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ABSTRACT 

Age-related decline in sensory inputs in elderly people leads to postural instability that increases irregularity of 

postural sway. This study aimed to examine the effect of visual or somatosensory inputs on postural sway irregularity 

in the elderly by using machine learning (ML). The feature set was extracted from entropy measurements including 

sample, fuzzy, distribution, conditional, and permutation. Then, the variables were classified by ML including 

support vector machines (SVM), k-nearest neighbors (k-NN), and linear discriminant analysis (LDA) algorithms. 

Classification performances were compared with the confusion matrix. For the elderly, in the eyes closed condition 

on an unstable surface, the SVM algorithm achieved higher accuracy (77%), sensitivity (72%), specificity (85%), 

and precision (83%) for the cv dataset. For young, SVM also achieved high accuracy (86%), sensitivity (87%), 

specificity (84%), and precision (84%).  For the elderly, under the eyes open on unstable surface conditions, the SVM 

exhibited an accuracy of 79%, sensitivity of 75%, specificity of 72%, and precision of 75%. However, for young, it 

did not reveal good results for both surfaces. In conclusion, the findings suggest that older people adapt their postural 

control mechanisms, relying more on somatosensory inputs. ML algorithms with entropy-based features can give 

insights into age-related differences in postural control.  

 Keywords: Older people, balance, postural sway, entropy, machine learning 

 

ÖZET 

Yaşlılarda duyusal girdilerde yaşa bağlı azalma, postüral dengesizliğe yol açarak postüral salınımın düzensizliğini 

artırır. Bu çalışma, makine öğrenimi (ML) kullanarak görsel veya somatosensoriyel girdilerin yaşlılarda postural 

salınım düzensizliği üzerindeki etkisini incelemeyi amaçladı. Özellik seti örnek, bulanık, dağıtım, koşullu ve 

permütasyon dâhil Entropi ölçümlerinden çıkarıldı. Daha sonra değişkenler, destek vektör makineleri (SVM), k-en 

yakın komşular (k-NN) ve doğrusal diskriminant analizi (LDA) algoritmalarını içeren ML modelleri ile 

sınıflandırıldı. Modellerin sınıflandırma performansları hata matrisi ile karşılaştırıldı. Yaşlılar için, stabil olmayan 

bir yüzeyde gözleri kapalı durumda SVM algoritması test veri seti için daha yüksek doğruluk (%77), duyarlılık 

(%72), özgüllük (%85) ve kesinlik (%83) elde etti. Gençler içinde SVM yüksek doğruluk (%86), duyarlılık (%87), 

özgüllük (%84) ve kesinlik (%84) elde etti. Kararsız yüzey koşullarında gözleri açık olan yaşlılar için SVM %79 

doğruluk, %75 duyarlılık, %72 özgüllük ve %75 kesinlik sergiledi. Ancak gençler için her iki yüzeyde de iyi sonuçlar 

ortaya çıkmadı. Sonuç olarak, bulgular yaşlı insanların postüral kontrol mekanizmalarını somatosensör girdilere daha 

fazla güvenerek uyarladıklarını göstermektedir. Entropi tabanlı özellik setine sahip ML algoritmaları, yaşlılarda 

postüral salınım dinamiklerini yöneten temel mekanizmalar hakkında fikir verebilir. 
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INTRODUCTION 

The human body's ability to maintain an upright stance and navigate through its environment is facilitated by a 

sophisticated balance system, which plays a fundamental role in performing daily activities. To achieve and sustain 

postural stability, the human body relies on the intricate interplay of three key sensory systems including the visual, 

vestibular, and proprioceptive systems (Peterka, 2018). These systems converge their sensory inputs, and through a 

highly coordinated motor output, form a feedback mechanism essential for maintaining precise balance control. Each 

of these systems possesses unique anatomical and functional features, collectively contributing to the body's 

perception of spatial orientation and movement. The visual system, encompassing the eyes as the primary sensory 

organs, along with relevant parts of the central nervous system, plays a pivotal role in postural stability (Maurer et 

al., 2006). The vestibular system consists of the semicircular canals and otolith organs, which are mainly responsible 

for detecting angular accelerations and linear accelerations, respectively. The somatosensory system, encompassing 

various sensory receptors, plays a vital role in providing the body with information about its position and movement 

in space (Mergner et al., 2005). This intricate system includes cutaneous receptors, joint receptors, muscle spindles, 

