-Wunsch) used for DNA and RNA comparison.  

 

 

 

Serbest Enerji Serisine Dayalı Yeni Bir Graf Temsili ile RNA Zincirlerini Sınıflandırma 
 

 

Anahtar 

Kelimeler 

Graf 

gösterimleri, 

RNA,  

Graf çekirdek 

yöntemleri, 

Makine öğrenmesi 

 

Öz: Ribonükleik asitler (RNA), tüm canlı hücrelerde bulunan makromoleküllerdir ve DNA ile 

protein arasında aracı görevi görürler. Yapısal olarak daha çok DNA'ya benzerler. Bu makalede, 

RNA moleküllerinin ikincil yapısının Minimum Serbest Enerjisini (MSE) kullanan kompakt bir 

grafik gösterimi sunuyoruz.  Bu temsilde,  RNA moleküllerinin yapısal bileşenleri grafların 

kenarlarını ve bu bileşenlerin MSE'si, kenar ağırlıklarını temsil eder. Etiketleme işlemi, hem iki 

boyutlu RNA yapılarının MSE'sini hem de RNA yapılarındaki belirli ayarları dikkate alarak 

kenar ağırlıkları belirlenir. Bu kodlama, graftaki ikincil yapı elemanlarına benzersiz bir graf 

temsili vererek gösterimi daha kompakt hale getirmek için kullanılır. Temsil ile donanmış 

olarak, RNA moleküllerini kategorilere ayırmak için graf tabanlı algoritmalar uyguluyoruz.  

Ayrıca, veri kümemizde [1] bu yeni graf temsilini kullanarak en son graf tabanlı yöntemlerinin 

(All Paths Cycle Embeddings (APC), Shortest Paths Kernel/Embedding (SP) ve Weisfeiler - 

Lehman and Optimal Assignment Kernel (WLOA)) sonuçlarını sunuyoruz. Son olarak, graf 

tabanlı algoritmaların sonuçlarını DNA ve RNA karşılaştırması için kullanılan standart bir 

biyoinformatik algoritma (Needleman-Wunsch) ile karşılaştırıyoruz. 

 

 

1. INTRODUCTION 

 

DNA is a double-stranded nucleic acid that holds the 

blueprint for the development and function of all living 

beings, in the form of genetic code [29]. The code is a 

sequence of three base letters (’AAA’, ’ATC’, ’GTT’, 

’GTA’, …). RNA is a DNA-like single-stranded polymer 

of nucleotides made up of various kinds of nucleobase 

building blocks. One of the functions of RNA is to copy 

the blueprints of the DNA and translate them to the 

protein via ribosomes in the cell. Therefore, a new RNA 

is a complementary part of the DNA chain. Both 

molecules include bases (nucleotides).  
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The RNA's primary structure refers to the order of its 

nucleobases. The nucleotide sequences then fold upon 

themselves to build topological structures, known as 2D 

RNA structures. These 2D RNA structures composed of 

loops (hairpin loop, bulge, junction, and interior loop) 

and base pairs (stem/helix) [30]. The 2D RNA structure, 

which is more complex than the primary structure, holds 

more information than just the order of its nucleobases. 

Representing the primary RNA structures in graph data is 

relatively straightforward by using vertices for each 

nucleobase and edges for connections between adjacent 

nucleobases. However, representing complex secondary 

RNAs in graph data is a more challenging task. These 

structures can also fold onto themselves to build  3𝐷  

complex shapes, which are more similar to protein 

shapes, but are chemically more similar to DNA. 

Therefore, RNA contains sequence, structural, and shape 

information. 

 

RNA's biological functions are closely linked to its 

structure [2]. The 2D structures of RNA are predicted and 

may differ from their actual shapes. Therefore, it is 

essential to utilize a robust tool for efficiently generating 

secondary structures. The prediction of the biological 

functions of RNA is related to obtaining useful 

information contained in the structure of RNA. Currently, 

the research community primarily employs two methods 

for generating secondary RNA structures. One approach 

focuses on minimizing free energy, while the other 

approach involves determining the association of 

nucleotides through the distance between their atoms. 

