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ABSTRACT

The impulsive fractional delayed differential system with the Caputo derivative with respect to another function is
considered. An explicit solution to the system in the light of the available studies on this subject is determined and
its existence and uniqueness are debated. Lastly, the stability and controllability of the given system are investigated.
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OZET

Herhangi bir fonskiyona gore tanimlanmus Caputo tiirevli ani degismeli kesirli gecikmeli bir sistem dikkate
alinmaktadir. Bu konuda mevcut ¢alismalarin 1g181inda sistemin sarih bir ¢6ziimii belirlenmekte ve ¢oziimiin varlig
ve tekligi tartigilmaktadir. Son olarak, verilen sistemin kararlilig1 ve kontrol edilebilirligi arastiriimaktadir.

Anahtar Kelimeler: Ani degismeli kesirli gecikmeli sistem, varlik teklik, Ulam-Hyers kararliligi, géreceli kontrol
edilebilirligi

INTRODUCTION

Fractional calculus is regarded as a generalization of integer calculus. Of course, this generalization contributes
different positive capabilities which integer calculus does not have to fractional calculus. For example, according to
researchers in this field, this enables fractional calculus to model almost all of scientific problem more suitable than
integer order, numerical approaches to fractional calculus give better results compared to integer calculus, etc.
Fractional calculus begins to be used in many areas such as mathematical physics, biophysics, engineering, signal
processing, etc. For more details, all of reference section can be scanned.

A differential equation which consists of the present state and its rate of changes is said to be a delayed differential
equation(Aydin et al., 2022; Aydin & Mahmudov, 2022; Mahmudov, 2022; Elshenhab & Wang, 2021b, 2021a;
Mahmudov & Aydin, 2021; Liu et al., 2021; Mahmudov, 2019; Mahmudov, 2018; Li & Wang, 2018; Khusainov &
Shuklin, 2003) if it also includes the past state. As stated and shown in (Mahmudov, 2019), a solution of a linear
system p’(¢) = Mp(c), ¢ = 0 has the form p(¢) = ¢M$p(0), where the exponential matrix is also called fundamental
matrix having a simple structure, but, it becomes more complex for seeking a fundamental matrix for a linear delayed
system p'(¢) = Mp(¢) + Ap(¢ — 1), ¢ = 0, > 0 with an initial condition p(¢) = 9(¢), —r < ¢ < 0, because of its
fundamental matrix’s complex structure caused by the delay parameter. Its solution, which is obtained by (Khusainov
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& Shuklin, 2003) under the assumption of commutativity of the coefficient matrices M and A, naturally has a
complex structure. So, it is difficult to work on such an equation according to equivalent studies. When we have look
at the literature, these kinds of systems have been investigated in terms of controllability, stability, and existence and
uniqueness of solutions (You et al., 2020; Liang et al., 2017; Wang et al., 2017; Khusainov & Shuklin, 2005) of the
systems.

Generally, a differential equation is exploited to describe the dynamics of changing processes. The dynamics of many
changing phenomena count on abrupt changes such as shocks, natural phenomena which is an observable event that
is not non-made. These sorts of processes own short-dated perturbations (deviations) of continuous dynamics. When
the duration of the entire advancement is considered, its lenght is negligible. While such deviations are modelled,
these deviations can be described in the form of ‘‘impulses”. Consequently, modelling impulsive problems produce
differential impulsive equations in optimal control, industrial robotics, ecology, population dynamics, physics
(Bainov & Simeonov, 1993; Bainov & Simeonov, 1989; Lakshmikantham et al., 1989; Samoilenko & Perestyuk,
1989) and so on.

