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• This study differs by considering simultaneous operations of different vehicles. 
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Abstract 

This research delves into the dynamic landscape of transportation systems, with a specific focus 
on the integration of drones and conventional vehicles. The study presents a Mixed Integer 
Programming (MIP) model for the Capacitated Multi-Drone Assisted Vehicle Routing Problem 
(mDroneCVRP), aiming to minimize the time of the last vehicle's arrival at the warehouse. It is 
essential to highlight that the proposed model was effectively solved using the CPLEX algorithm 
within the GAMS framework, underscoring the sophistication of the solution approach. The 

integration of multiple drones into the routing process proves to be instrumental in significantly 
reducing service time, demonstrating the efficacy of synergizing drone and truck operations. As 
the number of nodes escalates, emphasizing the necessity for heuristic approaches to address 
larger instances, the study provides valuable insights into the judicious use of drones in 
synchronized routing operations. Furthermore, the research challenges conventional assumptions 
by permitting drones to take off from and land on different vehicles, thereby augmenting 
operational capabilities and adeptly tackling contemporary transportation challenges. 
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1. INTRODUCTION 

 
In the context of rapid technological evolution, transportation systems are witnessing substantial 

development, especially within the logistics sector. The sector's goal is to forge resilient and cost-effective 

transportation networks by closely analyzing cost factors and seeking efficiency enhancements. This 

endeavor is bolstered by the scientific community's efforts to address the inherent challenges of such 
systems, spurred by an escalating demand for improved logistics solutions. 

 

The exploration of network problems, notably the Traveling Salesman Problem (TSP) initially modeled by 
Dantzig et al. [1] and identified as an NP-Hard issue, and its subsequent evolution into the Vehicle Routing 

Problem (VRP) introduced by Dantzig and Ramser [2], exemplifies the ongoing scientific quest for 

optimizing distribution channels for both cost and time efficiency. 

 
The VRP has been a focal point of study across various domains, showcasing adaptations tailored to the 

distinct requirements of different systems, influenced by factors such as vehicle types, node configurations, 

warehouses, and time constraints. The motivation behind these studies is driven by the commercial and 
organizational need to refine distribution networks to minimize costs and meet delivery standards, crucial 

for enhancing customer satisfaction and operational success, as seen in both production and marketing 

spheres. 
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Beyond the commercial domain, distribution systems are garnering attention in fields like humanitarian 
logistics, where the efficiency of delivery—marked by timely and material-specific requirements—is 

paramount. The scientific literature is rich with vehicle routing studies catering to these areas. 

 

As technology advances, the scope of VRP studies has broadened to include new forms of transportation, 
evidenced by the categorization of transport modes into air, land, or water, and further into multimodal and 

intermodal transport. Notably, the advent of unmanned aerial vehicles (UAVs or drones) introduces unique 

routing challenges and opportunities distinct from classical VRPs, facilitating the integration with other 
vehicle types and thus transforming the vehicle routing problem landscape. 

 

This study delves into the burgeoning area of new-generation vehicle routing problems, emphasizing the 

role of cutting-edge technology. It specifically focuses on the Unmanned Aerial Vehicle-assisted Traveling 
Salesman Problem (TSP-drone), as categorized by Murray and Chu [3], with additional classifications and 

assumptions outlined by Otto et al. [4]. Unlike prior research, this work introduces a mixed-integer 

programming model for the Multiple-Drone Assisted Capacitated Vehicle Routing Problem 
(mDroneCVRP), aiming to minimize the time for the last vehicle to return to the warehouse. This model, 

adeptly solved using the CPLEX algorithm within the GAMS framework, represents a significant stride in 

computational methods applied to transportation problems. It innovatively allows drones to take off from 
and land on different vehicles, offering a flexible approach to minimizing makespan, diverging from the 

traditional constraints of returning to the launching vehicle. 

 

Following an overview of related studies and the TSP-Drone classifications, the paper delineates the 
problem definition, assumptions, and the mathematical model devised for mDroneCVRP. The creation of 

test data for this model and the derived solutions are elaborated upon, showcasing the model's application 

and effectiveness. An innovative algorithm developed to solve this complex problem is detailed, followed 
by a presentation of the results obtained, underscoring the model's potential and the efficiency gains from 

employing drones in vehicle routing. The conclusion discusses the implications of these findings and 

suggests directions for future research, emphasizing the transformative impact of drone technology on 
logistics and vehicle routing systems. 

 

2. RESEARCH METHODOLOGY 

 

The literature on drone operations is examined in the first stage of the study. In the second stage, the 

literature gap is identified, with a specific focus on the synchronous operations of drones and vehicles, as 

emphasized by Otto et al. [4]. Once the problem is determined, a mixed-integer programming model is 
developed. This process is illustrated in Figure 1. 

 

Moving to the fifth stage, datasets are derived to validate the model. Subsequently, the model undergoes 

validation through an experimental study. The seventh stage involves the development of a greedy heuristic 
designed to solve the identified problem. Finally, the results obtained from different stages are compared, 

and conclusions are drawn to wrap up the study. 

 

 

•Examine drone operations in literature

•Identify the literature gap based on Otto et al., 2018

•Examine drone and other vehicles synchronous operation inthe literature

•Develop mixed integer programming model for the problem

•Denved data sets for validating model

•Validate the model via an experimantal study

•Develop a greedy heuristics for the problem

•Present the result with the comparisons and draw the conclusion
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Figure 1. Research methodology steps 

3. LITERATURE REVIEW 

 

The research by Murray and Chu [3] integrates drones with vehicles in the Traveling Salesman Problem, 

introducing MILP models for the Flying Sidekick TSP (FSTSP) and Parallel Drone Scheduling TSP 

(PDSTSP), along with a heuristic algorithm. FSTSP plans routes for both trucks and drones to serve 
customers simultaneously, with drones launching from and returning to the truck. PDSTSP allows trucks 

and drones to independently serve customers. 

 
Bouman et al. [5] explore all potential truck and drone route combinations, differing from Murray and Chu 

[3] by considering rendezvous points as potential departure points, and introduce heuristic solutions based 

on local search and dynamic programming. 

 
Ha et al. [6] focus on cost minimization, proposing local search and grasp heuristic algorithms for problems 

with 50 and 100 nodes. A subsequent study by Ha et al. [7] introduces a “cluster first-route second” 

heuristic, optimizing drone paths before truck routing, and a “route first-cluster second” method. 
 

Wang et al. [8] pioneer the investigation of multi-truck and multi-drone systems, conducting theoretical 

analyses to establish performance benchmarks. Poikonen et al. [9] further this research, defining theoretical 
limits for expanded scenarios. Ponza [10] applies simulated annealing in TSP-Drone, marking the first use 

of meta-heuristics in this field. 

 

Ferrandez et al. [11] experiment to find the optimal clusters and speed ratios for trucks and drones, using 
the K-means algorithm for efficient delivery point clustering. The classification of the studies according to 

the approach and solution methods is given in Table 1a and Table 1b. 

 
The broader scope of vehicle and drone collaboration research, as summarized by Otto et al. [4], spans 

various applications from disaster response to enhancing vehicle coverage and connectivity. The potential 

for ships supporting drone operations highlights the evolving nature of these systems in future logistical 
and surveillance tasks. 

 

Otto et al. [4] classify research on vehicle and drone operations by their roles within the system, 

emphasizing that their importance is determined by their assigned task weight. Should their roles be 
equivalent, they can operate concurrently or take turns leading to optimize performance. The primary 

objective for vehicles or drones is usually predefined, with their operations imposing certain constraints 

[4]. Operations can be synchronous or asynchronous, where synchronization depends on various factors 
like traffic conditions and task times (Mathew et al. [12]; Tokekar et al. [13]). The need for coordination 

between drones and vehicles leads to novel optimization challenges [4]. Research in this area typically aims 

to minimize expenses by considering aspects such as the number of drones (Jia and Zhang [14]) or operation 

duration. Other studies focus on enhancing service quality through different metrics, including the quantity 
of deliveries (Savuran and Karakaya [15]), the amount of sensor data collected (Tokekar et al. [13]), and 

the efficiency of drone communication (Wu et al. [16]). Additionally, Viguria and Maza [17] explored how 

penalizing the distribution of a single task among multiple vehicles could improve the cooperation between 
drones and vehicles. This body of work collectively examines the division of combined operations based 

on actual performance drivers and the need for synchronization. Figure 2 describes the separation of 

combined operations according to actual performance servers and synchronizations. 
  

