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Abstract: Deep learning, which has seen frequent use in recent studies, has helped solve the problem of classifying objects of 
many different types and properties. Most studies both create and train a convolutional neural network (CNN) from scratch. 
The time spent training the network is thus wasted. Transfer learning (TL) is used both to prevent the loss of time due to training 
the dataset and to more effectively classify small datasets. This study performs classification using a dataset containing eighteen 
types of fastener. Our study contains three different TL scenarios. Two of them use TL with fine-tuning (FT), while the third 
does so with feature extraction (FE). The study compares the classification performance of eighteen different pre-trained 
network models (i.e., one or more versions of EfficientNet, DenseNet, InceptionResNetV2, InceptionV3, MobileNet, 
ResNet50, Xception, and VGGNet) in detail. When compared to other research in the literature, our first and second scenarios 
provide excellent implementations of TL-FT, while our third scenario, TL-FE, is hybrid and produces better results than the 
other two. Furthermore, our findings are superior to those of most previous studies. The models with the best results are 
DenseNet169 with an accuracy of 0.97 in the TL-FT1 scenario, EfficientNetB0 with 0.96 in TL-FT2, and DenseNet169 with 
0.995 in TL-FE.  
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Derin Öznitelik ve İnce-Ayar ile Aktarım Öğrenme Tabanlı Bağlantı Elemanlarının Hibrit 
Sınıflandırma Yaklaşımı   

 
Öz: Son yıllarda yapılan çalışmalarda sıkça kullanılmaya başlanan derin öğrenme, birçok farklı tür ve özellikteki nesnelerin 
sınıflandırılması sorununun çözülmesine yardımcı olmuştur. Çoğu çalışma, sıfırdan bir evrişimsel sinir ağı (CNN) oluşturur ve 
eğitir. Ağı eğitmek için harcanan zaman böylece boşa harcanır. Transfer öğrenme (TL) hem veri setinin eğitilmesinden 
kaynaklanan zaman kaybını önlemek hem de küçük veri setlerini daha etkin bir şekilde sınıflandırmak için kullanılmaktadır. 
Bu çalışma, on sekiz tip bağlantı elemanı içeren bir veri seti kullanarak sınıflandırma yapmaktadır. Çalışmamız üç farklı TL 
senaryosu içermektedir. Bunlardan ikisi ince ayar (FT) ile TL kullanırken, üçüncüsü özellik çıkarma (FE) ile yapmaktadır. 
Çalışma, on sekiz farklı önceden eğitilmiş ağ modelinin (yani EfficientNet, DenseNet, InceptionResNetV2, InceptionV3, 
MobileNet, ResNet50, Xception ve VGGNet) sınıflandırma performansını ayrıntılı olarak karşılaştırmaktadır. Literatürdeki 
diğer araştırmalarla karşılaştırıldığında, birinci ve ikinci senaryolarımız TL-FT' nin iyi sonuçlarla uygulamalarını sağlarken, 
üçüncü senaryomuz TL-FE hibrit bir yöntem olup diğer iki senaryodan daha iyi sonuçlar üretmiştir. Ayrıca, bulgularımız 
literatürdeki çalışmaların çoğundan daha üstün olduğu fark edilmiştir. En iyi sonuçlara sahip modeller TL-FT1 senaryosunda 
0,97 doğrulukla DenseNet169, TL-FT2'de 0,96 ile EfficientNetB0 ve TL-FE'de 0,995 ile DenseNet169'dur. 
 
Anahtar kelimeler: Sınıflandırma, bağlantı elemanı, özellik çıkarma, ince ayar, transfer öğrenme. 
 
1. Introduction 
 

Fasteners are critical to the proper operation of industrial machinery. Quality control and fault diagnosis 
applications must ensure that fasteners on machines are complete and flawless. The detection of problems with 
fasteners can benefit from the use of computer vision technologies. Potential major problems in industrial 
machines—fastener failure, breakage, wear and tear, and so on—can be avoided thanks to advanced fault diagnosis 
using computer vision technologies. Using computer vision techniques to determine the condition of industrial 
machinery will help ensure the safety of industrial machines by avoiding the unnecessary use of human resources 
and costly expenses due to failures. 

Recently, the deep learning (DL) approach has commonly been used in fault diagnosis, detection, and 
classification. Fasteners are highly similar to each other, which complicates the identification, detection, and 
classification of the carrying element. Many studies have used DL for object detection and classification, and the 
transfer learning (TL) method can help provide more effective results by improving learning capacity. TL is a 
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technique in which models are trained on large datasets, allowing the trained network to be used ready-made from 
other datasets. In classification studies, a pre-trained network saves time and provides high performance in 
classifying small datasets. Thanks to the information obtained from a model previously trained on a large-scale 
TL dataset, classification uses a new, different dataset with the same or a different model. Thus, the information 
in the pre-trained model is transferred and the performance of the network improves. Since our dataset is small, 
TL provided better performance than in many other studies in the literature.  