and Golgi tendon organs, each serving unique functions. Understanding the integration and interactions of these 

sensory inputs is of paramount importance in comprehending the mechanisms underlying postural sway and balance 

control, particularly in the context of aging populations and related issues such as fall risk in the elderly because the 

aging process is an inevitable facet of the human life cycle, bringing with it a myriad of physiological, sensorial, and 

functional changes (Horak et al., 1989). Decrease or deterioration in sensory inputs in elderly people leads to balance 

problems that increase the risk of falling, which can have severe consequences for the health and independence of 

older individuals (Qiu et al., 2012). Analysis of postural sway, defined as the involuntary movement of the body 

while maintaining an upright stance, has been a critical indicator of balance and postural control. 

 

In literature, many studies have revealed an in-depth investigation into the interplay of visual, vestibular, and 

somatosensory inputs in postural sway dynamics (Horak et al., 1989; Mergner et al., 2005; Qiu et al., 2012; Wang et 

al., 2010). Qui et al. (2012) examined the integration of visual and somatosensory inputs affects postural sway and 

balance, with reliance on somatosensory information increasing when visual input was limited.  They suggested that 

textured insole surfaces could reduce postural sway in older people, particularly during more challenging balance 

tasks, providing an important intervention in fall prevention. They found clear differences in postural sway based on 

age, insole surface, and standing surface and significant interaction for various postural sway measures. Wang et al. 

(2010) found that visual inputs significantly affected postural sway and balance, particularly when combined with an 

unstable base of support. Their results revealed that visual information impacted postural reactions and sway 

responses. Postural response amplitudes depended on visual field velocity. Tanaka & Uetake (2005) found that older 

adults had increased postural sway on a foam surface compared to a firm surface, regardless of age. The findings of 

their study revealed that among older adults, there is an increased dependence on visual cues for correcting M-L 

postural sway. Moreover, the deterioration in visual acuity associated with aging could potentially heighten the 

susceptibility to sideways falls, especially in demanding conditions, such as when standing on unstable surfaces. This 

underscores the significance of visual function assessment in the context of fall prevention strategies for the elderly.  

Garbus et al. (2019) investigated how visual and somatosensory inputs interact to improve postural sway and balance. 

They suggested that providing explicit visual feedback of the center of pressure does not increase the light touch 

effects on the postural sway, and the importance of the implicit somatosensory information on postural control is 

discussed. Ito et al. (2020) reported that elderly individuals were more dependent on somatosensory signals for 

balance control than adults.  

 

Previous studies indicate that there is no consensus on the dominant effects of visual and/or somatosensory inputs on 

postural control and balance due to aging. Moreover, postural sway has been traditionally assessed through simple 

biomechanical metrics, such as center of pressure (COP) displacement and velocity, in particular using linear or 

statistical signal analysis approaches. However, these conventional measures may not fully capture the complexity 

of postural control mechanisms, especially in dynamic real-life situations. Instability or irregularity of postural sway 

could be associated with an increased risk of falls (Seigle et al., 2009). The irregularity can be measured by nonlinear 

methods rather than linear or statistical approaches. Employing a nonlinear approach, it can integrate findings from 

neurophysiology, biomechanics, and machine learning (ML) to gain comprehensive insights into the complexity of 

human balance control. In recent years, entropy measurements have been used as a very popular method for 
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measuring irregularity and complexity in time series (Alcan, 2022). By leveraging advancements in nonlinear signal 

analysis capabilities, it is needed to shed further light on the mechanisms governing postural stability in older people. 

Furthermore, advancements in ML algorithms have been considered useful clinical decision support tools for 

investigating postural sway dynamics and analyzing intricate patterns within large datasets. Therefore, this study 

aimed to present the results of an in-depth investigation into the impact of sensory inputs on the entropy of postural 

sway in the elderly, utilizing ML techniques. Specifically, the study focused on various entropy algorithms and the 

application of support machine vectors (SVM), k-nearest neighbors (k-NN), and partial least squares discriminant 

analysis (PLS-DA) algorithms to decipher the complex interactions between sensory inputs and postural sway 

patterns in older people 

METHODS 

Data 

The present study used a public dataset that recruited a cohort of elderly participants, who underwent comprehensive 

assessments of postural sway under four sensory conditions including eyes-open, eyes-closed, stable surface, and 

unstable surface (Santos & Duarte, 2016). Postural sway data were collected using advanced force plate technology 

in anterior-posterior (A-P) and medial–lateral (M-L) directions, allowing for precise measurements of COP 

displacement in response to sensory perturbations. 