Vehicles assist drones in scenarios where drones play a crucial role, typically in situations where vehicles 

do not make deliveries and move slower than drones. Drones are able to cover specific distances over 

vehicles, with research varying based on objectives, vehicle-drone interaction patterns, and energy 

limitations. Tokekar et al. [13] explored using speed ratios to facilitate drone-vehicle rendezvous, focusing 

on transport without delivery. Other studies, like those by Luo et al. [18], Mathew et al. [12], and Garone 

et al. [19], consider the possibility of drones recharging on vehicles. Commonly, drones deliver packages 

directly to customers, while vehicles serve as mobile bases, extending the drones' operational range 
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(Ferrandez et al. [11]; Mathew et al. [12]). Garone et al. [19] addressed optimizing sea rescue missions in 

a continuous space, defining drone destinations within vehicle reach. Mathew et al. [12] tackled the 

asymmetric Traveling Salesperson Problem (TSP), omitting wait times to minimize delivery costs. 

 

 
Figure 2. Combined working patterns of drones and vehicles, (Otto et al. [4]) 

 

In operations with trucks as the main performance driver, drones are used as support vehicles for trucks. 

Drones can be seen as vehicles supporting mobile warehouses in these operations. Studies have been 

conducted to minimize the cost of the drone tour (Savuran and Karakaya [15]) or visit the maximum number 

of customers (Savuran and Karakaya [20]), leaving the carrier with a certain speed and route. Such studies 

include applications that can contribute significantly to mobile warehouse problems (Otto et al. [4]). 

 

In scenarios where drones and vehicles operate independently and both significantly contribute to 

performance, no coordination is needed. Murray and Chu [3] outlined a scenario where trucks and drones 

deliver to individual customers, aiming to minimize the number of drones and optimize service times for 

both trucks and drones. Here, drones operate without truck support, delivering packages to each customer 

before returning to the warehouse for the next delivery. Ulmer and Thomas [21] investigated same-day 

deliveries by either trucks or drones, considering random customer orders to decide on order acceptance. 

 

Synchronization between drones and vehicles becomes essential when they need to meet at specific points. 

This is evident in the Generalized Service Problem (GSP) where they collaborate closely, as explored by 

Murray and Chu [3], Agatz et al. [30], and Ha et al. [6]. In such settings, the vehicle departs from the 

warehouse to serve customers and completes a round trip. The drone, stationed on the vehicle, delivers 

packages within its reach and returns to the vehicle for battery recharge (Kundu and Matis [45]). The drone's 

operational range is limited by its maximum flight time, leaving further distances to the vehicle. It must 

rendezvous with the vehicle at customer locations and can only depart from and return to the vehicle it 

launched from. Murray and Chu [3] observed that synchronization significantly impacts costs due to the 

waiting times incurred by both the vehicle and drone during their meet-ups. 

 

The Vehicle Routing Problem (VRP) with drones has been expanded by Wang et al. [8] and Poikonen et 

al. [9] to include analyses of cost and efficiency, showing that combined truck and drone delivery can 

significantly reduce delivery times when they share a network and move at similar speeds. Poikonen et al. 

[9] also explored the maximum efficiency gains under energy constraints and varying distances. Carlsson 

and Song [23] and Campbell et al. [22] used a continuous approach to predict delivery costs and times, 

assuming customer locations are spread over a plane, with different metrics for vehicle and drone distances. 

This approach demonstrated the cost benefits of integrating drones, especially when customer locations are 

randomly set. Daknama and Kraus [24] tested various metaheuristics for drone and vehicle delivery, 

allowing drones to land on any safely parked vehicle. 
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Table 1a. Classification of Studies of Until 2018 

Author Problem 
Objective 

Function 

Solution 

Approximation 
Methodology Truck Drone Warehouse 

Ha et al. [7] FSTSP 

minimize total 

travel time, 

maximize the 

profit 

TSP Heuristics 1-Truck 1-Drone 1-Depot 

Mathew et al. [12] 

Heterogeneous 

Delivery Problem 

(HDP), Multiple 

Warehouse 

Delivery Problem 

(MWDP) 

Total cost TSP Heuristics 1-Truck 1-Drone 1-Depot 

Murray and Chu 

[3] 
FSTSP, PDSTSP Makespan 

TSP, parallel 

machine 

scheduling 

Heuristics 1-Truck 1-Drone 1-Depot 

Ferrandez et al. 

[11] 
PDSTSP 

The optimal 

number of 

launch locations 

and the optimal 

total time of 

delivery. 

TSP Heuristics 1-Truck d-Drone 1-Depot 

Ponza [10] FSTSP Makespan TSP Heuristics 1-Truck 1-Drone 1-Depot 

Bouman et al. [5] TSP-D 
minimum cost 

tour 

Bellman-Held-

Karp 

dynamic 

programming 

algorithm 

Exact 1-Truck 1-Drone 1-Depot 

Campbell et al. 

[22] 
FSTSP 

Minimize 

operational cost 

continuous 

approximation 

(CA) 

  1-Truck d-Drone 1-Depot 

Carlsson and Song 

[23] 
FSTSP 

minimum 

completion time 

continuous 

approximation 

(CA) 

Heuristics 1-Truck 1-Drone 1-Depot 

Daknama and 

Kraus [24] 

Vehicle Routing 

with Drones 

(VRD) 

average 

delivery 

time 

VRPD Heuristics m-Truck d-Drone 1-Depot 

Luo et al. [18] 

a two-echelon GV 

and UAV 

cooperated routing 

problem (2E-GU-

RP) 

minimizes the 

total routing 

time 

VRPD 
Exact, 

Heuristics 
1-Truck 1-Drone 1-Depot 

Poikonen et  al. [9] VRPD 
minimize the 

completion time 

close enough 

routing, VRPD 

Theorems 

with worst 

case 

scenarios 

m-Truck d-Drone 1-Depot 

Wang et al [8] VRPD 
minimize the 

completion time 

worst case 

analysis 

Theorems 

with worst 

case 

scenarios 

m-Truck d-Drone 1-Depot 

Agatz et al. [25] TSP-D 
minimum cost 

tour 

Eulerian 

cycle,TSP 

Exact, 

Heuristics 
1-Truck d-Drone 1-Depot 

Chang and Lee 

[26] 
TSP-D 

total delivery 

time 

K-means 

clustering, TSP, 

Nonlinear 

programming 

Heuristics 1-Truck d-Drone 1-Depot 

Cheng et al. [27] MTDRP-EC 

Total 

Transportation 

cost 

Nonlinear CUTS 0-Truck d-Drone 1-Depot 

Ha et al. [6] TSP-D 
Minimize 

operational cost 
TSP 

Exact, 

Heuristics 
1-Truck 1-Drone 1-Depot 

Ham [28] PDSTSP 

Minimize 

maximum 

completion time 

Constraint 

programming 
Exact m-Truck d-Drone n-Depot 

Yurek and 

Ozmutlu [29] 
TSP-D 

delivery 

completion time 
TSP 

Exact, 

Heuristics 
1-Truck 1-Drone 1-Depot 

Ulmer and 

Thomas [21] 

SDDPHF (same-

day delivery 

routing 

maximize the 

expected 

stochastic 

dynamic vehicle 

routing 

Heuristics m-Truck d-Drone 1-Depot 
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problem with 

heterogeneous 

fleets) 

number of 

customers 

Table 1b. Classification of Studies of After 2018 

Yurek and 

Ozmutlu [29] 
TSP-D 

delivery 

completion time 
TSP 

Exact, 

Heuristics 
1-Truck 1-Drone 1-Depot 

Hu et al. [30] 

Vehicle-Assisted 

Multi-UAV 

inspection 

(VAMU) 

Time wastage 
Joint Routing and 

Scheduling 
Heuristics 1-Truck d-Drone 1-Depot 

Jeong et al. [31] 

FSTSP that 

implements energy 

consumption and 

no fly zone  

Total time TSP 
Exact, 

Heuristics 
1-Truck 1-Drone 1-Depot 

Karak and 

Abdelghany [32] 

VRPDERO (en 

route operations) 
Makespan VRPD 

Exact, 

Heuristics 
m-Truck d-Drone 1-Depot 

Kitjacharoenchai 

et al. [33] 
mTSPD Total time TSP 

Exact, 

Heuristics 
m-Truck d-Drone 1-Depot 

Peng et al. [34] FSTSP 
total time 

consumption 

Location, VRP, 

and Bin Packing 
Heuristics 1-Truck d-Drone 1-Depot 

Roberti and 

Ruthmair [35] 
TSP-D Makespan TSP Heuristics m-Truck d-Drone 1-Depot 

Sacramento et al. 