Using a fine-tuning-based and feature-inference-based transfer learning method, it is intended to identify data 
sets with high similarity. This study classified 18 fastener types using TL-based feature extraction and fine-tuning 
techniques. The proposed method includes three different classification scenarios. The first scenario involves fine-
tuning by updating only the number of classes in the classifier layer of the pre-trained model. In the second, after 
adding two dense layers to the end of the pre-trained model, fine-tuning has been applied with the classifier layer 
updated. In the last scenario, features were extracted, with the pre-trained network using the feature extractor 
capability of the pre-trained model. So, the new CNN model takes inputs as local features, leading to more accurate 
results.  

The main contributions of this study are listed below: 
• It proposes three different methods to classify TL-based fasteners. Two of them use the fine-tuning (FT) 

approach, while the third adopts the feature extraction (FE) approach. While studies in the literature classify 
fasteners using only one of the FT methods, our study compares three different scenarios in detail. From this point 
of view, it is a very comprehensive and useful TL resource, as compared to the studies in the literature.  

• Classification using FE, the third of the proposed classification scenarios, is a hybrid method. Examining 
the studies in the literature shows this to be an important study. In the third scenario, which combines CNN 
architecture and a pre-trained TL network, the features extracted by the TL network, rather the raw image, are 
given as input to the CNN network, thus improving the success of the network.  

• Examining the studies in the literature that use FT shows that FT can be performed in two ways. Our 
study compares performance outputs by applying both FT approaches separately. This led to more successful 
results than in most studies in the literature.  

• Existing studies involving FT use a maximum of 6 pre-trained TL models, whereas our study aims to 
select the model that gives the best results by applying almost all (specifically, 18) of the TL models used for 
classification in the literature. This study is thus the most comprehensive TL study in the literature.  

• In addition, because the deep CNN network is trained by using TL-FT and TL-FE on a dataset with a 
low number of images, classification results have very high performance. 
 
2. Related Works 

 
Several studies have used TL to classify objects. In one study on how to detect COVID, a hospital took 4986 

chest CT images, and used DenseNet121, DenseNet201, VGG16, VGG19, InceptionResnetV2, and Xception 
models to test TL [1]. Fine-tuning was accomplished by freezing feature extractor layers on DenseNet201, which 
produced the best COVID classification results based on these chest images. Fine-tuning hyper-parameters were 
adjusted with Dropout 0.2, 0.3, and 0.3 after Conv2D (3,3x3), Global Average Pooling, and three fully connected 
layers with 256,128,64 neurons. After comparing the performance of these TL models, DenseNet201 achieved an 
accuracy rate of 0.9818. Meanwhile, another COVID detection study [2] used TL with VGG19, ResNet50V2, 
DenseNet121, and MobileNet. Fine-tuning involved adding Conv2D, Average Pooling, Flatten, and Sigmoid 
layers to the last layers of the models for a 460-image dataset. The best result was achieved with MobileNet. [3] 
used the ResNet50 model with fine-tuning for disease classification on 20,639 crop images. This model modified 
the values of the batch size, epoch, and learning rate hyper-parameters. In addition, the study removed the model's 
final three layers and added Conv2D, Average Pooling, Fully Connected, and Softmax layers, in that order, to the 
model. Classifying 15 different disease states with 300 images from each class yielded an accuracy of 99.26.  

Kudva et al. applied hybrid TL using VGG16 and AlexNet networks for cervical cancer detection based on 
2198 positive and negative images of the cervix [4]. The hybrid TL method built a CNN from scratch using the 
initial weights of AlexNet and VGG16. Successful results were obtained, with an accuracy rate of 0.9146. Another 
study is based on the fact that farmers have a hard time identifying insect pests since they seem identical during 
the growing stages of the crop [5]. This problem was solved with a deep CNN, with three datasets used to classify 
the insects. There were 40 classes in the first dataset, 24 in the second, and 40 in the third. The study compared 
the AlexNet, VGGNet, GoogLeNet, and Resnet TL approaches for insect categorization. Hyper-parameter 
adjustment for pre-trained networks improved classification performance: the accuracy rate was 0.9675 in the first 
dataset, 0.9747 in the second, and 0.9547 in the third. All pre-trained models were fine-tuned by adding Average 
Pooling, Fully Connected, and Softmax layers [5]. Talo et al. used the CNN-based ResNet-34 TL model to analyze 
MRI images in order to detect abnormalities in the brain [6]. They upgraded the model's last layers, the Dense and 
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Softmax layers, and achieved 100% accuracy with a 5-fold classification on 613 MR images.  Another study, to 
classify brain tumors, only updated the Softmax part of the pre-trained model [7]. The networks used in the study 
were AlexNet, GoogLeNet, SqueezeNet, ResNet50, and ResNet101. After hyper-parameter adjustment, AlexNet 
achieved the highest accuracy rate, 0.9904. 