Entropy Algorithms 

Based on entropy algorithms, the feature set was built with six well-known entropy algorithms to conduct postural 

sway changes of older people in A-P and M-L directions.   

 

Sample entropy (SampEn): 

SampEn is a measure used to quantify the complexity or irregularity of time series data. It compares the likelihood 

of repeated patterns of a certain length in the data. Sample entropy builds upon approximate entropy and involves 

counting matches of templates in the time series data (Richman & Moorman, 2000). The mathematical equations and 

backgrounds for SamEn are explained in Equation 1.  

 

𝑆𝑎𝑚𝑝𝐸𝑛 (𝑚, 𝜏, 𝑟) =  −ln
∑ 𝐴𝑖

(𝑚+1)
(𝑑,𝑟)𝑁−𝑚𝜏

𝑖=1

∑ 𝐴𝑖
(𝑚)

(𝑑,𝑟)𝑁−𝑚𝜏
𝑖=1

                                                                                                                                 (1) 

 

Fuzzy Entropy (FuzzyEn) 

FuzzyEn measures the spread or dispersion of membership degrees within the fuzzy set (Chen et al., 2009). Unlike 

SampEn, the average number of vectors Xm(j) that are within “r” of Xm(i) is used with the average degree of 

membership. The specific mathematical equations for the membership function and FuzzyEn are calculated in 

Equation 2 and Equation 3. 

 

𝐴𝑖
(𝑚)(𝑑, 𝑟) =  ∑ 𝑒−ln(2)(

𝑑𝑖,𝑗
𝑟⁄ )2𝑁−𝑚𝜏

𝑗=1,𝑗≠𝑖                                                                                                                        (2)   

𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑒−ln 2(𝑥
𝑟⁄ )2

                                                                                                                    (3)   

 

Conditional Entropy (CE) 

CE is a measure of the amount of uncertainty or information content in a random variable given the knowledge of 

another random variable. It quantifies the remaining uncertainty in one variable after the other variable is observed 

(Porta et al., 1998). CE is calculated as the average entropy of the conditional probability distribution of the first 

variable given the second variable. Mathematically, for two discrete random variables, CE is calculated by Equation 

4.  

 

𝐶𝐸(𝑚, 𝜏) = 𝑆𝐸(𝑧𝑗) − 𝑆𝐸(𝑤𝑖) + 𝑝𝑒𝑟𝑐(𝑚)𝑆𝐸                                                                                                          (4)   

 



KSÜ Mühendislik Bilimleri Dergisi, 26(Özel Sayı), 2023         1112 KSU J Eng Sci, 26(Special Issue), 2023 

Araştırma Makalesi  Research Article 

V. Alcan 

 

where the summation is performed over all possible values of X and Y. 

Distribution Entropy (DistEn) 

DistEn is a measure that quantifies the diversity or variability in the probability distribution of a random variable (Li 

et al., 2016). It captures the dispersion of the probability density function of the distance matrix by the histogram 

approach with a fixed bin number of B. The mathematical equations for DistEn are calculated by Equation 5. 

 

𝐷𝑖𝑠𝑡𝐸𝑛 (𝑚, 𝜏, 𝐵) = − 
1

𝑙𝑜𝑔2(𝐵)
 ∑ 𝑝𝑡 log2(𝑝𝑡)𝐵

𝑡=1                                                                                                      (5)   

 

where 𝑝𝑡 is the probability of each bin 

Permutation Entropy (PermEn) 

PermEn is based on the idea of permuting the values of a time series and analyzing the resulting patterns (Bandt & 

Pompe, 2002). It quantifies the probability distribution of ordinal patterns (sequences of values' ranks) within the 

time series as follows: 

 

𝑃𝑒𝑟𝑚𝐸𝑛 (𝑚, 𝜏) = − 
1

𝑙𝑜𝑔2𝑚!
 ∑ 𝑝𝑡(𝑚, 𝜏) log2[(𝑝𝑗(𝑚, 𝜏)]𝑚!