Mahmudov in (Mahmudov, 2019) consider a delayed system having noncommutative coefficients in the classical
Caputo fractional sense with the same structure as (Khusainov & Shuklin, 2003) and offer an explicit solution by
proposing the delay perturbation of the two-parameter Mittag-Leffler functions. The reseachers in (Aydin et al., 2022)
examine the system obtained by using the Caputo fractional derivative with respect to another function instead of the
classical Caputo fractional derivative in the system of (Mahmudov, 2019). In the sequel, Aydin and Mahmudov in
(Aydin & Mahmudov, 2022) take the same system as (Mahmudov, 2019) by adding an impulsive initial condition
into consideration and prove its controllability in the iterative learning control sense. This time, we combine the
system of (Aydin et al., 2022) with an impulsive initial condition. This makes the system (1) different from the
existing studies in the literature. To the best of our knowledge, this system is firstly introduced and its relative
controllability is investigated.

Inspired by the above-cited studies, we investigate the below semilinear impulsesive fractional delayed differential
equations consisting of the traditional Caputo fractional derivative with respect to another function

LSDE p(e) = Mp(o) + Ap(c —1) + g(5,p(5)),  0<¢<T, r>0,
p(s) =9(¢), -r<¢<0, 1)
psH) = pGi) + f(p(s) G €]

where _rfo; is ¢-Caputo derivative of order 0 < 8 < 1. Here, ¢ is a real valued increasing function on R and
@' (t) #0,t€[-rT], M,A € R™™ which do not have to be commutative. Also, g € C ([0,T] x R™,R™), f €
C(R™ R™), and 9(¢) € C* ([-7,0],R™), ] = {¢1,62, ..., §m} IS the impulsive times with 0 < ¢; <+ < ¢, <T,
T = lr for a fixed [ € N. The jumps

p(cH) = lim p(s; + &),  p(s7) = lim p(g; +€)
&-0 £-0

express the right limit and the left limit of p(¢) at ¢ = ¢;, each to each.

PRELIMINARIES

In this section we will present most essential tools to be used in the following sections. R" is the famous Euclidean
space with dimension n € {1,2,3, ... }. For a,b € Rwith a < b, let

C([a,b],R™) = {f:[a,b] » R™: f is continuous}
with the maximum norm ||. ||, which is

Ifllc = max{llf (©ll.s € [a,b]}


https://tureng.com/tr/turkce-ingilizce/advancement
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for ||.|| is a norm on R™. Let AC[a, b] symbolise the absolutely continuous functions’ space. For n € {1,2,3, ...},
AC™[a, b] the space of all complex-valued functions f(¢) such that f @~ (¢) € AC[a, b].

Lemma 1. (Lemma 3.4., Aydin et al., 2022) ngr‘p(c, t) is a solution of _rng p(¢) = Mp(s) + Ap(¢ — 1), that
is,

M,A, M,A, M,A,
LEDE XA (6, 6) = MXG0 (6,6) + AXR P (o, t + 7).

Lemma 2. (Corollary 3.8., Aydin et al., 2022) A continuous solution w of the equation (1) without the impulsive
initial condition is
0
p(9) = X347 (g, —r)o(—1) + f X 6,0 [(L5059) (6) — 49(t)| dop (1)
=T

¢
+ [ 2005 6,09 (6, p ) do(o)
0

here, p-delay perturbation of two-parameter Mittag-Leffler function xﬁl‘f’;’;‘p defined by

0, ¢—s€[-r0),
A, I, =5,
XA (g, 5) = ) 2)

o) _ ; [ ( )_ ( +7 )]kB+a—1
S0 2j2h Quat () e —— ¢ —s € (U= Drlr],

where ¢ is an increasing real-valued function on R such that ¢'(¢) # 0, t € [—r,T], I and © are the representations
of the identity and zero matrices each to each. In the light of (Mahmudov, 2019), the recursive matrices Q. (s) are
definedfors = kr, k= 0,1,2, ..., as

Qo(s) =0, Q1(0) =1, Qx(-7) =0, Qis1(s) = MQr(s) + AQx(s —1) .