Yang et al. classified spare parts into three categories using TL [8]. They used the VGG19, Alexnet, and 
ResNet50 models, with the VGG19 model yielding the highest success rate at 0.963. Another study classified 
benign and malignant skin lesions using a deep CNN [9]. This method was compared to AlexNet, VGG16, 
DenseNet, MobileNet, and ResNet and found to give the best results, with an accuracy of 0.9143. A skin lesion 
classification study [10] used ResNet152V2, DenseNet201, and Xception, with accuracy rates of 0.874, 0.874, and 
0.891. This study added Global Average Pooling, Dense, Dropout, and Softmax layers while fine-tuning the model, 
and used two different datasets for malware classification. Another study used VGG16, VGG19, ResNet50, and 
InceptionV3 as both feature extractors and classifiers to classify malware images [11]. It added the last two layers 
of VGG16 to the new Dense layers, and only updated the Softmax layers of the other pretreated networks. [12] 
used fine-tuning in the VGG16 model to classify flowers into five categories by updating only the number of 
classes in the Softmax layer. 

A study on the classification of 21 different cat and dog breeds performed fine-tuning with the VGG16 and 
VGG19 models [13], with two 4096 sized fully connected layers added to the end of its network. VGG16 and 
VGG19 achieved accuracy levels of 0.9847 and 0.9859, respectively. For plastic waste classification with FT, [14] 
utilized InceptionResNetV2, VGG19, VGG16, InceptionV3, and MobileNet. This study added Dropout, Flatten, 
Dense, Dropout, and Softmax layers to the end of the pre-trained model, and ran experiments on the model's hyper-
parameters. A model to classify fresh tea leaves achieved a success rate of 0.98 by applying the InceptionV3 model 
[15]. In another study, chicks, hatching eggs, and unhatched eggs were classified using VGG16 and VGG19 with 
Flatten and Softmax layers, achieving success rates of 0.90 and 0.92, respectively [16]. Indian food was classified 
with InceptionV3, VGG16, VGG19, and ResNet [17]. Global Average Pooling and Softmax layers were applied 
to the pre-trained network, with InceptionV3 attaining the highest accuracy rate. [18] classified nutrients using 
EfficientNetB0, EfficientNetB4, Dense201, and MobileNetV3. The last of these had the highest accuracy rate, 
with Global Average Pooling, Dropout, and Softmax layers added to the end of the model. 
 
3. Materials and Method 
 

TL is a technique for storing information obtained while solving one problem and then implementing it to 
solve another, related problem. That is, it is a machine learning method in which a model trained for one task can 
be reused for another [19]. Using this method, the training of the network will take less time and computational 
power. Furthermore, TL can be used when the number of images in a dataset is insufficient for classification. As 
a result, classifying small datasets with TL can help achieve high performance. The FT technique, which is used 
in association with the TL approach, is devoted to making layer or parameter changes to a TL model. There are 
two broad approaches to TL that use FT in this study. The first of the FT methods duplicates the layer weight 
values of a trained CNN for a model designed for a new dataset [20]. The training is done only at the classification 
layer level in the first option, whereas in the second option, a specific part is transferred to the new model rather 
than copying the weights of all the trained model layers. 

 

  
Figure 1. A visual representation of the transfer of some layers and weights from the model trained on Dataset A 

to the model trained on Dataset B. 



A Hybrid Classification Approach for Fasteners Based on Transfer Learning with Fine-Tuning and Deep Features 

464 
 

Several methods use pre-trained models in applications. The TL technique has improved; as pre-trained 
networks can now classify new images other than the ImageNet dataset. Performing FT on a pre-trained model 
changes the hyper-parameters and/or network structure of the model. FT is carried out without changing the weight 
values of the pre-trained network. There are 3 ways to apply FT to a model. 

1. Extraction of features: This is the use of the pre-trained network as a feature extractor. After the output 
layer is deleted from the network, the entire network is used as the new dataset to be classified. Our study 
used this option and named it the TL-FE scenario. 

2. Use the pre-trained model's architecture: By assigning the weights of the pre-trained model randomly 
and retraining the entire network, only the architecture of the network is used. 

3. Fine Tuning: Another way to use a pre-trained network is to only partially train it and keep initial weight 
values constant. There are four ways to perform fine-tuning: 

 

  
Figure 2. FT framework scenarios from TL. 

 
Scenario A is used when the new dataset is small and very similar to that used by the pre-trained network. In 

this case, we do not need to train the network from scratch; we simply update the hyper-parameter value in the 
output layer. The TL-FT1 scenario in our study works according to this logic.  

Scenario B applies when the new dataset is small and has little similarity to the ImageNet dataset. The first 
layers of the pre-trained model are frozen, and the remaining layers are trained. This scenario involves such updates 
as adding new layers to the network, removing existing layers, and changing the hyper-parameter values of the 
network. This is how the TL-FT2 scenario in our study works. 

Scenario C is utilized when the new dataset is large and highly similar to the ImageNet dataset. In this case, 
the architecture and initial weights of the pre-trained model remain constant and the model is retrained. 

Scenario D is for when the new dataset is large but not very similar to the ImageNet dataset. In this case, the 
neural network is trained from scratch. 