𝑗=1                                                                                  (6)   

 

Machine Learning Algorithms 

To investigate the intricate relationship between sensory inputs and postural sway patterns, the most common ML 

algorithms including SVM, k-NN, and LDA were applied to model the complex interactions within the data. These 

supervised ML algorithms were chosen for classification tasks and their ability to handle high-dimensional data and 

nonlinear relationships, makes them well-suited for the analysis of postural sway dynamics. Samples were usually 

divided into training dataset and cross-validation (CV) as a testing dataset based on the Venetian blinds approach. A 

5-fold CV value was used for internal validation of all models. 

Support Vector Machines (SVM) 

SVMs aim to find an optimal hyperplane that separates the data points of different classes with the largest margin. 

The mathematical foundation of SVM relies on the concept of a maximum-margin hyperplane and the use of kernel 

functions for handling nonlinearly separable data. The basic idea is to transform the input data into a higher-

dimensional space using a kernel function and then find the hyperplane that maximizes the margin between classes. 

The optimization problem in SVM involves finding the hyperplane parameters that minimize the classification error 

and maximize the margin. Popular kernel functions used in SVM include linear, polynomial, gaussian, and sigmoid 

kernels. 

K-Nearest Neighbor (k-NN)  

In k-NN, the class or value of an unknown sample is determined based on the majority vote or averaging of the values 

of its k nearest neighbors in the training data. The mathematical background of k-NN involves computing the 

distances between data points to identify the k-nearest neighbors. The choice of distance metric, such as Euclidean 

distance or Manhattan distance, plays a crucial role in the k-NN algorithm. For classification tasks, k-NN assigns the 

class label based on the majority class among the k nearest neighbors. For regression tasks, k-NN takes the average 

or weighted average of the target values of the k nearest neighbors to estimate the unknown sample's value. 

Linear Discriminant Analysis (LDA) 

LDA is a supervised classification and dimensionality reduction technique that seeks to find linear discriminants to 

maximize the separability between classes. It can be used for classification tasks when the class structure is important 

and is a useful tool for feature extraction and dimensionality reduction in supervised learning scenarios. Concerning 

principal component analysis, LDA can provide a two-step approach to first reduce dimensionality and then 

maximize class separability for improved classification performance. 

Classification Performance of ML Algorithms 

To evaluate the classification performances (in training and cross-validation test sets of samples), a confusion matrix 

was provided. From the confusion matrix, several important metrics were calculated, including precision, sensitivity 

(recall), and specificity. A confusion matrix is a square matrix with dimensions “NxN+1”, where N is the number of 
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classes. It summarizes the true positive (TP), false positive (FP), true negative (TN), and false negative (FN) 

predictions made by a classification model, where TP is the number of correctly predicted positive samples, FP is the 

number of samples wrongly predicted as positive (actually negative), TN is the number of correctly predicted 

negative samples, and FN is the number of samples wrongly predicted as negative (actually positive). Precision 

indicates the proportion of correctly predicted positive samples among all samples predicted as positive by Precision 

= TP/(TP+FP). Sensitivity (recall) measures the proportion of correctly predicted positive samples among all actual 

positive samples. It assesses positive samples correctly by sensitivity = TP/(TP+FN). Specificity measures the 

proportion of correctly predicted negative samples among all actual negative samples. It assesses negative samples 

correctly by specificity = TN/(TN+FP). Accuracy measures the overall proportion of correct predictions made by the 

model, considering both positive and negative instances by accuracy = (TP+TN)/(TP+TN+FP+FN).  

 

RESULTS 

The classification performance of the SVM, k-NN, and LDA algorithms was evaluated by using a confusion matrix. 

Table 1 shows the overall accuracy of the models for older subjects.  

 

Table 1. The overall accuracy of the ML algorithms for older subjects 

 Overall Accuracy for Older Subject 

  SVM k-NN LDA 

Eyes 

Condition Class 

Training 

(%) 

CV 

(%) 

Training 

(%) 

CV 

(%) 

Training 

(%) 

CV 

(%) 

Eyes 

Open 

Stable Surface 
82 79 78 73 83 79 

Unstable Surface 

Eyes 

Closed 

Stable Surface 
82 77 70 72 79 77 

Unstable Surface 

 

Concerning the older subjects, the overall accuracy of the SVM model was 82% and 79% for training and CV data, 

respectively, under eyes-open conditions while 82% and 77% for training and CV data under eyes-closed conditions, 

respectively. The overall accuracy of the k-NN model was 78% and 73% for training and CV data respectively, under 

eyes-open conditions while 70% and 72% for training and CV data under eyes-closed conditions, respectively. For 

the LDA algorithm, the overall accuracy was 83% and 79% for training and CV data respectively, under the eyes-

open condition while 79% and 77% for training and CV data under the eyes-closed condition, respectively. These 

results indicated that the SVM model revealed a better performance than k-NN and LDA models in overall predictive 

accuracy. Table 2 shows the overall accuracy of the models for young subjects. 