Lemma 3. (Lemma 3.10., Aydin et al., 2022) If t € [0,T], T = Ir where [ € N and r € R*, then the following
inequality holds true:

I§ || 6,5 | dep(s) < (M) = p(0)] k4 7, 0)

F MA@ . .. . . .
Lemma 4. (Lemma 3.3., Aydin et al., 2022) X ;" (¢, s) is ajointly continuous matrix operator in 0 < s < ¢ <

00,
From here on, we will offer our fundamental contributions.

THE REPRESENTATION OF A SOLUTION

Theorem 5. A continuous solution p of the equation (1) is
(0]
p(s) = X3A% (6, —r)0(—r) + j X (6,0 [(L6050) (6) — 49()] dop(t)
] r
+ f Xgi (5,09t p(D)de(t) + z X1l s f(p(s)), x>0,
0

0<x;<x

where Xéf’cfr"p is ¢p-delay perturbation of two-parameter Mittag-Leffler function given above.
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Proof. If one combines Lemma 1 with Lemma 2, the proof is completed out of the satisfaction of the impulsive initial
condition. Now, we will show that the solution satisfies the impulsive initial condition. For each ¢ € (¢x_1,¢x] the
solution p(¢) is given by

0
p(s) = X440 (g, —1)0(—1) + f X (6,0 [(L5p50) (6) — 49()] dop(e)

s k—1
+ f XY (5,09 (£, PP + Y X2 (5,60 F(p(s))
0 i=0

and for each ¢ € (¢, Sr+1], We have
0
p() = Xl (5, —r)9(—7) + f Xl (6,0 (5059 (8) — 49(0)] dp(e)
S - k
+ f Xg i (6,09 (& p(D)de(t) + Z X2 (660 Fp(s) -
0 i=0

Since it is known that X[f,‘,ll"_qr"” (ks 6x) = I, we acquire

0
psi) = Xt (6, —r)9(—1) + f X (6,0 [( L5059 (8) — 49(D)] dp(e)

S - k
+ f X (6,009t p(£))dep(£) + ZX[X 127660 £ (p(s)
0 i=0
= p(s7) + Xp17 (o510 f(P(51)) = p(s7) + £ (p(si))
which completes the proof.

EXISTENCE UNIQUENESS RESULTS

Unfortunately, the conditions given in the statements of the problem root is not enough to assure that the solution
given in Theorem 5 is unique. So, we need to make a couple of extra assumptions as follows:

A, :: The function g satisfies the Lipschitz condition with L, > 0,

lg(s,p) —glgl < Lgllp—vl, ¢ €[0,T], pv € R™
A, :: The function f satisfies the Lipschitz condition with L, > 0.
As = ([p(T) = @(0)]Ly +mLp)max {x )y M4 (7, 0), M4 (7, 0y } < 1,

Theorem 6. Under all assumptions A;, A,, A3, the integral equation given in Theorem 5 has a unique solution on
[-7,T].

Proof. Define G: C ([-r,T],R™) —» C ([-r,T],R™) by
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0
Gp(s) = X450 (6, —r)9(—) + f X5 (6,00 [(L6050) (6) — 49()] dop(t)

¢
+ [ X 609 pE)dR© + Y XA G5 F(p)).
0

0<¢;<¢

By taking arbitrary p, v € C ([—r, T], R™), one can obtain the following estimation of ||Gp(¢) — Gv(¢)] :

S
1Go(s) = Gu(o)ll < Ly f |0 9] do) o =vllc +1; Y |42 llo = vlle
0

0<t;<t

< ([p(1) — 9(O)]Lg + mLp)max {x) 71402 (T, 0), )WV (7, 0) } 1o — vl

In the light of A3, G is a contraction. Consequently, G owns a unique fixed point due to Banach fixed point theorem.

STABILITY RESULTS

In this section, we firstly share fundamental definition and remark to demonstrate that the equation (1) is Ulam-
Hyers (UH) stable.