 
3.1. Pre-Trained Models 

 
Of the pre-trained models used with TL, those examined in this study, briefly explained below, are as follows: 

VGG16, VGG19, InceptionV3, InceptionResNetV2, Xception, ResNet50, MobileNet, MobileNetV2, 
DenseNet169, DenseNet201, EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4, 
EfficientNetB5, EfficientNetB6, and EfficientNetB7. 

 
A. The VGGNet Model 

The VGG16 model is a CNN-based architecture developed by Simonyan and Zisserman [21]. The VGG16 
model consists of 16 layers, of which 13 are convolutions and 3 are fully connected. The filter size in the 
convolution layers is 3x3 pixels.  

The VGG19 model, meanwhile, has 16 convolutions, 5 pooling, and 3 fully connected layers. Since VGG19 
has a deep network, the filters used in the convolution layer help reduce the number of parameters. The size of the 
filter used in the architecture is 3x3 pixels.  

 
B. The Inception Net Model 

This is the third version of the DL convolution architecture series developed by Google [22]. It is one of the 
most advanced architectures used in the field of image classification, and involves a model that combines multiple, 
differently sized convolutional filters into a new filter, thus reducing both the number of parameters to be trained 
and the computational complexity [23].  

InceptionV3 has a depth of 22 sets of layers and contains 144 layers [23]. The Inception module uses a variety 
of filters to reduce size. The filter elements in the Inception module are of size 1x1, 3x3, and 5x5. Unlike other 
DL architectures, this model creates a deep structure rather than a layered one.  
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InceptionResnNetV2 is a variation of InceptionV3, but with a significantly deeper structure. It is a 
combination of the Inception structure and a residual connection. Multidimensional convolution filters are 
combined with residual connections [24], which reduces the training time of the network. 

 
C. The MobileNet Model 

This is a deep neural network proposed by Google in 2017. It is smaller and faster than other models. Using 
depthwise separable convolutions, it applies a single filter in each input channel and a 1x1 filter is used in some 
convolutions [25]. The separable layers are similar to the convolutional layers in terms of depth, but they differ 
because they carry out the filtering and merging operations by separating them into two layers. There is a total of 
28 layers, excluding point convolutions. Except for the fully connected layer that feeds the softmax layer, each 
layer is followed by batch normalization and relu activation layers [26]. 

The MobileNetV2 architecture is a development of the MobileNet model, but faster and more efficient. The 
size of the feature maps is reduced through a 1x1 convolution. In addition, thanks to the skip connection technique 
used in the ResNet models, the calculation process is faster [27]. 

 
D. The DenseNet Model 

When training neural networks, feature maps are reduced due to convolution and subsampling operations. 
There is also a loss of image quality when transitioning between layers. DenseNet has been developed to use image 
feature information more effectively [28]. In this model, each layer is fed forward to the other layers, so any layer 
can access feature information from all previous layers [29]. Thus, the propagation rate of the features to the 
network increases and the number of parameters decreases.  

Figure 3 discusses the common and different parameter numbers and values of the layers in the DenseNet169 
and DenseNet201 architectures. 

 

  
Figure 3. DenseNet169 and DenseNet201 model architectures. 

 
E. The EfficientNet Model 

This is a network of eight models. As the number of models increases, the number of parameters calculated 
remains relatively stable [31]. Unlike other advanced models, EfficientNet produces more efficient results by 
scaling in terms of depth, width, and resolution while trying to reduce the model. EfficientNet requires the channel 
size to be a multiple of 8. The network width, depth, and resolution are scaled evenly by a set of fixed scaling 
factors. 

 
F. The ResNet Model 

This is the architecture developed by the Microsoft research team to reduce the difficulty of training neural 
networks at great depth. Unlike standard CNN architecture, this architecture uses short-path connections [32]. 
Shortcut links have no extra parameters and do not increase computational complexity [33]. They allow the transfer 
of important information from the previous layer to the next. This architecture includes global average pooling 
and fully connected layers at the end of the network. The ResNet50 has 50 weight layers. 

 
G. The Xception Net Model 

This is basically an evolving network added atop the InceptionV3 network. It is its convolutional layer that 
makes it different from other networks. A normal network convolution section creates operations by moving a 
filter over multidimensional matrices, such as width, height, and depth. Xception, on the other hand, provides two 
distinct approaches to convolution, namely depth wise convolution and pointwise convolution [34]. Depth wise 
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convolution reaches the result by processing only one channel. Since this will cause a loss of features, pointwise 
convolution is then applied to the image obtained by processing over a channel; the result obtained is a classical 
convolution 1x1xchannel number [35]. 

 
3.2. The Proposed Method 

 
This study proposes three TL-based approaches for the classification of screw, bolt, and nut fasteners. Two 

of the proposed approaches use FT, and the other uses FE. In scenario 1, only the classifier layer in the pre-trained 
network model is updated, using TL and FT. Scenario 1 is designated as TL-FT1. Scenario 2 adds TL and FT in 
the last layers of the model, i.e., it adds new layers to the pre-trained model to obtain a new one. Scenario 2 is 
designated as TL-FT2. Scenario 3 proposes a new approach: a hybrid structure is created by making use of TL's 
feature extraction capability and using FE and CNN together. Scenario 3 is designated as TL-FE. Fig. 4 provides 
an overview of this study.  