The following challenges are encountered during the 

encoding of secondary RNA structures. 

 

- How to transform secondary RNA structures 

into a graph data form, as well as extract 

valuable structural features of 2D structures? 

- How reduce the size of 2D RNA graph data? 

- How to make pairwise comparison of RNA 

strands using their 2D structures to predict their 

biological tasks? 

- How to solve multi-class classification problem 

of 2D RNA representations? 

 

This article presents novel and advanced techniques to 

tackle these problems by encoding RNA secondary 

structural motifs as edges and connections between them 

as vertices. Additionally, to gain more features for 

encoding 2D RNAs in the graph data form, the total MFE 

is encoded as edge weights. 

 

2. RELATED WORK 
 

A Graph 𝐺 =  (𝑉, 𝐸) can be defined as set of nodes and 

edges (V, 𝐸 ⊆  𝑉 ×  𝑉), and their labels. An edge (𝐸) 

connects two nodes. A path is a sequence of vertices in a 

given graph.  

 

RNA can be represented as a graph by encoding each 

RNA nucleobase as a node and placing edges between 

neighboring nodes. In this representation, X3DNA [3] is 

used to extract bound base pairs. In the graph 

representation of RNA, each node is labelled with its 

associated base. This representation was first used in the 

1970s by Waterman [4] and has been used in various 

studies since then. 

 

In 2004, the RAG [5] introduced a graph representation 

using existing and hypothetical secondary structural 

components of RNAs. The RAG web resource 

enumerates the number of nodes in graphs of RNA motifs 

according to their 2D complexity and classifies them 

based on functional types. RAG introduces a tree graph 

representation for hypothetical RNA tree shapes and a 

dual graph representation for other RNA structures that 

include both trees and pseudoknots. RAG uses labelled 

vertices and directed edges in graphs, and in the RAG 

representation, it assigns stems as edges and loops as 

nodes. 

 

In 2012, Knisley et al [6] developed a dual graph RNA 

representation that can encode all structural types of 2D 

RNAs. They employed a multi-graph secondary RNA 

representation by using existing graph-theoretic 

descriptors to categorize all likely secondary RNA 

topologies with stems encoded as nodes and other 

structural motifs encoded as edges. 

 

In 2016, a novel method was introduced by Huang et al 

[7], where RNA molecules were encoded by transforming 

graphs into topological spectrums. The subgraphs of the 

RNA strands are defined as their topological fingerprints 

and are classified the RNA strands by comparing the 

fingerprints. 

 

In 2018, a variety of RNA graph-based representations 

were introduced, including 1D/2D/3D RNA structures 

[8]. In the 1D RNA graph representation, nucleotides 

were encoded as nodes; in the 2D RNA graph 

representation, X3DNA was used to generate structures. 

In this representation, matched base-pair is indicated by 

adding cross-link edges. The (𝑥, 𝑦, 𝑧)  coordinate 

information of the 𝐶3 atom is used to provide 3D RNA 

graph representation. 

 

3. A NEW GRAPH REPRESENTATION 

 

All 2D RNA structures are predicted structures and 

closely related to their structural components [2, 8, 10-

14]. 2D RNA structural components can be predicted by 

free energy minimization. Many techniques have been 

developed to predict 2D RNA structures. First, a dynamic 

algorithm [15] was developed by Zuker and Stiegler in 

the 1980s for generating secondary RNA structures 

utilizing MFE in loops. Subsequently, widely used 

methods like the Mfold Web Server, Vienna RNA 

Software, and many other studies [8, 10, 11, 13, 16, 18] 

have used the MFE approach to predict secondary RNA 

structures. 

 

X3DNA [3] can generate and visualize 2D/3D RNA 

structures from PDB files using the distance between 

atoms of base pairs. X3DNA considers the orientation 

and relative position of atoms (𝐶3, 𝑂2) of two bases to 

predict 2D RNA structures [17]. 
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3.1. Sequence Free Energy 

 

In this work, our approach is to receive all MFEs of 2D 

RNA structural components and transform them into a 

graph-structured data form. 