Definition 7. If Ve > 0 and for any solution p € C ([0, T], R™) of inequality

then there is a solution v € € ([0, T], R™) of (1), and a ¢ > 0 such that

D8 p(6) = Mp(s) = Ap(s — 1) — g(5.p()) || < € €)

”p(C) - U(C)” < o€, CE [0' T] (4)
Then, equation (1) is UH-stable.

Remark 8. A function p € C' ([0, T], R™) is a solution of (3) iff there is at least one element h € C ([0, T], R™)
fulfilling

e |lh(®ll<e
o _$DEp()=Mp(c) +Ap(s—1) + g(5. p(5)) + h(s).

Theorem 9. Under all of circumstances in Theorem 6, the system (1) is stable in the sense of Ulam-Hyers.

Proof. Suppose p € C ([0, T], R™) that fulfils (3), and let v € C ([0, T], R™) which is the unique solution of system

(1) with the initial condition v(¢) = p(¢) for all ¢ € [—7,0], p(¢/) — p(s7) = v(s]) —v(si) = f(p(s)). Based
on Remark 8 and the rule of G, one acquires

S
kDIl <& p(e) = Go(s) + f X (6, (B de(D),
0
and also v(¢) = Gv(¢) for each ¢ € [0, T]. One gets
S
1Go(s) = p(o)Il < f 265555 (6, 9)|| 1R () < [0(T) = (@I (T, 0)e.
0

We are set to make an estimation ||v(¢) — p(¢)|l:

lv() = p(DIl < lv(¢) = Gp(DIl + 1Gp(s) = p (I
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< ([p(1) = 9(O)]Lg + mLy)max {71402 (T, 0), A4V (7, 0) } J1p - vl

+lp(T) — (01X MM (7, 0)e

which provides
lv—pllc < ge,

where
[o(T) — ()] )5 M4 (T, 0)

o=
1= (lp(T) = p(0)]Lg + mLgymax {x )MV (T, 0), 2 T4 (T, 0) }

> 0.

This last point completes the proof.

RELATIVE CONTROLLABILITY RESULTS

In current section we relatively investigate the controllability of the impulsive fractional delayed differential systems
having Caputo fractional derivatives w.r.t. another function while it is not only linear but also semilinear.

Definition 10. System (1) is called relatively controllable, if there is a control u € L?(I = [0,T], R™) so that
equation (1) owns a solution p € C([—r,t],R™) that holds the initial delayed condition, the initial impulsive
condition, and p(t) = p, for the arbitrary final value p, € R™ with the arbitrary time 7, any initial continuously
differentiable R™-valued function ¢ on [—r, 0].

There are two cases for the system (1) to investigate its relative controllability. If the system (1) is without the
semilinear term g(g,p(g)), 0 <¢<T,itis called the linear case of the system (1). Otherwise, it is called the
semilinear case of the system (1). We will consider these two cases individually as follows.

The Relative Controllability of the Linear Case of the System (1).
We will consider the following control system

D5 p(e) = Mp(¢) + Ap(s — 1) + Su(s), 0<¢<T, >0,
p(s) =9(s), -r<¢<0, (5)
p(si) = pGi) + f(p(s) G €]

whose solution is given by
0
p(g) = Xgih? (g, —r)0(=1) + f X4 (6, )[(L,5D59) () — A9(s)| dop(s)
¢ -r
+ [ G sudp) + D X (60 F(p(s0),
0 0<¢i<¢
here u € R™ is a control functionand S € R™",

Theorem 11. The system (5) is relatively controllable if and only if the following Gramian matrix
T
wio,7] = fx[’;’g‘;" (1,5)SS* X;’B’f P (1,5)de(s)
0

is nonsingular, where .* stands for the transpose of a matrix.
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Proof. =: Let W0, 7] be singular while the system (5) is relatively controllable. There is a nonzero = € R",
wWi[0,t]m = 0.

One gets

T
f Xy 5 (1,5)S™ Xg g ¥ (x, )mdp(s) = 0,
0

which provides

*xyM,A,
X (1,5)S =0, 0 <s<t.