[36] 
VRPD Operational cost VRPD 

Exact, 

Heuristics 
m-Truck d-Drone 1-Depot 

Sah [37] DTCO, MDTCO Makespan TSP 
Exact, 

Heuristics 
m-Truck d-Drone 1-Depot 

Schermer et al. 

[38] 
mTSPD Makespan TSP 

Exact, 

Heuristics 
m-Truck d-Drone 1-Depot 

Schermer et al. 

[39] 
VRPD Makespan VRPD 

Exact, 

Heuristics 
m-Truck d-Drone 1-Depot 

Wang et al. [40] CVRP Makespan TSP 

Dynamic 

programmi

ng, Branch, 

and price 

algorithm 

1-Truck 1-Drone 1-Depot 

Wang, Z. and Sheu 

[41] 
VRPD Operational cost VRPD Exact m-Truck d-Drone 1-Depot 

Kitjacharoenchai 

et al. [42] 
2EVRPD 

Total Time of 

Trucks 
VRPD 

Exact, 

Heuristics 
m-Truck d-Drone 1-Depot 

Murray and Raj 

[43] 
mFSTSP Makespan TSP 

Exact, 

Heuristics 
1-Truck d-Drone 1-Depot 

Poikonen and 

Golden [44] 
k-MVDRP Makespan TSP 

Exact, 

Heuristics 
1-Truck d-Drone 1-Depot 

  

 

Kitjacharoenchai et al. [33, 42] investigated using multiple trucks and drones, disregarding flight limits, 

and presented models to minimize route times and consider truck capacity and drone visitations. 

Sacramento et al. [36] and Wang et al. [40] developed heuristic and parallel operation models for trucks 

and drones, respectively. Wang and Sheu [41] offered a mixed-integer model addressing complex scenarios 

with multiple drones and trucks, utilizing a branch and price algorithm. Sah [37] provided a comprehensive 

classification of drone-truck operations, presenting models for various routing challenges. Schermer et al. 

[39], Murray and Raj [43], and Karak and Abdelghany [32] explored multi-drone and truck combinations, 

focusing on service times and drone collection from non-customer points. Poikonen and Golden [44] 

introduced the multi-visit drone routing problem (MVDRP), a novel VRP variant. 

 

Tamke and Buscher [46] tackled the VRP with Drones and Drone Speed Selection (VRPD-DSS), proposing 

a model that considers speed-dependent energy consumption for cost-saving in rural deliveries. Zhou et al. 

[47] focused on the Two-Echelon VRP with Drones (2E-VRP-D), optimizing last-mile deliveries with a 

collaborative truck-drone system. Xia et al. [48] proposed the VRP with Load-Dependent Drones 

(VRPLD), emphasizing the importance of energy consumption modeling for routing and hub placement. 

 

These studies collectively advance the field of drone-assisted vehicle routing, exploring various models and 

heuristics to improve delivery efficiency and cost-effectiveness. 
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4. THE MODEL 

 

4.1. Problem Description 

 

While defining the problem, it is necessary to examine the usage areas and purposes of the drone. Today, 

many operations can be performed with drones. As seen in Figure 3, these operations are classified 
according to drone capabilities. In Figure 3, there are 6 main areas in drone operations. These are area 

coverage, search operations, routing for a set of locations, data gathering and recharging in a wireless sensor 

network, allocating communication links and computing power to mobile devices, and operational aspects 

of a self-organizing network of drones (Otto et al. [4]). 

 

Figure 3. Classification of drone operations, (Otto et al. [4]) 

 

In this study, the VRP is discussed to realize the integrated distribution of drones with other vehicles. The 

study, apart from the uniform vehicle routing in the classical TSP or VRP, is aimed at planning combined 
operations of drones and other vehicles as synchronized working units. 

 

Figure 4 illustrates the efficiency of combining drones with vehicles in routing problems, contrasting 

traditional vehicle routing (VRP) with TSP-DRONE solutions. In classical TSP, only trucks are routed, 
while TSP-DRONE integrates both truck and drone routes, significantly improving efficiency (classical 

TSP objective value is 1500 vs. TSP-DRONE's 1001). 

 

 
Figure 4. (a) Optimal solution of TSP, (b) Optimal TSP-Drone solution (Ha et al. [6]) 

 

The essence of this analysis is the collaborative utilization of drones with vehicles for transportation, as 
discussed by Murray and Chu [3]. The integration alters the problem's dynamics and goals based on the 

drones and vehicles' capabilities. Figure 5 compares service times between conventional transportation and 

drone-vehicle combinations. It shows that drone-assisted solutions, despite drones' flight time and distance 
limitations, are more cost-effective than traditional methods, highlighted by Gantt charts depicting the 

operational efficiency gains. 
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Figure 5. Classical method in transportation, the method using a drone and its optimized version 

(Murray and Chu [3]) 

 

The technological and physical limitations of drones also form the assumptions of the problem in a way. 

Considering the problem of Murray and Chu [3], drones are flying from the warehouse and returning to the 

warehouse, as given in Figure 6, the comparison of the drones flown from the truck and the classical method 
in terms of total service time due to the flight time and battery life is shown in Figure 7. 

 

 

Figure 6. Transport of drones with trucks and the classical method (Murray and Chu [3]) 

Meeting points between trucks and drones, beyond flight times and battery life, significantly impact 

problem dynamics. As shown in Figure 6, drones rendezvous with the truck at customer service points, 
introducing a key variable in problem-solving strategies. 
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This study focuses on optimizing the synchronized routes of vehicles and drones. Traditional TSP-DRONE 

approaches often use a single drone per vehicle, but as Kitjacharoenchai et al. [33] demonstrate, employing 
multiple drones can further reduce service times, as evidenced in Figure 7. 

 

Another assumption revisited is the vehicle's capacity to serve all customers, transforming the problem into 

a capacitated vehicle routing problem (CVRP). This study distinguishes itself by considering the capacity 
of both vehicles and drones and by not requiring drones to return to the same vehicle from which they 

launched, simplifying the complex NP-Hard problem. 

 
The aim is to minimize the return time of the last vehicle to the warehouse by synchronizing the routes of 

capacity-equipped trucks and drones, ensuring each customer is served by one vehicle type. This led to the 

development of a mathematical model for the Capacitated Multiple Drone Assisted Vehicle Routing 

Problem (mDroneCVRP), addressing these nuanced challenges. 
 

 
Figure 7. TSP, multi-TSP, and multi-TSP-DRONE feasible solutions are shown (Kitjacharoenchai et al. 

[33]) 
 

4.2. Assumptions 

 

The assumptions of the problem are listed below. 

1. Drones and trucks can serve together. 

2. Drones can take off over trucks, and the customer cluster it will visit may vary depending on flight time 

and battery life. 
3. The meeting points of the vehicles must be at a service point, that is, a point where any customer is or is 

on the route to the customer. 

4. The meeting point can be a return depot only after all service points have been called. 
5. Drones can land on vehicles other than the one from which they take off.  

6. More than one drone can take off and land at a time, within the limit of the number of take-offs and 

landings from the trucks. 
7. The amount that the drone will take to the customer is included in the total capacity of the truck. 

8. While the drone can only visit one customer per flight, the truck can visit multiple customers. 

9. A truck or drone that returns to the warehouse cannot return to service. 

10. The drone's battery is replaced without charging, and the replacement time is added to the flight start 
time and the truck landing time. 

11. Drones are flying at a constant speed and the fluid density of air and gravity is assumed to be constant. 

12. Speed coefficients are used between trucks and drones. The distance between the nodes is calculated as 
the Euclidean distance. Drones have always been assumed to be faster than trucks. 

 

Considering these situations, a mathematical programming model of the problem is created as a mixed 

integer programming model. 
 

 



Hasan KAVLAK, Selcuk Kursat ISLEYEN, Bilal TOKLU/ GU J Sci, 37(3): x-x(2024) 

 

4.3. Mathematical Model 

In this section, considering the assumptions described above the proposed mathematical programming 
model is explained. Models in Murray and Chu [3], Kitjacharoenchai et al. [33], and Schermer et al. [38], 

[39], are used as base models for this study. 