 
Figure 1. The structure of the Escherichia coli Riboswitch is 

represented in 2D using the MFE information obtained from the 
4Y1M.pdb file. 

 

Our secondary RNA graph representation is divided into 

three categories: stems/helixes, loops, and unpaired parts 

of the chain. We construct a graph using the MFE for the 

stems/helixes shown in Table 1 produced by Vendeix et 

al [19, 20] and loops shown in Figure 2 produced by 

Tinoco et al. [21], and a regular tetrahedral approach 

for unpaired part of the RNA chain as follows. 

 
Table 1. MFE between base pairs received from [19]. 

Base pair             kcal/mol 

𝑈 −  𝐺                − 4.45 

𝑈 −  𝑈                − 5.82 

𝐶 −  𝐺                − 5.53 

𝑈 −  𝐴                − 4.42 

𝑈 −  𝐶                − 0.37 

𝑈 −  𝐴                − 4.42 

 

The paired parts of RNAs are called stems or helixes. The 

highest negative energy arises among the most sturdy 

RNA base pairs. X3DNA [3] is utilised to generate base 

pair information. 

 

The edge weight of loops in RNA molecules is 

determined by using the MFE on hairpin, interior, and 

bulge loops as seen in Figure 2 [21]. This method, 

although being one of the oldest techniques, is still used 

today for computing MFE [22]. However, we have no 

information of MFE on junctions available, and they are 

utilised similarly to the interior loops when calculating 

edge weights. 

 

 
Figure 2. This figure is received from [21]. The MFE information on 

loops. 
 

Pretty much, 24 percent of RNA molecules in the York 

RNA Dataset [1] lack 2D structural components and are 

unpaired. This affects correctly categorizing RNA 

molecules using learning methods. To solve this problem, 

we developed an advanced approach for encoding these 

unpaired RNA strands based solely on their base 

sequences. We used 3-base codes as edge weights to 

make the graph smaller (see Figure 3). Each of 3-base 

codes 𝐴(1,1,1), 𝐺(−1, −1,1), 𝑈(1, −1, −1),  and 

𝐶(1, −1, −1)  is encoded as a regular tetrahedron with 

equal distance between any paired bases (2√2)  (see 

Figure 4). We used K-medoids to reduce the group of 

possible 64 sequences to 4 for generating the code-book’s 

code-words. Then, Learning Vector Quantization (LVQ) 

utilized these code-words to cluster edge weights into 

four classes. We made this improvement because some 

graph kernels solely apply to a finite number of discrete 

node labels. 
 

 
Figure 3. Unpaired part of the strands represented into weighted graph 

structured data using base sequences obtained from 1a3m.pdb (chain B) 

file.   

 

RNA strands with 2D structures also have unpaired 

sequences, known as tails and queues, from the 5’ to 3’ of 

RNA strands. The same method discussed previously is 

applied to these tails and queues. 
 



 

Tr. Doğa ve Fen Derg. Cilt 12, Sayı 2, Sayfa 32-39, 2023     Tr. J. Nature Sci. Volume 12, Issue 2, Page 32-39, 2023 
 

35 

 
Figure 4. A regular tetrahedron represents base position. 

 

Some graph kernels, such as the WL kernel, operate on 

discrete labels. Therefore, edge weights are refined as 

follows: the edge labels of 3-base codes are integers 

ranging from (-1 to 4). For other edge weights, we 

divided them by 10 if their absolute value was greater 

than 5, and rounded all numbers to tenths to reduce the 

number of decimal places to one. 

 

 
Figure 5. The histogram illustrates the range of edge labels prior to 

edge modifications [-252.0 to 4.0]     

 

 
Figure 6. The histogram illustrates the range of edge labels after 

modifications [-26.0 to 4.0]. 
 