Given that the datasets to be classified are small, this study uses pre-trained networks because of their high 
performance and low computation time. Before the implementation of each scenario, the dataset needs to be 
prepared. In TL-FT1, the classifier layer of the pre-trained network is updated to 18, then the Flatten layer is added 
to the end of the network. The weight and layer values of the pre-trained network are completely frozen. In TL-
FT2, after all the layers and weights of the pre-trained network are frozen, global average pooling, 256 dense, 
activation relu, 256 dense, and activation relu layers are added to the end of the network, and the number of softmax 
classifier classes is updated to 18. Network training is completed by training the newly added parts of the network 
and freezing the previous parts.  

In TL-FE, after freezing all the layers and weights of the pre-trained network, the features obtained by training 
the first network serve as input into the CNN network built from scratch. Unlike other classification studies in the 
literature, which use images as input to the CNN network, this study uses features as input. Thus, the classification 
performance of the network significantly improves. 

 

  
 

Figure 4. The framework of the proposed approach. 
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4. Experimental Results 
 

Different scenarios using pre-trained networks have been proposed to classify fasteners. This study examined 
the performance outputs of each scenario in detail by using 18 different pre-trained networks based on VGGNet, 
DenseNet, EfficientNet, MobileNet, InceptionNet, ResNet, and Xception. The dataset used for classification 
includes bolts, screws, and nuts. The performance of each approach proposed in our study was examined in detail, 
and our study was compared with other studies in the literature. The epoch value in our study is 100, the optimizer 
algorithm is Adam, the batch size is 32, the learning rate is 0.01, and the image size is 150x150. The hardware 
features of the computer used in this study are an Intel i7 processor 1.8 GHz CPU, 8GB RAM, and NVIDIA 
GeForce MX150 GPU. 

  
4.1. Creating Dataset 

 
The dataset contains 150x150 pixel fastener images in RGB format. The fastener images, which contain 18 

different classes, include six screw-type, five nut-type, and seven bolt-type classes. The images in the dataset were 
augmented with data augmentation techniques. For this purpose, each image was shifted by 0.2 on the x axis and 
by 0.2 on the y axis, as well as being rotated by a 30-degree angle, tilted by 0.2, and magnified by 0.2 percent. In 
addition, the images were rotated on the horizontal axis. Each class includes approximately 100 images, with 1760 
images for the training and 176 images for the testing. 

 
 

 

  
Figure 5. Sample images for the classes in the dataset used in this study. 

 
 
 

 
In Fig. 6, there are some results related to testing different transfer learning models for three different 

scenarios proposed. When the results of the VGG16 and VGG19 models from the VGGNet architecture were 
examined, it was observed that the VGG16 achieved higher performance and the best result was 99.43% with the 
TL-FE scenario. When the results of InceptionV3 and InceptionResNetV2 models from the InceptionNet 
architecture are examined, it is observed that InceptionResNetV2 achieves higher performance and the best result 
is 99.2% with the TL-FE scenario. Similarly, when DenseNet and MobileNet architectures are examined, the best 
performance is in DenseNet169(99.5%) and MobileNet(97.5%) models, respectively. When the XceptionNet and 
ResNet architectures are examined, the best performance was achieved with TL-FE scenario, Xception(99.1%) 
and ResNet50(97.2%), respectively. 

 
The Fig.7 and Fig.8 depict the accuracy rates of each of the EfficientNet models over the three scenarios. The 

highest performance was achieved with the TL-FE scenario on all EfficientNet models. When the success rates of 
each scenario are examined, EfficientNetB0 93% in TL-FT1, EfficienNetB0 96% in TL-FT2 and EfficientNetB6 
99.4% in TL-FE.  
 

The Fig. 9, Fig.10 and Fig.11 shows the success rates of all TL models for TL-FT1, TL-FT2 and TL-FE 
scenarios, respectively. When the figures are examined, it can be noticed that the TL-FE scenario has a higher 
performance than the other two scenarios. 
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(a) VGG16 

 
(b) VGG19 

 
(c) InceptionV3 

 
(d) InceptionResNetV2 

 
(e) Xception 

 
(f) DenseNet-169 

 
 

 
(g) DenseNet-201 

 
(h) MobileNet 

 
(i) MobileNetV2 

 
(j) ResNet50 

 
Figure 6. Accuracy distribution of the VGGNets, InceptionNets, XceptionNet, DenseNets, MobileNets and 
ResNet models according to TL-FT1, TL-FT2, and TL-FE. 
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(a) EfficientNetB0 

 
(b) EfficientNetB1 

 
(c) EfficientNetB2 

 
(d) EfficientNetB3 

 
(e) EfficientNetB4 

 
(f) EfficientNetB5 

 
(g) EfficientNetB6 

 
(h) EfficientNetB7 

 
Figure 7. Accuracy distribution of the EfficientNet models according to TL-FT1, TL-FT2, and TL-FE. 