 

Table 2.  The overall accuracy of the ML algorithms for young subjects. 

 Overall Accuracy for Young Subject 

  SVM kNN LDA 

Eyes 

Condition Class 

Training 

(%) 

CV 

(%) 

Training 

(%) 

CV 

(%) 

Training 

(%) 

CV 

(%) 

Eyes 

Open 

Stable Surface 
70 64 66 71 80 74 

Unstable Surface 

Eyes 

Closed 

Stable Surface 
88 86 87 86 85 86 

Unstable Surface 

 

In Table 2, the overall accuracy of the SVM model was 70% and 64% for training and CV data, respectively, under 

eyes-open conditions while 88% and 86% for training and CV data under eyes-closed conditions, respectively. The 

overall accuracy of the k-NN model was 66% and 71% for training and CV data under eyes-open conditions, 

respectively. On the other hand, it was 87% and 86% for training and CV data under eyes-closed conditions, 

respectively. For the LDA algorithm, the overall accuracy was 80% and 74% for training and CV data, respectively, 

under eyes-open conditions while 85% and 86% for training and CV data under eyes-closed conditions, respectively. 

These results indicated that the SVM model also revealed a better performance than k-NN and LDA models in overall 

predictive accuracy.  
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To understand the classifier's confidence in its predictions and assess its performance, the probability graphs were 

produced by SVM algorithms shown in Figure 1 and Figure 2. Each point on the graph represents a sample, and its 

corresponding probability estimate is on the y-axis. These graphs are often used in binary classification tasks, where 

the SVM model assigns labels +1 and -1 to the two classes and tries to maximize the margin between the support 

vectors (data points closest to the decision boundary).  Figure 1 shows the probability graphs for older subjects.  

 

 
Figure 1. The Probability Graphs For Older Subjects. The Relationship Between The SVM's Probability Estimates 

And The Samples Used In Stable Vs Unstable Evaluation Under a) Eyes-Open Condition b) Eyes-Closed Condition. 

 

In Figure 1a, most samples of the unstable class have high probabilities (close to 1), while samples of the stable class 

have low probabilities (close to 0), which indicates that the SVM is effectively distinguishing between the classes.  

A tight cluster of probabilities around 0.5 for the samples indicates that the SVM is uncertain about their 

classification. On the other hand, Figure 1b indicates that SVM does not perfectly distinguish between the classes. 

Fewer samples of unstable and stable classes have high and low probabilities (close to 1 or 0), respectively. Figure 2 

shows the probability graphs for young subjects. 
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Figure 2. The Probability Graphs For Young Subject. The Relationship Between The SVM's Probability Estimates 

And The Samples Used In Stable Vs Unstable Evaluation Under a) Eyes-Open Condition b) Eyes-Closed Condition. 

 

In Figure 2a, a larger cluster of probabilities around “0.5” for the samples indicates that the SVM is uncertain about 

their classification. Fewer samples of the unstable class have high probabilities (close to 1), while fewer samples of 

the stable class have low probabilities (close to 0). In Figure 2b, most samples of unstable and stable classes have a 

high and low probability, respectively. The graph results indicate that the SVM better distinguished between stable 

and unstable classes under eyes-closed condition compared to eyes-open condition. 

 

Table 3 shows confusion matrix metrics for older subjects. When compared to the ML models, the SVM model 

exhibited also better sensitivity (recall), specificity, and precision values than k-NN and LDA models, indicating its 

capability to correctly identify true positive samples for both training and CV data sets. 
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Table 3. Confusion Matrix Metrics For Evaluating The Performance Of Classification ML Algorithms For Older 

Subjects 

  SVM k-NN LDA 

  
Class 

Sens 

% 

Spec 

% 

Prec 

% 

Sens 

% 

Spec 

% 

Prec 

% 

Sens 

% 

Spec 

% 

Prec 

% 

T
ra

in
in

g
 Eyes 

Open 

Stable  75  89  88  64  92  89  78  90  89 

Unstable  89  75  77  92  64  71  90  78  80 

Eyes 

Closed 

Stable  82  82  83  55  86  81  68  86  84 

Unstable  82  82  81  86  55  65  86  68  72 

C
V

 