As illustrated in Figure 5 and Figure 6, the range of edge 

weights significantly reduced. This representation allows 

for relevant information to be retained while decreasing 

the number of vertices and edges by 75.4%. 

 

5. DATA 

 

The RNA Graph Classification Dataset used in this work 

was compiled by the University of York [1]. The dataset 

was labelled by using the biological function of the RNA 

molecules and includes 3178  RNA chains in the PDB 

files. The sequence and (𝑥, 𝑦, 𝑧) coordinates information 

of the nucleobases were extracted from the pdb files. 

 

This dataset is the largest dataset based on the 

categorization of RNA molecules according to their 

biological functions. The RNA classes are 

RIBONUCLEASE (14), RIBOSWITCH (227), MRNA 

(179), RIBOZYME (259), RRNA (1135), SRP (57), 

TRNA (581), and OTHER (726). The amount of each 

class of RNA is represented in parentheses. Detailed 

information about the dataset is available in [1], and the 

dataset is available for download at the 

https://www.cs.york.ac.uk/cvpr/RNA.html web site. 

 

5. CLASSIFICATION METHODS 

 

We apply pairwise graph comparison methods to 

categorize RNA structures according to their 8 types of 

biological function. In particular, we use graph kernels 

previously used on the other RNA datasets.  

 

5.1. Weisfeiler-Lehman Optimal Assignment Kernel 

(WLOA) 

 

The Weisfeiler-Lehman (WL) is a graph kernel function 

that compares the structural similarity of labelled graph 

pairs [31]. This cutting-edge kernel method treats each 

graph as a sequence of its labels. The WL method 

recursively relabels the nodes of graphs according to their 

neighbourhood node labels and makes a comparison of 

the resulting node and edge labels at each iteration [23]. 

For a fixed number of iterations, the edge refinement 

process is repeated. At each iteration, the WL kernel sorts 

the edge and node labels, uses a global hash function for 

compression, and counts common labels [25].  

 

Optimal Assignment (OA) [24] is a kernel function base 

on the optimal assignment problems between the nodes of 

graph pairs [32]. OA count the similarity score of the 

perfect match between the node labels of graph pairs for 

classification problems. WLOA receives an OA kernel 

where the labels are obtained by the WL method 

[25], with the starting label corresponding to the encoded 

RNA graph’s vertex labels [1]. This method provides the 

highest classification accuracy in applying classifier 

methods to our dataset.  

 

5.2. Shortest Path Kernel/ Embedding (SPK) 

 

A walk kernel calculates the similarity of two graphs by 

determining the number of shared walks of a specific 

type in both graphs. The Shortest path kernel (SPK) [26] 

is a type of walk-based kernel that computes the 
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shortest walks between graph pairs to measure the 

similarities between two vertices within a graph. 

 

𝐾𝑆𝑃(𝐺, 𝐻) =  ∑  ∑ 𝐾𝐵(𝑝𝑖 , 𝑝𝑗)

𝑝𝑗∈𝑆𝑃(𝐻)𝑝𝑖∈𝑆𝑃(𝐺)

 (1) 

  

Here, 𝑆𝑃(. ) represents the set of shortest paths, and 𝐾𝐵 is 

a delta kernel that compares all shortest distances in the 

graph. Each path is represented by a label sequence, and 

in our application, we compute the SP length for each 

RNA strand and represent it as a histogram of these paths 

in a feature space. The edge lengths are determined by 

the RNA edge weights, and the paths are labelled by their 

start and end vertex labels. 

 

5.3. All Paths and Cycles Kernel /Embedding (APC) 

 

The APC is a kernel function [27] based on counting all 

possible paths, including cycles, within a graph, unlike 

SP kernel which only computes the shortest path. 