Based on the relative controllability of the system, we can find u; and u, for the different final 0,7 €
R™ respectively so that

T

T = jn*xggflf(r, $)S (uy(s) —uy(s))dep(s) =0
0

from which = = 0 is obtained. This is a contradiction.

«: By means of the invertibility of the Gramian matrix, it is known that its inverse W 1[0, 7] exists. If one regards
the following continuous function

u(g) =" Xg 40 * (o) W0, 7] 9
where

0
9() = pr = X513 (5, —1)O(=1) — f X5 (6,0 [(L, 505 9) (8) — 49(D)] do(e)
— Z Xg1y? (5,60 f(p(50))-
0<¢i<¢

as a control, one can easily observe p(t) = p., and w fulfills all of the initial conditions
The Relative Controllability of the Semilinear Case of the System (1).
We will consider the following control system

LSDE p(o) = Mp(¢) + Ap(s = 1) + g(5,p(9)) + Su(s),  0<¢<T, r>0,
p(s) =9(s), -r<¢=<0, (6)
p(s) = p(i) + f(p() G €]

whose solution is given by

0
p(6) = Xl (5, —r)9(—7) + f X (6,0 [(, 5059 (8) — 49()] dp(e)
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+ f X (6, 0)g(t p())do(t) + Z Xgin (550 F(CsD)).
0

0<¢;<¢

s
+fxflf\%;p(9 t)Su(t)de(t), ¢>0.
0

Unfortunately, we can not control this system without putting extra conditions on the nonlinear function and
impulsive function, an extra operator. Now, let us make some assumptions as follows:

A, :: The operator M: L*(I, R™) — R"
T
Mu = [ AP @ 5)5u)da(s),
0

owns an inverse M~* which taking values in L*(I, R")/kerM. Let X;, i = 1,2, be Banach spaces. B(Xy, X,)
consisting of all both bounded and linear is endowed with the norm ||. ||g . For simplicity, we will set

R := ”M_l”B(]Rn,Lz(I,]Rn)/kerM)’

0
Ry = || x4 (¢, —ryo(=n)|| + f X5 (6,5) (€5 0) () = A9(s)| do ()|

Ro= ) 657 s | 171+ [0 — o (@111 (7,0) maxig(s,0)],

0<¢;<¢

Ry=| L ) [ G| IF@)1 + Lylo (T - o @1 (r,0) |l ¢

0<¢i<¢
From Remark 3.3. of (Wang et al., 2017),

R = Jllw=[0, 7]l

Theorem 12. Suppose that 1 > g > 0.5. Under the assumptions 44, A,, and A, are fulfilled. Then the
system (6) is relatively controllable if

(1 + R||S||max{1, R3})R; < 1.

Proof. Based on the assumption A,, one can define the following control function

0
up =M1 | pr = X500 (g, )0 (—1) — j X5 (6,5) (505 9) () — A9(s)| dop(s)
=T

¢
M| = Z X5 (66 fp(s) — f Xyi? (,)g(s, p(s))dep(s) |-
0

0<¢;<¢

By executing this control function, one can also define K : C (I, R") — C (I,R") by
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0
Kp(s) = Xph? (6, ~r)o(=r) + f X5 (6,00 [(L 605 0) (6) — 49()] dop (1)

¢
+ f Xg i (6, )g(t, p())do(t) + Z Xgin2 (550 (0 (sD).
0

0<¢;<¢

S
+ | X2 (6, 0)Su, () de(t), ¢>0
B.Br \S p pLL), ¢ .
0
Now, we need to determine such a radius r for D, := {p € C (I, R™) : ||p||c < r} which is a convex, closed and
bounded subset that K(D,.) < D,. To do this, start with the norm of the control function:
[l < R(Ry + Ry + Rsllpllc).
The norm of the operator Kp(¢) for p € D, is
IKp(s) I < Ry + Ry + Rsllpllc + RISII(Ry + Ry + Rsllpllc)-