 
 
 

 

 
(a) TL-FT1 

 
(b) TL-FT2 

 
(c) TL-FE 

 
Figure 8. Accuracy rates of EfficientNets according to (a), (b), and (c) scenarios. 
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Figure 9.  Accuracy rates of all models according to TL-FT1 scenario. 

 

 
Figure 10.  Accuracy rates of all models according to TL-FT2 scenario. 

 

 
Figure 11.  Accuracy rates of all models according to TL-FE scenario. 
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Table 1. Hyper-parameter values of all scenarios. 

 
Hyper-parameters Value 
Optimizer algorithm Adam 

Iteration 100 
Batch size 32 

Learning rate 0.001 
Input image size 150x150 

 
Table 2. Comparison of the accuracy rates of all scenarios. 

 
Model TL-FT1 TL-FT2 TL-FE 
VGG16 0.960 0.950 0.9943 
VGG19 0.960 0.940 0.982 
InceptionV3 0.780 0.710 0.980 
InceptionResNetV2 0.780 0.800 0.992 
Xception 0.800 0.900 0.991 
MobileNet 0.930 0.950 0.975 
MobileNetV2 0.850 0.950 0.960 
ResNet50 0.930 0.940 0.972 
DenseNet169 0.970 0.870 0.995 
DenseNet201 0.900 0.710 0.991 
EfficientNetB0 0.930 0.960 0.961 
EfficientNetB1 0.870 0.930 0.991 
EfficientNetB2 0.880 0.940 0.972 
EfficientNetB3 0.870 0.920 0.985 
EfficientNetB4 0.820 0.860 0.994 
EfficientNetB5 0.830 0.850 0.985 
EfficientNetB6 0.810 0.810 0.994 
EfficientNetB7 0.740 0.730 0.989 

 
Table 1 contains the hyper-parameter values of all scenarios. Table 2 shows that the TL-FE scenario gives 

the best results among all models. This means that the proposed new model is successful. As shown in Table 2, 
the models with the best results were DenseNet169 with an accuracy of 0.97 in the TL-FT1 scenario, 
EfficientNetB0 with 0.96 in TL-FT2, and DenseNet169 with 0.995 in TL-FE. 

 
 

Table 3. Performance evaluation of all models according to TL-FT1. 
 

Model Accuracy Validation 
accuracy AUC Validation 

AUC Precision Validation 
precision Recall Validation 

Recall 
VGG16 0.960 0.860 0.964 0.964 0.899 0.899 0.820 0.821 
VGG19 0.960 0.880 0.964 0.964 0.897 0.898 0.814 0.814 
InceptionV3 0.780 0.510 0.819 0.819 0.563 0.564 0.537 0.537 
InceptionResNetV2 0.870 0.270 0.781 0.781 0.494 0.494 0.465 0.465 
Xception 0.800 0.480 0.826 0.825 0.605 0.605 0.597 0.597 
MobileNet 0.930 0.700 0.896 0.896 0.747 0.747 0.742 0.743 
MobileNetV2 0.850 0.510 0.848 0.848 0.659 0.659 0.655 0.655 
ResNet50 0.930 0.030 0.741 0.741 0.498 0.498 0.456 0.456 
DenseNet169 0.970 0.460 0.995 0.753 0.970 0.460 0.970 0.460 
DenseNet201 0.900 0.430 0.979 0.721 0.900 0.430 0.900 0.430 
EfficientNetB0 0.930 0.500 0.984 0.792 0.930 0.505 0.930 0.500 
EfficientNetB1 0.870 0.420 0.962 0.731 0.870 0.420 0.870 0.420 
EfficientNetB2 0.880 0.310 0.962 0.676 0.880 0.310 0.880 0.310 
EfficientNetB3 0.870 0.320 0.957 0.671 0.869 0.327 0.860 0.320 
EfficientNetB4 0.820 0.370 0.926 0.706 0.820 0.374 0.820 0.320 
EfficientNetB5 0.830 0.420 0.951 0.723 0.838 0.420 0.830 0.420 
EfficientNetB6 0.810 0.210 0.925 0.595 0.816 0.210 0.800 0.210 
EfficientNetB7 0.740 0.240 0.892 0.598 0.740 0.232 0.740 0.230 
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Table 4. Performance evaluation of all models according to TL-FT2. 
 