The index sets and parameters are given in Appendix A. In total, c customers are belonging to set C 

(customer cluster). In addition, there is one warehouse node in the network. The storage point is defined as 

0 for the output. It is also defined as c+1 as the return node. The set of all nodes in the road network is 
defined as N and there are a total of c+2 node elements. Output and input nodes are defined as separate 

sets, respectively, as N0, and N+. TR and DR sets are defined for vehicles and drones, respectively. Since 

drones can only make a flight in three sequential points, a set of triple S has been created by the flight limits. 

Decision Variables 

1, if vehicle  goes from node  to node 

0, otherwise
ijv

v i j
X


= 


 

1, if drone  takes off over vehicle  at node    

    and lands on customer node 

0, otherwise

ijvd

d v i

FTD j




= 



1, if drone  takes off from customer node  

   and lands on vehicle  at customer node 

0, otherwise

jkvd

d j

ATD v k




= 



 

1, if  node  precedes node  in the route of 

    vehicle 

0, otherwise

ijv

i j

PT v




= 



 

1, if  node  precedes node  in the route of 

    drone 

0, otherwise

ijd

i j

PD d




= 



 

ivTT =  Arrival time of vehicle v to node i 

idTD =   Arrival time of drone d to node i 

ivUT =  The sequence number of node i in the route of vehicle v 

idUD =  The sequence number of node i in the route of drone d 

maxCT = Maximum service completion time of working units (makespan) 

1, if drone  moves from node  to node  

0, otherwise
ijd

d i j
Y


= 


 

1, if drone  depart from customer node  and 

    land on node  

0, otherwise

jkd

d j

SA k




= 



 

1, if drone  is trasported from node  to node  

    by vehicle  

0, otherwise

ijvd

d i j

R v




= 



 

1, if drone  depart from node  and land on 

    customer node  

0, otherwise

ijd

d i

SD j




= 


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Objective function: 

maxMinimize CT
 

 (1) 

Constraints: 

 

max  jvCT TT  ,j N v TR+    (2) 

max  jvCT TD  ,j N d DR+    (3) 

0 0

1ijv ijd

v TR i N d DR i N
i j

X SD
   



+ =     
j C   (4) 

0

1ijv jkd

v TR i N d DR k N
k j

X SA
+   



+ =     
j C   (5) 

0

, 1, 1i c v

i N

X +



  
v TR   (6) 

0 1jv

j N

X
+

  
v TR   (7) 

0

ijv jkv

i N k N

X X
+ 

=   
,j C v TR    (8) 

0

ijd jkd

i N k N

Y Y
+ 

=   
,j C d DR    (9) 

0

ijd jkd

i N k N

SD SA
+ 

=   
,j C d DR    (10) 

1ijd

j N

Y
+

  
0,i N d DR    (11) 

0

, , 1i j d

i N

Y


  ,j N d DR+    (12) 

1 1 1jd jvd jd

v TR

SD R Y


+ =  ,j C d DR    (13) 

, 1, , 1, , 1,j c d j c vd j c d

v TR

SA R Y+ + +



+ =  ,j C d DR    (14) 

ijd ijd ijvd ijd

v TR

SD SA R Y


+ + =  , { : },i C j C j i d DR      (15) 

ijd jkd jkvd

i C k C v TR k N
i j j k j k

SA SD R
+   

  

 +     
,j C d DR    (16) 

0

jkd hjd ijvd

k C h C v TR i N
j k h j i j

SD SA R
   
  

 +     
,j C d DR    (17) 

0

ijvd jkd jkvd

i N k C k N
k j k ji j

R SD R
+  

 

 +    
, ,j C v TR d DR     (18) 

0

jkvd hjd ijvd

k N h C i N
h jk j i j

R SA R
+  

 

 +    
, ,j C v TR d DR     (19) 

ijvd ijvR X  
0, { : }, ,i N j C j i v TR d DR       (20) 

0

ijd hiv

j C v TR h N
j i h i

SD X
  
 

    
,i C d DR    (21) 

0

jkd hkv

j C v TR h N
j k h k

SA X
  
 

    
,k C d DR    (22) 

0
,

1hiv ijd ijvd

h N
h i h j

X SD FTD

 

+  +  
, { : }, ,i C j C j i v TR d DR       (23) 

0
,

1hkv jkd jkvd

h N
h k h j

X SA ATD

 

+  +  
, { : }, ,j C k C k j v TR d DR       (24) 



Hasan KAVLAK, Selcuk Kursat ISLEYEN, Bilal TOKLU/ GU J Sci, 37(3): x-x(2024) 

 

0

ijvd hiv

j C h N
j i h i

FTD X
 
 

   
, ,i C v TR d DR     (25) 

ijvd ijd

v TR

FTD SD


  , { : },i C j C j i d DR      (26) 

0

jkvd hkv

j C h N
j k h k

ATD X
 
 

   
, ,k C v TR d DR     (27) 

jkvd jkd

v TR

ATD SA


  , { : },j C k C k j d DR      (28) 

, 1,ijvd jkvd j c d

v TR i C v TR k C
i j k j

FTD ATD SA +

   
 

 +   
,j C d DR    (29) 

0

ijvd hjvd jkvd jkvd

i N h C k N k C
h j k jk ji j

R ATD R FTD
+   

 

+ = +     
, ,j C v TR d DR     (30) 

(1 )id iv ijvd

j C
j i

TD TT M FTD



 − −  
, ,i C v TR d DR     (31) 

(1 )id iv ijvd

j C
j i

TD TT M FTD



 + −  
, ,i C v TR d DR     (32) 

(1 )kd kv jkvd

j C
j k

TD TT M ATD



 − −  
, ,k C v TR d DR     (33) 

(1 )kd kv jkvd

j C
j k

TD TT M ATD



 + −  
, ,k C v TR d DR     (34) 

(1 )id iv ijvd

j C
j i

TD TT M R



 − −  
0, ,i N v TR d DR     (35) 

(1 )id iv ijvd

j C
j i

TD TT M R



 + −  
0, ,i N v TR d DR     (36) 

1, 1, , 1,(1 )c d c v j c vd

j C

TD TT M R+ + +



 − −  ,v TR d DR    (37) 

1, 1, , 1,(1 )c d c v j c vd

j C

TD TT M R+ + +



 + −  ,v TR d DR    (38) 

, ,

( ) ( )

(1 )

kv hv hk R jkvd L klvd

d DR j C d DR l C
j k j h l k l h

hkv

TT TT tTim s ATD s FTD

M X

   
   

 + + +

− −

   
 0, { : },h N k N k h v TR+      (39) 

0

( )kv hkv

h N

TT M X


   ,k N v TR+    (40) 

0 0

0

[ ( ) ( )]

(1 )

v kv k R jkvd L klvd

d DR j C d DR l C
j k l k

kv

TT TT tTim s ATD s FTD

M X

   
 

 − + +

− −

   
 ,k C v TR    (41) 

(1 )jd id ijd ijdTD TD dTim M SD + − −  
0, { ' : },i N j C j i d DR      (42) 

(1 )kd jd jkd R jkdTD TD dTim s M SA + + − −  ', { : },j C k N k j d DR+      (43) 

0

( )jd ijv

i N
i j

TD M Y



   
,j N v TR+    (44) 

( ) (2 )kd jd ijd ijd jkd klvd L

d DR v DR l C
d d l i

hkvd R d

d DR v DR h C
d d h k

TD TD dTim M SD SA FTD s

ATD s e

  
 

  
 

− −  − − +

+ +

 

 
 0 , { : },

{ : , , },

i N j C j i

k N i j k S d DR+

   

   
 (45) 

ijd ijd jkd jkd R ddTim SD dTim SA s e+  +  
0{ : , }, { : },

,

i N i j i k j C j k

k N d DR+

     

 
 (46) 
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ijvd v

j C d DR
j i

FTD dronCap
 


   
,i C v TR    (47) 

jkvd v

j C d DR
j k

ATD dronCap
 


   
,k C v TR    (48) 

0

( )j ijv l ilvd v

i N j C l C d DR
j i l i

d X d FTD capT
   

 

+      
v TR   (49) 

0

j ijd d

i N
i j

d SD capD



  
,j C d DR    (50) 

1 ( 2)(1 )iv jv ijvUT UT c X− +  + −  , { : },i C j N j i v TR+      (51) 

1 ( 2)( )iv jv ijvUT UT c PT−  − +  , { : },i C j N j i v TR+      (52) 

1 ( 2)(1 )iv jv ijvUT UT c PT−  − + + −  , { : },i C j N j i v TR+      (53) 