Eyes 

Open 

Stable 72  85  83  55  92  88 76  88  87 

Unstable  85  72  75  92  55  66  88  76  78 

Eyes 

Closed 

Stable  76  77  77  66  66  66  67  84  81 

Unstable  77  76  76  66  66  66  84  67  71 
CV=cross-validation; SVM=support vector mechines; k-NN=k-nearest neighbors; LDA=linear discriminant analysis; Sens= sensitivity; Spec= 

specificity; Prec=precision 

 

Concerning older subjects, under eyes-open conditions, the SVM algorithm generally achieved higher sensitivity 

(89% and 85%), specificity (75% and 72%), and precision (77% and 75%) for unstable surfaces in both training and 

CV datasets, respectively. For stable surfaces, the SVM algorithm revealed high sensitivity (75% and 72%), 

specificity (89% and 85%), and precision (88% and 83%) in training and CV datasets, respectively. SVM revealed 

also similarly good results for the eyes-closed condition in both stable and unstable surfaces.  Table 4 shows 

confusion matrix metrics for young subjects. 

 

Table 4. Confusion Matrix Metrics For Evaluating The Performance Of Classification ML Algorithms For Young 

Subjects 

  SVM k-NN LDA 

  
Class 

Sens 

% 

Spec 

% 

Prec 

% 

Sens 

% 

Spec 

% 

Prec 

% 

Sens 

% 

Spec 

% 

Prec 

% 

T
ra

in
in

g
 Eyes 

Open 

Stable   74    67    69    48    84    75    75    85    83  

Unstable   67    74    72    84    48    62    85    75    77 

Eyes 

Closed 

Stable   84    92    91    86    87    87    82    88    88  

Unstable   92    84    85    87    86    86    88    82    83  

C
V

 

Eyes 

Open 

Stable   68    61    63    53    90    84    70    77   75  

Unstable   61    68    65    90    53    66    77   70    72  

Eyes 

Closed 

Stable   84    87    87    84    87    87    84    87   87  

Unstable   87    84    84    87    84    84    87    84    84  
CV=cross-validation; SVM=support vector mechines; K-NN=k-nearest neighbors; LDA=linear discriminant analysis; Sens= sensitivity; Spec= 

specificity; Prec=precision 

 

Concerning young subjects, under eyes-closed conditions, the SVM algorithm achieved higher sensitivity (92% and 

87%), specificity (84% and 84%), and precision (85% and 84%) for unstable surfaces in both training and CV 

datasets, respectively. For stable surfaces, the SVM algorithm revealed high sensitivity (84% and 84%), specificity 

(92% and 87%), and precision (91% and 87%) in training and CV datasets, respectively. However, it did not reveal 

good results for eyes-open conditions in both stable and unstable surfaces.   

 

DISCUSSION 

The primary objective of this study was to evaluate the relationship between visual and somatosensory inputs and 

the entropy of postural sway in elderly individuals. Secondly, it was aimed to assess the efficacy of ML algorithms 

(SVM k-NN, and LDA) in analyzing postural sway patterns and identifying potential predictors of postural stability. 

Four sensory conditions involved altered visual inputs (eyes open and eyes closed) and somatosensory manipulations 

(stable and unstable surfaces) to simulate real-life scenarios where sensory challenges may lead to balance 

disturbances. In the present study, the results of the classification of postural sway entropy features suggested 

valuable insights into the effects of age on postural control.  

 



KSÜ Mühendislik Bilimleri Dergisi, 26(Özel Sayı), 2023         1117 KSU J Eng Sci, 26(Special Issue), 2023 

Araştırma Makalesi  Research Article 

V. Alcan 

 

Age-Related Visual And Somatosensory Effect On Postural Sway 

The young subjects indicated a high rate of classification accuracy, sensitivity, specificity, and precision, particularly 

in conditions with eyes closed and on unstable surfaces. However, they exhibited a lower rate of performance when 

their eyes were open, suggesting that visual input and stable surface significantly contributed to decreased irregularity 

of postural sway in young or vice versa.  In contrast, the older subjects exhibited similar rates of accuracy, sensitivity, 

specificity, and precision in postural sway classification on both stable and unstable surfaces, regardless of whether 

their eyes were open or closed. This suggests that the postural control mechanisms in the elderly remain relatively 

consistent across different sensory conditions. The observed differences in classification performance between the 