Model Accuracy Validation 
accuracy AUC Validation 

AUC Precision Validation 
precision Recall Validation 

Recall 
VGG16 0.950 0.860 0.960 0.960 0.890 0.890 0.737 0.738 
VGG19 0.940 0.840 0.959 0.959 0.890 0.890 0.713 0.714 
InceptionV3 0.710 0.510 0.870 0.870 0.606 0.606 0.487 0.488 
InceptionResNetV2 0.800 0.320 0.803 0.803 0.498 0.498 0.400 0.400 
Xception 0.900 0.570 0.886 0.886 0.659 0.660 0.563 0.564 
MobileNet 0.950 0.660 0.941 0.941 0.783 0.783 0.716 0.716 
MobileNetV2 0.950 0.480 0.906 0.906 0.702 0.702 0.626 0.627 
ResNet50 0.940 0.070 0.858 0.858 0.897 0.897 0.426 0.426 
DenseNet169 0.870 0.420 0.995 0.812 0.884 0.603 0.840 0.350 
DenseNet201 0.720 0.410 0.971 0.830 0.758 0.479 0.690 0.230 
EfficientNetB0 0.960 0.540 1.000 0.885 0.970 0.587 0.960 0.540 
EfficientNetB1 0.930 0.430 0.999 0.851 0.948 0.442 0.920 0.420 
EfficientNetB2 0.940 0.460 1.000 0.795 0.959 0.469 0.940 0.380 
EfficientNetB3 0.920 0.550 0.993 0.875 0.935 0.538 0.870 0.420 
EfficientNetB4 0.860 0.410 0.990 0.814 0.903 0.463 0.840 0.380 
EfficientNetB5 0.850 0.300 0.993 0.720 0.878 0.304 0.790 0.280 
EfficientNetB6 0.810 0.350 0.991 0.823 0.839 0.491 0.780 0.280 
EfficientNetB7 0.730 0.330 0.966 0.840 0.788 0.340 0.670 0.320 

 
 
 

Table 5. Performance evaluation of all models according to TL-FE. 
 

Model Accuracy Validation 
accuracy AUC Validation 

AUC Precision Validation 
precision Recall Validation 

Recall 
VGG16 0.994 0.972 1.000 0.994 0.995 0.972 0.994 0.972 
VGG19 0.982 0.977 0.999 0.997 0.983 0.977 0.980 0.972 
InceptionV3 0.980 0.977 0.999 0.994 0.981 0.983 0.978 0.977 
InceptionResNetV2 0.992 0.972 1.000 0.994 0.993 0.972 0.992 0.972 
Xception 0.991 0.943 0.999 0.988 0.991 0.943 0.991 0.938 
MobileNet 0.975 0.943 0.999 0.996 0.977 0.949 0.974 0.943 
MobileNetV2 0.960 0.938 0.997 0.990 0.961 0.938 0.959 0.938 
ResNet50 0.972 0.909 0.997 0.981 0.973 0.909 0.972 0.909 
DenseNet169 0.995 0.989 1.000 1.000 0.995 1.000 0.995 0.989 
DenseNet201 0.991 0.989 1.000 0.997 0.992 0.989 0.989 0.989 
EfficientNetB0 0.961 0.926 0.998 0.985 0.967 0.931 0.960 0.926 
EfficientNetB1 0.991 0.972 1.000 0.994 0.991 0.972 0.989 0.972 
EfficientNetB2 0.972 0.966 0.998 0.997 0.973 0.966 0.970 0.966 
EfficientNetB3 0.985 0.989 1.000 1.000 0.987 0.989 0.984 0.989 
EfficientNetB4 0.994 0.972 1.000 0.997 0.994 0.972 0.993 0.972 
EfficientNetB5 0.985 0.926 1.000 0.973 0.987 0.926 0.985 0.926 
EfficientNetB6 0.994 0.960 1.000 0.988 0.994 0.960 0.993 0.960 
EfficientNetB7 0.990 0.938 1.000 0.985 0.991 0.938 0.990 0.938 

 
 

 Tables 3,4 and 5 show the performance evaluations of TL-FT1, TL-FT2 and TL-FE. The data examined in 
the table are accuracy, precision, recall and AUC values. When Table 3 is examined, the best results in accuracy, 
precision, recall and AUC values were 97%, 99.5%, 97% and 97% with DenseNet169, respectively. When Table 
4 is examined, the best results in accuracy, precision, recall and AUC values were 96%, 100%, 97% and 96%, 
respectively, with EfficientNetB0. When Table 5 is examined, the best results in terms of accuracy, precision, 
recall and AUC values were 99.5% 100%, 99.5% and 99.5% with DenseNet169, respectively. 
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Table 6. Comparison of the proposed study with the methods in the literature. 
 

Reference Number of 
classes Dataset size Model Method Accuracy ratio 

[1] 2 4986 

DenseNet201 
DenseNet121 
VGG19 
VGG16 
InceptionResNetV2 
Xception 

TF-FT2 

0.9818 
0.9577 
0.9637 
0.9437 
0.9457 
0.9195 

[2] 2 460 

VGG19 
DenseNet121 
ResNet50 
MobileNet 

TF-FT2 

0.8511 
0.8533 
0.8206 
0.8642 

[3] 15 20.639 ResNet50 TF-FT2 0.9926 
[4] 2 2198 VGG16 TF-FT2 0.9146 

[5] 2 
Dataset1 with 40 classes 
Dataset2 with 24 classes 
Dataset3 with 40 classes 