1ijv jivPT PT+ =  , { : },i C j N j i v TR+      (54) 

1 ( 2)(1 )id jd ijdUD UD c Y− +  + −  , { : },i C j N j i d DR+      (55) 

1 ( 2)( )id jd ijdUD UD c PD−  − +  , { : },i C j N j i d DR+      (56) 

1 ( 2)(1 )id jd ijdUD UD c PD−  − + + −  , { : },i C j N j i d DR+      (57) 

1ijd jidPD PD+ =  , { : },i C j N j i d DR+      (58) 

0 1jvPT =  ,j C v TR    (59) 

, 1, 1i c vPT + =  
0,i N v TR    (60) 

0 1jdPD =  ,j C d DR    (61) 

, 1, 1i c dPD + =  
0,i N d DR    (62) 

1 ( 2)ivUT c  +  ,i N v TR    (63) 

1 ( 2)idUD c  +  ,i N d DR    (64) 

{0,1}ijvX   
0, { : },i N j N j i v TR+      (65) 

{0,1}ijdY   
0, { : },i N j N j i d DR+      (66) 

{0,1}ijdSD   
0, { : },i N j C j i d DR      (67) 

{0,1}jkdSA   , { : },j C k N k j d DR+      (68) 

{0,1}ijvdR   
0, { : }, ,i N j N j i v TR d DR+       (69) 

{0,1}ijvdFTD   , { : }, ,i C j C j i v TR d DR       (70) 

{0,1}jkvdATD   , { : }, ,j C k C k j v TR d DR       (71) 

{0,1}ijvPT   , { : },i N j N j i v TR      (72) 

{0,1}ijdPD   , { : },i N j N j i d DR      (73) 

0ivTT   ,i N v TR    (74) 

0idTD   ,j N d DR    (75) 

 
Equation (1) is the objective function that minimizes the service time in the system. Constraint sets 2 and 

3 find the arrival time of the last vehicle to the warehouse. Constraint sets 4 and 5 allow each customer 

node to be serviced once by truck or drone. Constraint sets 6 and 7 ensure that each truck enters and exits 
the warehouse at most once, respectively. Constraint set 8 allows each truck to exit the customer node it 

entered. Constraint set 9 provides entry and exit for each drone from the customer node on its route. 

Constraint set 10 also provides entry and exit for each drone from the customer node it serves. Constraint 
sets 11 and 12 ensure that each drone has a maximum of 1 input and output for each node, respectively (see 

Figure 8). In Figure 8, while drones are in any node, they cannot land (A) or take off (B) from any other 

node. 
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Constraint sets 13 and 14 allow each drone to enter and exit the warehouse by flight or on a truck, 
respectively (see Figure 9). Constraint set 15 is the motion balance constraint of the drone's customer nodes 

(see Figure 8). 

 

The constraint set shows the movements of the drone at the customer node. These movements should be 
arriving at the customer by flight or truck or leaving the customer by flight. Constraint sets 16, 17, 18, and 

19 show what the previous and next movements of the drone should be according to the movement of the 

customer node. When arrivals are by flight or truck, it ensures that exits from the customer node are by 
flight or truck. Likewise, if there is a departure from the customer node, they guarantee that the arrival to 

that customer is by flight or by truck. Constraint set 20 enables to add the relevant customer to the route of 

the truck and the drone, in case of carrying out the transport operation of the drone on the truck. The same 

constraint group guarantees that if there are customers who are not on the route of the truck or drone, they 
will not be transported to those customers by truck. Constraint sets 21 and 22 ensure that there is 1 truck at 

that node so that the drone can take off and land at each customer node, respectively, otherwise, it cannot 

fly. Constraint set 23 activates the decision variable ijvdFTD
 which shows which customer, from which truck, 

and where the drone takes off for a flight when it takes off from a truck at any customer. Constraint set 24 

activates the decision variable jkvdATD
, which shows from which customer, which truck, and where the 

drone lands when it lands on a truck of any customer. Constraint sets 25, 26, 27, and 28 set ijvdFTD
and 

jkvdATD
 variables are zero if the truck or drone is not in that node.  

 

 
Figure 8. A) The drone cannot fly from different points at the same time. B) The drone cannot land at 

different points at the same time 
 

 

Figure 9. Illustration by decision variables of movements of drone between warehouse and customers or 

only customers 
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Figure 10. Movements of the drone after servicing a customer: A) land on any truck at another customer, 

B) return to the warehouse 

In constraint set 29, if a drone takes off from any truck to serve a customer, it is ensured that after that 

customer it either lands on another customer's truck or returns to the warehouse (see Figure 10). Movements 
blocked by these constraints set can be seen in Figure 11. 

 

 

Figure 11. A) The drone cannot go to the service of another customer by flying from the customer it 

serves. B) Once the drone is flying for service to one customer, it cannot take off from another customer 

 
Constraint set 30 guarantees a flight to another customer node or transport by the same truck from the truck 

where a drone is transported or landing at a customer node (see Figure 12). 

 

 

Figure 12. A) If the drone lands on a truck, it cannot make the next flight over another truck. B) If the 

drone has landed on a truck, it cannot take off from another customer 

Constraint sets 31-36 synchronize the arrival time of the drone with the arrival time of the trucks. Constraint 

sets 37 and 38 synchronize their time with trucks when the drones are transported to the warehouse by 

trucks. Constraint sets 39 and 40 calculate the departure and operation times of the trucks and the arrival 
time at the nodes, and if the truck does not go to the node, the arrival time is reset. In Constraint set 41, the 

exit time of the truck from the warehouse is calculated. Constraint sets 42, 43, and 44 calculate the arrival 

times of the drones to the nodes and the entry-exit times to the warehouse, and if the drone does not go to 
the node, the arrival time is reset. Constraint sets 45 and 46 ensure that the drones do not exceed the flight 

limit. Constraint sets 47 and 48 limit the operation of landing and take-off for trucks. Constraint sets 49 
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also limits the amount of transport of trucks. Constraint set 50 ensures that drones do not exceed load 

capacity. Constraint sets 51, 52, and 53 are sub-tour elimination constraints for trucks. Constraint set 54 
establishes the priority relationship between each other for the nodes that each truck visits. Constraint sets 

55, 56, and 57 are sub-tour elimination constraints for drones. Constraint set 58 establishes the priority 

relationship between each other for node visited by each drone. Constraint sets 59-64 provide the lower and 

upper limits of the priority relationship values for trucks and drones from warehouse to nodes, from nodes 
to warehouses, and the order values of nodes. Constraint sets 65-75 determine the type and sign of decision 

variables. 

 
4.4. Conversion of the Proposed Mathematical Model to the Models that mDroneCVRP is Based on 

 

By changing some parameters in the proposed mathematical model, it can be converted to the models in 

the literature based on the proposed mathematical model. In the model in this study, if only one truck with 
unlimited capacity is used and the capacity of the drones is assumed to be zero, the model is converted as 

a traveling salesman problem. Likewise, if the drone capacities are taken as zero and only trucks are used, 

it turns into a multi-traveling salesman problem. If one drone and one truck with unlimited capacities are 
taken in the proposed mathematical model, the model turns into the drone-assisted traveling salesman 

problem in Murray and Chu [3]. If more than one truck with unlimited capacity and more than one drone 

is used and it must be for the drones to land on the truck on which the drones are only flying, the proposed 
mathematical model turns into a multiple traveling salesman problem with the help of drones in the study 

of Kitjacharoenchai et al. [33]. The transformations are summarized in Table 2. 

Table 2. Models in the literature are converted from the proposed model 

 

5. EXPERIMENTAL STUDY 

 

5.1. Data and Parameter Estimation 

 

Data sets are randomly generated for five scenarios and different versions of these scenarios. Diversification 
is used in the data sets to validate the model and measure solution quality. 

 

5.2. Data and Parameter Estimation 

 

In creating test data, the network is designed as a 2-dimensional space, with a warehouse and c customers 

randomly placed within a 60x60 unit area. This setup is varied across five different scenarios by altering 

the warehouse location and the positioning of customers relative to the warehouse and each other. Each 
scenario generates datasets with four varying customer counts, exploring different logistical challenges. 

For instance, in the first scenario (Figure 13), customers are positioned within drone reach from the 

warehouse, whereas in the second scenario (Figure 14), the warehouse is placed too far for direct drone 
access to customers. Other scenarios (Figures 15 and 16) further diversify the test conditions to analyze 

drone and truck dynamics under various operational circumstances. Speed ratios are established, with 

drones consistently faster than trucks, and Euclidean distances calculate drone travel between points. Truck 
distances are adjusted by these speed coefficients to reflect their relative slowness. 