If we take

_ (@ +RISIDRy + Ry) + RIS HIwel
1—(1+ RIISllmax{1, Rs})Rs

)

the desired thing is demonstrated. Now we will separate K in two different operators as follows:
0

Kip(g) = X517 (6, =)0 (=) + f X5 (6, ) (505 9) (5) — 49(5)] dep(s)
-r

S
+ f Xgi? (5, 8)Suy(s)dep(s) + Z X1l s fpGd), €L
0 0<¢;<¢

and

S
Kyw(s) = f Xl (6,5)g(s,p(5))de(s), s €I
0

For p,v € D, one gets
[l () = up ()| < RR3llp(s) — v()l

and

1K1p(5) = Kyv(@)Il < [@(T) — (01X ZM4 (7, 0) 151l [l (6) = 1, (<)

M,A,
*hr Z o532 (6. 60| e = vl
0<¢;<¢

< [@(T) — ¢(0)] xﬁ”y’gyurr”:‘lllxp(T' OIISIRR o — vlle
) e G| e = vile

0<¢;<¢

< (1 + R|IS[lmax{1, RsDRsllp — Vllc,
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which gives that K; is a contraction. Assume that p,, € D, with p, — p in D, . Since g is continuous,
(6, pn($)) = g(s p(c)). By using dominated convergence theorem

S
1K20n(5) — K2p (o)l < f 1265552 (5, 9)|| L9 (5, n()) = (5. p()) | dep(s),
0

goes to zero as n tends to co. Thus, K, is continuous on D,.. The last task is to show that K, is compact. For p € D,,
0<¢<g¢c+h<r

¢t+h
Kap(s+ 1) = Kop(®) = | X2 s+ hus)g(5,p())d(s)
t

¢

" f (o642 (s + 1) = XF (6,)) 9 s p(5)) ().
0

Introduce the below notations:

¢+h

b= [ GG+ b9 (s p(s))do(s),
¢

S
Ay = f (Xé\,li;,l%(p (c+h,s)— X (s, s)) 9(s,p(s))de(s) .
0

With an easy calculation, one can acquire

¢+h

MA@
1l = (L lloll + malaG.0) [ [[5526 + o) dos) — 0,
¢

S
A, VA,
12211 < (Lgllolle + maxlg s, 0)1) f 65552 s + B, ) = X354 (5, 9) || do(s) — 0,
0

as h — 0. As aresult, one acquires
IK2p(s +h) — Kzp(O)Il < [[44]l + 122l — 0 as h — 0.

K, (D,.) is uniformly bounded because one easily reach to the following upper bound for all members of K,(D,)
with the familiar computations,

lIMILIAll.
1Kopll < (L7 + maxlg(s, 001 ) T X4 (7,0,

Because of the equicontinuity and uniform boundedness of K,, Arzela-Ascoli theorem provides K, is compact. Due
to the fixed-point theorem of Krasnoselskii, K owns a fixed point p € D,..

CONCLUSION

The current paper is, in brief, devoted to investigating the both uniqueness and existence of the solution and
examining stability and controllability of the discussed equations. The obtained results are quite comprehensive and
cover many studies which are not available in the literature because the Caputo fractional derivative with respect to
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another function reduces to the classical Caputo fractional derivative in the case of ¢ (¢) = ¢ and Hadamard fractional
derivate when ¢ (¢) = In¢. For a next problem, the following neutral fractional system:

LSDE p(e) = N_5DEp(c —1) = Mp(e) + 4p(c = 1) + g(5,p(5)),  0O<¢<T, r>0,
p(s) =9(5), —r<¢<0,
p(s) = pi) + f(p(s) ¢ €]J

where N € R™ and the remaining information is given in (1), can be taken into consideration and the stability and
controllability of this neutral fractional system can be investigated in addition to the fact that both the uniqueness and
existence of its solution are examined.
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