AlexNet 
VGGNet 
GoogLeNet 

TF-FT2 
0.9675 
0.9747 
0.9597 

[6] 2 613 ResNet-34 TF-FT1 1.000 

[8] 4 236 
AlexNet 
VGG19 
ResNet50 

TF-FT2 
0.9153 
0.9587 
0.8983 

[10] 7 38.000 
ResNet150V2 
Xception 
DenseNet201 

TF-FT2 
0.874 
0.874 
0.891 

[11] 25 9339 

VGG16 
VGG19 
InceptionV3 
ResNet50 

TF-FT1 

0.9839 
0.9871 
0.9625 
0.9871 

[12] 5 3520 VGG16 TF-FT1 0.9767 

[13] 21 20.574 VGG16 
VGG19 TF-FT2 0.9847 

0.9859 

[14] 3 1596 

Xception 
VGG16 
VGG19 
InceptionV3 
InceptionResNet2 
MobileNet 

TF-FT2 

0.7830 
0.7212 
0.7006 
0.7430 
0.7840 
0.7237 

[15] 3 11.862 InceptionV3 TF-FT1 0.9800 

[16] 3 3924 VGG16 
VGG19 TF-FT1 0.9000 

0.9200 

[17] 20 10.000 
VGG16 
VGG19 
InceptionV3 

TF-FT1 
0.7890 
0.7820 
0. 8790 

[18] 7 5648 

EfficientNetB4 
DenseNet201 
EfficientNetB0 
MobileNetV3 

TF-FT1 

0.9552 
0.9405 
0.9298 
0.9640 

[36] 4 1908 DenseNet201 TL-FT1 0.7333 

[37] 2 5000 

MobileNetV2 
VGG16 
ResNet152V2 
DenseNet201 

TL-FT1 

0.8880 
0.9140 
0.8958 
0.9089 

Our study 18 1760 

 
VGG16 
VGG19 
InceptionV3 
InceptionResNetV2 
Xception 
MobileNet 
ResNet50 
Dense201 

TF-FT1 
TF-FT2 

TL-FT1 
0.960 
0.960 
0.780 
0.780 
0.800 
0.930 
0.930 
0.900 

TL-FT2 
0.950 
0.940 
0.710 
0.800 
0.900 
0.950 
0.940 
0.710 

 
The accuracy rate of VGG16 is 0.90 and that of VGG19 is 0.92 in [16], applying the TL-FT1 scenario. That 

of VGG16 is 0.789 and that of VGG19 is 0.782 in [17], applying the TL-FT1 scenario. In our study, the accuracy 
of VGG16 is 0.960, and that of VGG19 is 0.960.  

In [1], implementing the TL-FT2 scenario, the accuracy of VGG16 is 0.9437 and that of VGG19 is 0.9637. 
In [2], implementing the TL-FT2 scenario, the accuracy of ResNet is 0.8206, that of MobileNet is 0.8642, and that 
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of VGG19 0.8511. In [4], implementing the TL-FT2 scenario, the accuracy of VGG16 is 0.9146. In [8], 
implementing the TL-FT2 scenario, the accuracy of ResNet50 is 0.8983. In [10], implementing the TL-FT2 
scenario, the accuracy of Xception is 0.874. In [14], implementing the TL-FT2 scenario, the accuracy of VGG16 
is 7212, that of VGG19 is 0.7006, that of Xception is 0.783, that of InceptionV3 is 0.743, that of 
InceptionResNetV2 is 0.784, and that of MobileNet is 0.7237.  

In our study, the accuracy of VGG16 is 0.950, that of VGG19 is 0.940, that of MobileNet is 0.950, that of 
Xception is 0.90, that of InceptionV3 is 0.710, and that of InceptionResNetV2 is 0.80. 

 
 
5. Conclusions  
 

Deep Learning has recently been used to classify many varieties of objects. Since the classification 
performance of large datasets is higher than that of small datasets, transfer learning (TL) methods have been 
developed that can also be used on small datasets. Thanks to TL, high computational power is not required during 
the training of the network, and a network trained on large datasets can also be used to train small ones. Thus, the 
use of TL has become widespread. There are three different approaches to implementing TL: feature extractor, 
training from scratch, and fine tuning using the architecture of the pre-trained network. This study suggests the 
use of TL to classify fasteners. Three different scenarios have been proposed for TL implementation via fine-
tuning and feature extraction approaches. The first is to update only the classifier layer of the network using fine-
tuning. The second is to add new layers to the end of the mesh using fine-tuning. The last scenario uses the pre-
trained network as a feature extractor. The first and second scenarios have been frequently used in the literature. 
However, the third scenario involves a new method, used here for the first time. In this scenario, the features 
obtained as a result of the pre-trained network are given as input to a CNN network built from scratch. Thus, the 
network is guaranteed highly accurate results. In addition, this study tested 18 different models on each scenario 
one by one, and compared the performance output in detail with results from similar studies in the literature. Those 
with the best results are DenseNet169 with 0.97 in TL-FT1, EfficientNetB0 with 0.96 in TL-FT2 and DenseNet169 
with 0.995 in TL-FE. Of the three scenarios, TL-FE produced the best performance, with results between 0.960 
and 0.995. In addition, this study was comprehensive, including more models than other studies in the literature. 
This study is also important due to including three different approaches and presenting an entirely new one, namely 
TL-FE. This study developed 1760 images for the classification of fastener datasets, and the approaches proposed 
in this study can easily be adapted to other datasets. 
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