Three different velocity coefficients are used. If truck speed is truckv
 and drone speed is dronev

, truck dronev v =
 

is defined as the relationship between them. The values of α are taken as 1.5, 2, and 3, respectively. 

 Changed Parameters Converted Problem 

Proposed 

Model 
Truck Drone 

Truck 

capacity 

Drone 

Capacity 
Constraint Problem Author 

VRPmD 1-Truck 1-Drone no limit 0   TSP   

VRPmD m-Truck 1-Drone no limit 0   mTSP   

VRPmD m-Truck 1-Drone limited 0   CVRP   

VRPmD 1-Truck 1-Drone limited no limit   
FSTSP, 
PDSTSP 

Murray and Chu 
[3] 

VRPmD m-Truck d-Drone no limit no limit 
The drone can land on and 
take off from the same truck.  

mTSPD 
Kitjacharoenchai 
et al. [33] 
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In Scenario 1 (Figure 13), customer nodes are created where drones can go from the warehouse and it is 
observed whether the drone can exit the warehouse without a truck. Scenario 1 is called as General Network 

Structure in terms of observed movements to validate the model. 

 

In Scenario 2 (Figure 14), the challenge stems from all customer nodes being positioned too far from the 
warehouse for direct drone access, differing from Scenario 1's closer proximity. The focus here is on 

whether drones can depart the warehouse alongside trucks and if they can launch from trucks near 

customers after the initial departure. This setup, named the Far Dense Network Structure, tests the model's 

handling of drone movements in densely located points beyond their direct flight range from the warehouse. 

Scenario 3 (Figure 15) mirrors Scenario 2's constraint of nodes being out of direct drone range from the 

warehouse. It differentiates by testing drone efficiency as certain customer points are spaced further apart, 

potentially aligning closer with truck routes. This scenario also explores how varying the number of trucks 

affects outcomes, leading to its designation as the Far Irregular Network Structure due to the strategic 

placement of distant points. 

In Scenario 4 (Figure 16), the nodes remain out of direct drone range from the warehouse, with even greater 

distances than those in the previous scenarios. Customers are grouped into clusters, significantly spaced 

apart, to assess the impact of speed, the number of trucks, and drone assistance within these clusters. 
Observations on drones' ability to serve clustered customers inform the naming of this setup as the Far 

Cluster Network Structure, focusing on logistical strategies for dispersed customer groups. 

 

                                                                                

  Figure 13. Scenario 1 network structure                       Figure 14. Scenario 2 network structure 

 

Scenario 5 (Figure 17) extends the distances observed in Scenario 2, focusing on the impact of speed 
differences and the number of trucks on logistical outcomes. Here, customers are arranged symmetrically 

around the warehouse, testing whether drones can launch from and land on vehicles situated on the opposite  

side of their initial take-off point. This setup, due to its emphasis on symmetrical distribution and strategic 
movement validation, is termed the Symmetric Far Network Structure. 

 

For the test scenarios, both vehicles and drones are assigned a capacity of 1000 units, effectively treating it 

as unlimited relative to the demand in these scenarios. Each vehicle is capable of supporting operations for 
up to 4 drones simultaneously, allowing for concurrent flight and landing activities. The maximum flight 

duration for drones is set at 20 units. The test data vary by including 9, 8, 7, and 6 customers, along with a 

single warehouse, resulting in a total of 360 unique data sets. These datasets are meticulously detailed in 
Table 3, indicating the variety and specifics of the data (e.g., the number of scenarios and the corresponding 

customer counts) to provide a comprehensive overview for analysis. 

 

Table 3. Summary of data sets 
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Customer 

Number 

Depo

t 

Truck 

Number 

Drone 

Number 

Flight 

Limit 

Drone 

Velocity/Truc

k Velocity 

Scenario 
Total number of 

data set 

4 (6,7, 8, 

and 9) 
1 

2 (1 and 

2) 

3 (1,2 and 

4)  

1 (20 

units) 

3 (1.5, 2, and 

3) 

5 (1,2,3,4, 

and  5) 

4x1x2x3x1x3x5=3

60 

 

 

Figure 15. Scenario 3 network structure 

 

                                                      
 

Figure 16. Scenario 4 network structure                       Figure 17. Scenario 5 network structure 

5.3. Numerical Result 

 
The model was solved using CPLEX on a 16 GB RAM computer through GAMS. Figure 18 shows a 

scenario with 6 customers, 2 trucks, and 2 drones, where drones efficiently switch between trucks to serve 

customers, illustrating the model's operational dynamics. Figure 19, from scenario 1 with 9 customers, 
highlights drones' flexibility, showing they can independently serve customers or be transported by trucks, 

showcasing strategic deployment options. 

 
Table 5 presents the objective function values and solution times for scenario 1's test data, revealing an 

increase in solution times with the number of nodes, sometimes surpassing the 8000-second limit due to 
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the NP-Hard nature of the problem. Conversely, the objective function value decreases with the addition of 

drones in scenarios with the same number of nodes, indicating that employing multiple resources enhances 
efficiency. 

 

 

Figure 18. Solution of the model with test data with 6 customers, 2 trucks, and 2 drones 

 

 

Figure 19. Model solution with test data with 9 customers, 2 trucks, and 4 drones 

 

As can be seen in Figure 20, the positive effects of the increase in number of trucks and drones on the 

objective function are seen in the solutions obtained by taking the velocity coefficient of the scenario 1 

dataset as 2 ( 2 = ). This is because the scenario 1 network structure is suitable for both vehicle types and 

drones can serve the majority of customers. 
 

In Scenario 2 solutions with a speed coefficient of 2, as illustrated in Figure 21, adding more drones proves 

more beneficial than in Scenario 1. Doubling trucks from 1 to 2 enhances solution quality, due to the 
network's design necessitating trucks to depart from the warehouse, and drones' ability to serve customers 

while being transported. However, in scenarios with 2 trucks and 9 or 8 customers, adding more drones 

didn't improve the objective function value within the time limit, indicating a challenge in finding optimal 

solutions quickly. 
 

Figure 22 reveals that in Scenario 3's network structure, with a speed coefficient of 2, increasing the number 

of drones has a negligible effect with 1 truck and only slightly impacts outcomes with 2 trucks. This minimal 
influence is attributed to limited truck routing options and the restricted reachability of customers by drones, 

reflecting the network's configuration. Similar observations apply to Scenario 4 solutions in Figure 23, 

where the network and limited customer accessibility similarly constrain drone effectiveness. 
 

Figure 24 compares scenario data to highlight the impact of using 2 trucks and increasing the number of 

drones within the same dataset. The deployment of 2 trucks proves significantly more effective in this 
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network structure, particularly for scenario 5, where customer nodes are symmetrically distributed across 

two regions. However, in the scenario with 9 customers and 2 trucks, adding more drones does not improve 
the objective function value, as the model fails to find a solution within the allocated time limit. This 

underscores the complexity of balancing resources in drone-assisted delivery systems, especially in 

symmetrically structured networks. 

 

                                                         
 

Figure 20. Comparison of objective      Figure 21. Comparison of objective  

function values of problems with 1 truck   function values of problems with 1 truck  
and 2 trucks in scenario 1 dataset      and 2 trucks in scenario 2 dataset 

according to the number of drones     according to the number of drones 

 

                                                           
Figure 22. Comparison of objective     Figure 23. Comparison of objective  

function values of problems with 1 truck   function values of problems with 1 truck. 
and 2 trucks in scenario 3 dataset    and 2 trucks in scenario 4 dataset  

according to the number of drones    according to the number of drones 

 
 

 
Figure 24. Comparison of objective function values of problems with 1 truck and 2 trucks in scenario 5 

dataset according to the number of drones 
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6. THE PROPOSED ALGORITHM 

 

6.1. Greedy Algorithm 

 

The greedy algorithm for an initial solution to minimize the longest vehicle time in a vehicle routing 

problem with multiple trucks and drones follows these steps: 
1. Identify Sorties: Determine three-point sorties within drone flight limits from the distance matrix, 

defining potential customer service points for drones. 

2. Initialize Vehicles: Assign all vehicles to start from the depot with an initial arrival time of zero. 
3. Calculate Travel Times: Use the distance matrix to calculate and average truck travel times for 

each destination, then sort these averages in descending order. 