older and the young subjects can be attributed to changes in sensory processing with age. Age-related physiological 

changes can affect the sensory systems of older people, including the visual and somatosensory systems. The lower 

classification performance in young subjects with their eyes open could indicate that reliance on visual input 

decreases with age. This could be due to age-related declines in visual acuity and processing speed. As a result, young 

individuals might experience difficulty maintaining balance solely with visual input, especially in challenging 

conditions like standing on unstable surfaces. On the other hand, the consistent performance of older people across 

different sensory conditions suggests that they might rely more on somatosensory inputs for postural control. The 

somatosensory system, which includes sensory information from the feet and proprioceptive receptors, plays a crucial 

role in balance maintenance. The results showed that stability gains were observed with increasing sensory 

information, but the nature of these gains was modulated by somatosensory (proprioceptive) information and the 

reliability of the haptic support surface. Additionally, the perception of somatosensation was influenced by congruent 

and incongruent visual inputs and body posture, with better localization observed when visual inputs and body 

posture were congruent with somatosensation. With aging, the somatosensory system might become more important 

in compensating for visual deficits and maintaining postural stability. These findings suggest that somatosensory 

inputs play important roles in postural control and can affect balance (Wiesmeier et al., 2015). It was found that older 

subjects favor proprioceptive than younger subjects do, and parameter differences between young and old may result 

from both deficits and compensation strategies in the elderly. The main reason can be related to impairments of the 

motor system in older people who can have difficulties in sensory reweighting, which is the process of scaling the 

relative importance of sensory cues (visual, vestibular, and proprioceptive) for motor control (Horak et al., 1989).   

 In this study, standing on an unstable surface reduced the reliability of somatosensory information and increased the 

entropy of postural sway.  With aging, older subjects can have a lower sensitivity to the plantar surface of the foot 

than younger subjects, which can increase postural sway. These age-related effects may be further magnified in 

conditions where visual input is eliminated, leading to heightened dependence on somatosensory information (Lord 

et al., 1991; Patel et al., 2011). 

 

Entropy and ML Algorithms 

Age-related differences in spontaneous sway mainly concern an increased postural sway (mean velocity, sway, mean 

frequency, etc.) by using traditional CoP analysis (Barela et al. 2018). However, in this study, measures of postural 

control were segregated into spontaneous sway entropy measures of motor behavior induced by surface perturbations. 

While removing visual feedback affects postural control in young people leading to changes in the dynamics of 

postural oscillations by increased entropy, it did not affect older people. On the contrary, for older subjects, 

manipulating somatosensory feedback led to changes in the dynamics of postural oscillations by increased entropy 

suggesting somatosensory had a dominant effect on the postural sway oscillations. Concerning unstable surface 

conditions under both eyes open-and-closed conditions, the results showed that the irregularity of postural sway was 

higher in older subjects than in young subjects. For older subjects, the balance was less stable with absent 

somatosensory information. Sensory inputs to the somatic system can decrease with age, which can contribute to 

increased irregularity (entropy) postural sway in older subjects compared to young (Shiota, 2015).  

 

In previous studies, Alcan (2023) calculated entropy measurements including SampEn, FuzzyEn, DistEn, CE, 

PermEn, and sparse density entropy from CoP data. SVM and k-NN ML algorithms were used to investigate the 

effect of visual or somatosensory inputs on CoP signal in solely the elderly. This study found that the measurement 

of CoP irregularity or nonlinear dynamics in balance assessments in the elderly was more sensitive to somatosensory 

inputs than visual inputs. Similarly, Hansen et al. (2017) found that entropy measures were more sensitive in 

analyzing postural sway compared to traditional measures. They used SampEn, multi-scale sample entropy (MSE), 

and multivariate multi-scale entropy and compared them to traditional measures of COP variability. Their results 

suggested that non-linear methods appear to be an additional valuable tool for analysis of the dynamics of posture 



KSÜ Mühendislik Bilimleri Dergisi, 26(Özel Sayı), 2023         1118 KSU J Eng Sci, 26(Special Issue), 2023 