 

𝐾𝐴𝑃𝐶(𝐺1, 𝐺2) =  ∑  ∑ 𝐾𝐵(𝑝𝑖 , 𝑝𝑗)

𝑝𝑗∈𝑃𝐶(𝐺2)𝑝𝑖∈𝑃𝐶(𝐺1)

 (2) 

  

Here, 𝐾𝐵(.) is a base kernel, and 𝑃𝐶(. ) represents a group 

of all possible paths, including cycles, on 𝐺 . The 

maximum length of the path must be limited, and the 

amount of the discrete node/edge labels must be less than 

4. To apply this method to the primary and secondary 

RNA structure, we label the bases of RNA strands with 

three labels A/U, G/C, and other. Similarly, we label the 

nodes with three labels F, N/Q/H, and B/L/other to apply 

this method to our introduced representation. With these 

limitations, this kernel is computationally very efficient. 

This kernel has the same explicit embedding as the SP, 

such as the histogram of discrete labelled paths [1]. 

 

5.4. Needleman - Wunsch Algorithm 

 

The Needleman-Wunsch algortihm [28] is a populer 

sequence-based method in application of DNA and 

protein for comparison. Since RNA nucleobase 

sequences are similar to that of DNA, Needleman-

Wunsch algortihm can also be operated on RNA 

sequences for comparison. The RNA nucleotides are 

denoted as a sequence of 4 letters (A, C, U, G) and the 

Needleman-Wunsch algortihm [28] used to align these  

strings. The Jukes-Cantor method is employed to count 

the distances between RNA sequences.  

𝑑 =  −
3

4
log (1 −

4

3
𝑝) (3) 

  

Where, the distances between RNA sequences denotes 𝑝  

with the range of, 0 ≤  𝑝 ≤  1, for the portion of sets 

that are distinct. A distance matrix, 𝐷, is then populated 

with these distances, and multidimensional scaling is 

applied to map these distances into a feature space. 
 

3. RESULTS  

 

We presented the results from the introduced graph 

representations of secondary RNAs, utilizing the cutting-

edge graph kernels algorithms to categorise RNA strands 

from the York RNA Graph dataset. 

 

This analysis aims to determine if the introduced 

representation is effective in classifying RNA strands by 

reducing complexity and increasing accuracy. Various 

structural information from RNA, including topology, 

sequence, and the introduced representations, were also 

evaluated to classify RNA molecules. The RNA sequence 

representation from [1] consists of base labels and edges 

located between adjacent bases, while the 2D RNA 

representation from [1] includes edges of the graph but 

no labels of bases. The NR-W representation is a 

weighted secondary graph representation of RNA 

introduced in the Section 3.1. On the other hand, the NR-

UW is an unweighted representation of the same graph, 

in which the edge weights have been eliminated.  

 
Table 2. The prediction accuracy of various methods and 

representations, such as APC, WLOA, SP, and SA on the York RNA 
Graph Dataset. *These classification results are taken from our previous 

study [1]. 

   Seq*         Top*          Seq+Top*       NR-W        NR-UW 

WLOA 

SP 

APC 

SA 

92.0           73.1               𝟗𝟐. 𝟒                 86.6              77.5 

𝟗𝟏. 𝟑          79.5               91.1                  79.6              75.4 

𝟗𝟎. 𝟑          85.4               89.9                  80.8              79.4 

   89.2 

 
Table 3: The classification time for the York RNA Dataset utilising various methods and representations, such as APC, WLOA, SP, and SA, 

expressed in units of seconds (s), minutes (m), and hours (h).  

 Seq       Top     Seq + Top     NR-W   NR-UW   

Acc. speeds Acc. speeds Acc. speeds Acc. speeds Acc. speeds 

WLOA 

SP 

APC 

𝟗𝟐. 𝟎 

91.3 

90.3 

16𝑚 32𝑠 

10ℎ 36𝑚 14𝑠 

17𝑚 57𝑠 

73.1 

79.5 

𝟖𝟓. 𝟒 

5𝑚 32𝑠 

10ℎ 40𝑚 10𝑠 

16𝑚 33𝑠 

𝟗𝟐. 𝟒 

91.1 

89.9 

3𝑚 13𝑠 

10ℎ 43𝑚 15𝑠 

24𝑚 20𝑠 

86.9 

80.9 

79.5 

2ℎ 59𝑚 44𝑠 

13𝑚 1𝑠 

1𝑚 46𝑠 

77.5 

75.4 

79.4 

19𝑠 

10𝑚 19𝑠 

1𝑚  9𝑠 

 