4. Assign Drone Sorties: Assign the first suitable sortie from the sorted list to a drone and calculate 

its route end arrival time. If no sortie is suitable, proceed to Step 14 for warehouse exits or Step 11 
for non-warehouse points. 

5. Update Sets: Refresh the list of destinations and drone sorties according to the chosen route. 

6. Assign All Drones: Repeat Step 4 for each drone, then move to Step 7. 
7. Route Trucks: Send trucks to the nearest destination point, calculating arrival times. 

8. Refresh Lists: Update destination and sortie lists based on chosen points. 

9. Synchronize Arrivals: If a drone and truck meet, align their arrival times to the later of the two. 
10. Repeat for Trucks: Continue routing trucks as in Step 7, then return to Step 4. 

11. Match Drones to Trucks: Update drone routes and times to align with matching trucks. 

12. Loop Until Done: Repeat Step 4 until all destinations are covered. 

13. Return to Warehouse: Send all vehicles back to the warehouse, updating arrival times 
accordingly. 

14. Reassign Drones: For drones without sorties, assign them to the route starting at a truck point with 

the highest average truck time, updating the arrival time at the route's end. 
 

This algorithm systematically assigns sorties to drones and routes to trucks, updating times and positions 

to ensure efficient coverage of all customer points and synchronization between vehicle types. 
 

The notations of the parameters and variables used in the problem solving of the algorithm are defined 

below. Most of the notations are the same as those used in the mathematical model. 

 

Notation: 

Parameters 

C   Set of customer, C ={1,...,c} 

0N  Set of nodes to which vehicles can be departed ,  0N  ={0,1,...,c} 

N+  Set of nodes to which vehicles can arrive,  N+  ={1,...,c+1} 

ortN  

Node set ordered according to average of travel truck times of each node , 

ortN = {i,j,...,k}, ...
2 2 2

hi hj hk

h h h

tTim tTim tTim

c c c
 

+ + +

  
 

DN  Set of nodes to which drones can flight ,  DN  ={1,...,c+1} 

TN  Set of nodes to which vehicles can serve ,  TN  ={1,...,c+1} 

TR   Highway vehicle groups, TR  ={1,...,v,...,VN}  

DR  Set of drones, DR  ={1,...,d,...,DN} 

ijvtTim   
Time to go from node i to node j by highway vehicle v

0, { : },i N j N j i v TR+     

ijddTim   
Flight time of drone d from node i to j, 

0, { : },i N j N j i d DR+     
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Decision variables 

 

1, if drone  rendezvous with truck  at node 

0, otherwise
ivd

d v i
A


= 


 

1, if vehicle  goes from node  to  düğümüne

0, otherwise
ijv

v i j
X


= 


 

1, if  drone  take off from node  to node  for serving then landing on node  

0, otherwise
ijkd

d i j k
Y


= 


 

ivTT =  Arrival time of vehicle v to node i 

idTD =   Arrival time of drone d to node i 

 Current node of drone D

d dBN =  

 Current node of vehicle T

vBN v=  

 Route of drone D

d dR =  

 Route of vehicle T

vR v=  

max Maximum arrival time of vehicles at depotC =  

Objective Function 

Calculation of arrival time of vehicles at a node: 

: previous locationjv iv ijvTT TT tTim i= + , : previous locationjd id ijdTD TD dTim i= +  

If drone and vehicle rendezvous at node j, arrival time calculation as follows: 

1,  =  = max { , } 

0, there is no change

jv jd jv jd

jvd

TT TD TT TD
A


= 


max 2, 2,max{ , }c v c d
d DR
v TR

C TT TD+ +



=  

Parallel machine scheduling problems are used while constructing the algorithm. Trucks and drones are 

assumed as machines and destinations are assumed as jobs assigned to that machines. The Longest 

Processing Time (LPT) rule, which reduces the maximum completion time in identical parallel machine 
scheduling problems, formed the basis for this algorithm. The drones are assigned to points according to 

the average truck times of the points, starting from the largest. The assignment method saves time by finding 

where the drones can go through the points with a large average time value for the truck and benefit from 
the speed of the drone. Therefore, trucks are assigned to nodes whose average time value is small. When 

assigning trucks, the machine in the LPT rule is started with the minimum machine time, that is, the vehicle 

time. While assigning trucks, the shortest tour time is aimed for each truck by using the nearest neighbor 
algorithm used in the traveling salesman problem solutions. 

6.1. Solving Sample Problem 

 

The application of the greedy algorithm on a sample problem is explained below. The 1st scenario, which 
is also used in the mathematical model solutions proposed as sample problem data, is used as a data set 

with 1 warehouse and 9 customers. The time matrix for the truck and the average truck times of the nodes  

S  
Set of sorties which include three nodes of drone flight  <i,j,k>, 

0, { : }, { : , , }ij jk di N j C j i k N k i k j dTim dTim e+      +    

de   Maximum flight limit of drone d  at once, d DR  
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are given in Table 4. The time relationship between the truck and the drone is formed as by taking the 

velocity coefficient α = 2. The number of trucks is 2, and the number of drones is 3. The drone flight limit 
is taken as e = 20. 

 

Table 4. 1 Warehouse with 9 customers Scenario 1 (General Network Structure) truck transportation 

times between nodes and average truck times of nodes 

 
 

To solve the problem, first, a list of customers, destinations, and average time is created. 

C  = {2,3,4,5,6,7,8,9,10},  DN  = {2,3,4,5,6,7,8,9,10}, TN  = {2,3,4,5,6,7,8,9,10}, ortN

={9,2,4,5,6,8,7,3,10}, 0, , { : }, { : , , 20}, , ij jkS i N j C j i k N k i k j dTim imi j k dT+        +   

The algorithm runs until the list C  is the empty set. First, the assignment from the drones is started. 

Iteration 1: 

For d = 1;  j = 2 ∈ ortN  and first sortie <i,j,k>  in list  S <i,j,k>  is <1,2,3> this route is assigned to drone.  

1,2,3,1Y = 1, 1

DBN  = 3,  3,1 1,1 1,2,1 2,3,1TD TD dTim dTim= + +  =0+20=20 1

DR ={1,2,3} Update list, C = 

{3,4,5,6,7,8,9,10}, DN  = {4,5,6,7,8,9,10}, TN  = {3,4,5,6,7,8,9,10}, < i, j, k > : i ≠ 2, j ≠ 2, k ≠ 2, j ≠ 3 

For d = 2; j = 4 ∈ ortN  and first sortie <i,j,k>  in list  S <i,j,k>  is  <1,4,11>  this route is assigned to drone. 

1,4,11,2Y = 1, 2

DBN  = 11,  11,2 1,2 1,4,2 4,11,2TD TD dTim dTim= + +  =0+20=20 2

DR ={1,4,11} C = {3,5,6,7,8,9,10}, 

DN  = {5,6,7,8,9,10}, TN  = {3,5,6,7,8,9,10}, < i, j, k > : i ≠ 4, j ≠ 4, k ≠ 4 

 For d = 3; j = 5 ∈ ortN  and first sortie <i,j,k>  in list  S <i,j,k>  is  <1,5,7>  this route is assigned to drone. 

1,5,7,3Y = 1, 3

DBN  = 7,  7,3 1,3 1,5,3 5,7,3TD TD dTim dTim= + +  =0+20=20 3

DR ={1,5,7} C = {3,6,7,8,9,10}, DN  = 

{6,8,9,10}, TN  = {3,6,7,8,9,10}, < i, j, k > : i ≠ 5, j ≠ 5, k ≠ 5, j ≠ 7 

Nodes are assigned to truck according to current truck time and destination time (SPT rule is 

applied). 

For v = 1; 1

TBN  = 1, 1, ,1 1,3,1min{ }
T

j
j N

tTim tTim


= = 10 therefore j = 3 is assigned to truck. 1,3,1X =  1, 1

TBN  = 3,  

3,1 1,1 1,3,1TT TT tTim= +  =0+10=10 1

TR ={1,3} C = {6,7,8,9,10}, DN  = {6,8,9,10}, TN  = {6,7,8,9,10}, < i, j, k 

> :j ≠ 3 

For v = 2; 2

TBN  = 1, 1, ,2 1,10,2min{ }
T

j
j N

tTim tTim


= = 10 therefore j = 10 k is assigned to truck. 1,10,2X =  1, 2

TBN  

= 10,  10,2 1,2 1,10,2TT TT tTim= +  =0+10=10 2

TR ={1,10} C = {6,7,8,9}, DN  = {6,8,9}, TN  = {6,7,8,9}, < i, j, 

k > : j ≠ 10 

Detection of the meeting point of the drone and the truck 
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1

DBN  = 1

TBN = 3 Therefore 3,1,1A = 1, 3,1TD  = 20, 3,1TT  = 10 therefore 3,1TD = 3,1TT =max{20,10}=20 

The drone moving on the truck is not found. The drone that could not exit the warehouse is not found. 