Araştırma Makalesi  Research Article 

V. Alcan 

 

especially when applied to incremental time series when compared to the classical parameters and entropy measures 

of the original time series. Giovanini et al. categorized age groups using different CoP time series. They used the 

same data as the dataset. However, they calculated large feature sets including temporal, spatial, spectral, and 

nonlinear features including mean distance, root mean square (RMS) distance, mean velocity, RMS velocity, standard 

deviation (SD) of velocity), sway path, length of COP path, excursion area, total mean velocity, mean frequency, 

median frequency, spectral power with 95%), SampEn, MSE, scaling exponent, Hurst exponent of distance. They 

used SVMs, k-NN, NB MLP, RF, and decision tree (DT) ML models and found that a 60 s sampling duration 

provided the most discriminative information. The overall classification accuracy of all ML models was 61.3% for 

dataset 1 and 67.8% for dataset 2. The mean values of all ML models were smaller for a 30 s duration, affecting the 

CoP time series duration in different age groups. Çetin & Bilgin (2019) distinguished between young and aged groups 

using the same dataset. Unlike our feature set, they extracted features from time-dependent variables including CoP 

and force change. They used various classifiers and found that force signals were more successful than COP signals. 

The SVM model had the highest accuracy (81.67%) in separating the young and older groups. Seigle et al. (2009) 

concluded that classical stabilometric variables and Recurrence Quantification Analysis (RQA) outputs provided 

complementary information for the characterization of aging effects on postural sway. They found that COP 

displacement was affected by vision in both young and elderly adults. The RQA method was able to discriminate 

COP displacement in elderly subjects. Ojle et al. (2021) investigated the effects of visual and somatosensory input 

on postural sway using entropy and ML algorithms. They used the k-NN model to investigate the effects of the visual, 

proprioceptive, and vestibular systems using the postural sway information in the M-L and A-P directions. They 

found that the visual system affected M-L sway, and proprioceptive and vestibular systems affected A-P sway. A-P 

sway was more affected by sensory systems than M-L sway. Sun et al. (2019) implemented an ML approach to assess 

the accuracy and feature importance of various postural sway metrics to differentiate individuals with Multiple 

Sclerosis (MS) from healthy controls as a function of physiological fall risk and M-L sway amplitude was identified 

as the strongest predictor for fall risk groupings. The feature set used in this study consisted of 20 common postural 

sway metrics derived from static posturography assessment. The ML algorithm used in this study was random forest 

(RF) with 10-fold cross-validation. The sway-metric-based RF classifier had high accuracy in discriminating controls 

from MS individuals (>86%). Sway sample entropy was identified as the strongest feature for the classification of 

low-risk MS individuals from healthy controls. Whereas for all other comparisons, mediolateral sway amplitude was 

identified as the strongest predictor for fall risk groupings. They found that posturography was beneficial for balance 

impairment and fall risk assessment in individuals with MS.   Sample entropy and M-L sway amplitude were strong 

predictors for fall risk in MS individuals. Lee et al. (2020) found that using logistic regression analysis with sensor 

data and entropy analysis provided an accurate classification of fall risk in elderly people. Their results showed that 

logistic regression analysis predicted fall risk in the elderly and PerEn and statistical features provided accurate 

classification.  

 

Consequently, the findings of the present study are consistent with previous research on age-related changes in 

postural sway and suggest the use of such entropy indices from nonlinear domains extracted from CoP signals and 

its complex components as potential markers for postural instability and fall risk in older adults. ML algorithms also 

provided complementary information and very good classification performance for the characterization of aging 

effects on postural sway. From a clinical perspective, the ML approach of applying entropy analysis to CoP data on 

a fall-risk scale can allow medical practitioners to predict risk and can provide decision-makers with a more accurate 

way to classify fall risk in elderly people. 

 

CONCLUSION 

This study found how visual and somatosensory information significantly affects the postural sway irregularity 

(balance ability) of older people, as measured by nonlinear dynamics by entropy. The findings suggest that older 

people adapt their postural control mechanisms, relying more on somatosensory inputs, to maintain stability. 

Meanwhile, young individuals heavily rely on visual input, particularly in challenging situations.  Findings suggest 

the loss of somatosensory function may explain much of the age-related increase in the irregularity of postural sway, 

with different entropy algorithms measured with eyes closed then eyes open on foam, and then a firm surface. For 

clinical decision support systems, the SVM algorithms can give insights into the underlying mechanisms that govern 

postural sway dynamics in the elderly population, shedding light on the role of sensory inputs in maintaining balance. 

The findings of this study have the potential to enhance preventive measures and interventions aimed at improving 

postural stability and reducing fall-related incidents, thereby contributing to the well-being and quality of life of the 

elderly population and society at large. 
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