Then, we used graph kernel methods and machine 

learning classification algorithms to evaluate 

the outcome of various techniques on various sources of 

RNA information. Bagged Trees performed the best with 

the SPK method utilising NR-UW, while Quadratic 

SVM and Cubic SVM produced the most advanced 

results with WLOA on the same representation when 

PCA was applied. Furthermore, Subspace KNN achieved 

the most favourable outcomes with the APC method 

when utilising all representations, as well as with the 

SPK using NR-W, Top, Seq, and with WLOA using NR-

W. 
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Moreover, we analyzed the outcome of classifications 

using ROC curves and found that Subspace KNN had a 

TPR of 94%  and an AUC of 98% . Our experiments 

revealed that using reduced graph representations 

resulted in lower performance but faster execution time. 

 

The highest performance was achieved when applying 

WLOA to the Seq + Top representation of RNA, with an 

outcome of 92.4%  accuracy. The introduced NR-W 

representation had an accuracy of 86.6% and performed 

better than the topology graph representation of 2D RNA. 

The 2D RNA graph representation revealed the highest 

accuracy (85.4%) when using the APC method. Our 
introduced NR-W representation had a higher accuracy 

of 86.6% when using the WLOA kernel, as it includes 

both sequence and edge labels of reduced graph 

representation, whereas the topology representation 

solely consists of edge information of the exact graph 

representation. As shown in Table 2 and Table 3, 

incorporating Minimum Free Energy as edge weights on 

structural components produced better outcomes. 

However, combining the topology with the sequence 

(Seq + Top) provided superior performance than NR-W. 
 

 

 
Figure 7. Evaluation of the NR-W using the ROC Curve and 

Confusion Matrix using WL-OA kernel. 

Eliminating the weights from the edge of the full graphs 

decreased the accuracy (79.4%)  when applying APC. 

The outcomes indicate that using weighted RNA graph 

representations improves performance compared to 

unweighted RNA graph representations when using 

WLOA, SP, and APC kernel methods. 

 

Overall, our introduced representation effectively 

reduced the exact graph size and improved classification 

accuracy for 2D RNA structures. Despite this, the 

primary RNA representation performed better than all 

2D RNA representations. For achieving greater 

classification accuracy, more advanced graph 

representations are needed for encoding 2D RNA 

structures. 

 
7. CONCLUSION 

 

In this research article, we addressed the problem of 

representing 2D RNA structures. We investigated 

existing representations and introduced a novel RNA 

graph representation using various methods, including 

investigating the impact of minimum free energy (MFE) 

on predicting RNA function. We also considered 

infrequent parts of the RNA structure and applied 

alternative approaches to encoding them, ultimately 

building a compact graph representation. 

 

We successfully transformed MFE into a graph-based 

representation and demonstrated that representing MFE 

as weigths of graph edges, along with refinements 

on infrequent parts of the RNA graph representation, 

improves classification accuracy. 

 

We applied a standard sequence-alignment method and 

the most advanced graph kernel methods to the graph 

representations for producing a Gramian matrix. Then, 

we utilised machine learning classification algorithms to 

this matrix to categorise it into high-level classes. The 

highest result from [1] using WLOA on the Seq had an 

accuracy of 92.0%. However, our representation, using 

the WLOA method on the 2D RNA structure and with 

75% fewer vertices, achieved the best result with an 

accuracy of 86.6% and performed better than the highest 

results from [1] using the same graph kernels. The 

unweighted graph representation of the 2D RNA can 

also classify RNA molecules but with a trade-off of 

increased speed but lower accuracy. 

 

Despite this success, the results from all 2D RNA graph 

representations did not perform as well as the primary 

RNA graph representation due to the loss of information 

and unpredictability of actual 2D RNA shapes. 
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