Iteration 2: 

For d = 1; j = 6 ∈ ortN  and first sortie <i,j,k>  in list  S <i,j,k>  is  <3,6,7>  this route is assigned to drone. 

3,6,7,1Y =1, 1

DBN  = 7,  7,1 3,1 3,6,1 6,7,1TD TD dTim dTim= + +  =20+18=38 1

DR ={1,2,3,6,7} C = {7,8,9}, DN  = 

{8,9}, TN  = {7,8,9}, < i, j, k > : i ≠ 6, j ≠ 6, k ≠ 6, j ≠ 7 

For d = 2; 2

DBN = 11 Drone arrived to warehouse thus route is determined for next drone . 

For d = 3; A common node is not found for list of ortN  and S <i,j,k>  

Nodes are assigned to truck according to current truck time and destination time (SPT rule is 

applied). 

For v = 2 (it has minimum current time between each other); 
2

TBN  = 10, 10, ,2 10,8,2min{ }
T

j
j N

tTim tTim


= = 8 

therefore  j = 8 is assigned to truck. 10,8,2X =  1, 
2

TBN  = 8,  8,2 10,2 10,8,2TT TT tTim= +  =10+8=18 
2

TR ={1,10,8} 

C = {7,9}, 
DN = {9}, 

TN  = {7,9}, < i, j, k > : j ≠ 8 

For v = 1; 
1

TBN  = 3, 3, ,1 3,7,1min{ }
T

j
j N

tTim tTim


= = 26 therefore j = 7 is assigned to truck. 3,7,1X =  1, 
1

TBN  = 7,  

7,1 3,1 3,7,1TT TT tTim= +  =20+26=46 
1

TR ={1,3,7} C = {9}, 
DN  = {9}, 

TN  = {9 }, < i, j, k > : j ≠ 7 

Detection of the meeting point of the drone and the truck 

1

DBN  = 
3

DBN =
1

TBN = 7 therefore 7,1,1A = 1, 7,1,3A = 1 7,1TD  = 38, 7,3TD = 20 7,1TT  = 46 ise 7,1TD = 7,3TD = 7,1TT = 

max{38,20,46} = 46 

The drone moving on the truck is not found. The drone that could not exit the warehouse is not found. 

Iteration 3: 

For d = 1 ; A common node is not found for list of 
ortN  and S <i,j,k>  

For d = 2 ; 
2

DBN = 11 Drone arrived to warehouse thus route is determined for next drone . 

For d = 3 ; A common node is not found for list of 
ortN  and S <i,j,k>  

Nodes are assigned to truck according to current truck time and destination time (SPT rule is 

applied). 

For v = 2; 2

TBN  = 8, 8, ,2 8,9,2min{ }
T

j
j N

tTim tTim


= = 20 therefore j = 9 is assigned to truck. 8,9,2X =  1, 2

TBN  = 9,  

9,2 8,2 8,9,2TT TT tTim= +  =20+18=38 2

TR ={1,10,8,9} C = {}, 
DN = {}, 

TN  = {}, < i, j, k > : j ≠ 9 

For v = 1; 
TN  = {} therefore go to next step. 

A node that is a meeting point of drone and truck, is not found. The drone moving on the truck is not found. 

The drone that could not exit the warehouse is not found. 

Finalization: C = {} therefore all vehicles are returned to warehouse 

First trucks are returned.  
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For v = 1; 
1

TBN  = 7, 
7,11,1tTim = 16 therefore j = 11 is assigned to truck. 

7,11,1X =  1, 
1

TBN  = 11,  

11,1 7,1 7,11,1TT TT tTim= +  = 46 + 16 = 62 
1

TR ={1,3,7,11} 

Table 5. Comparison of greedy heuristics and proposed model 

            mDroneCVRP Greedy Heuristics   

           

Number 

of 

Customer 

Number 

of   

Truck 

Number 

of   

Drone 

Flight 

Limit 
Scenario 

Drone 

Velocity                            

/                      

Truck 

Velocity 

Execution 

Time 

Make-

span 

Execution 

Time 

Make-

span 
GAP 

6 2 2 1 1 2 15.19 36.00 0.051 48.00 33.33 

7 2 2 1 1 2 20.28 44.00 0.026 50.00 13.64 

8 2 2 1 1 2 54.72 60.00 0.03 84.00 40.00 

9 2 2 1 1 2 167.24 55.00 0.062 66.00 20.00 

6 2 2 1 2 2 44.50 95.00 0.063 112.00 17.89 

7 2 2 1 2 2 473.93 95.00 0.118 118.00 24.21 

8 2 2 1 2 2 8012.46 100.00 0.164 120.00 20.00 

9 2 2 1 2 2 8041.96 100.00 0.196 124.00 24.00 

6 2 2 1 3 2 24.59 68.00 0.017 76.00 11.76 

7 2 2 1 3 2 82.72 70.00 0.025 82.00 17.14 

8 2 2 1 3 2 366.26 82.00 0.053 82.00 0.00 

9 2 2 1 3 2 3136.06 62.00 0.061 95.00 53.23 

6 2 2 1 4 2 32.42 144.00 0.05 216.00 50.00 

7 2 2 1 4 2 165.54 150.00 0.08 221.00 47.33 

8 2 2 1 4 2 1039.58 197.00 0.11 240.00 21.83 

9 2 2 1 4 2 2276.12 197.00 0.03 197.00 0.00 

6 2 2 1 5 2 48.66 230.00 0.06 254.00 10.43 

7 2 2 1 5 2 182.21 230.00 0.09 254.00 10.43 

8 2 2 1 5 2 1914.23 232.00 0.03 254.00 9.48 

9 2 2 1 5 2 8012.66 232.00 0.04 254.00 9.48 

6 2 4 1 1 2 16.92 32.00 0.11 37.00 15.63 

7 2 4 1 1 2 25.55 32.00 0.06 48.00 50.00 

8 2 4 1 1 2 33.00 60.00 0.08 69.00 15.00 

9 2 4 1 1 2 341.01 48.00 0.09 66.00 37.50 

6 2 4 1 2 2 168.30 95.00 0.10 112.00 17.89 

7 2 4 1 2 2 6927.98 95.00 0.12 112.00 17.89 

8 2 4 1 2 2 8010.62 96.00 0.17 118.00 22.92 

9 2 4 1 2 2 8043.51 100.00 0.25 112.00 12.00 

6 2 4 1 3 2 40.55 68.00 0.02 79.00 16.18 

7 2 4 1 3 2 121.27 70.00 0.03 80.00 14.29 

8 2 4 1 3 2 792.81 70.00 0.06 82.00 17.14 

9 2 4 1 3 2 8012.91 57.00 0.09 105.00 84.21 

6 2 4 1 4 2 36.86 144.00 0.05 216.00 50.00 

7 2 4 1 4 2 303.44 150.00 0.09 221.00 47.33 

8 2 4 1 4 2 364.60 197.00 0.11 240.00 21.83 

9 2 4 1 4 2 8012.86 197.00 0.03 197.00 0.00 

6 2 4 1 5 2 71.50 230.00 0.07 254.00 10.43 

7 2 4 1 5 2 269.30 230.00 0.09 254.00 10.43 

8 2 4 1 5 2 4744.57 230.00 0.04 254.00 10.43 

9 2 4 1 5 2 8020.45 232.00 0.06 254.00 9.48 

 

For v = 2; 2

TBN  = 9, 9,11,2tTim = 30 therefore j = 11 is assigned to truck. 9,11,2X =  1, 2

TBN  = 11,  

11,2 9,2 9,11,2TT TT tTim= +  =38+30=68 2

TR ={1,10,8,9,11} 

For d = 1; 7,1,1A = 1 therefore 11,1 11,1TD TT= = 62, 1

DR ={1,2,3,6,7,11} 
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For d = 2; 
11, ,2vA = 0 therefore 

11,2 20TD =  , 
2

DR ={1,4,11} 

For d = 3; 
7,1,3A = 1 therefore 

11,3 11,1TD TT= = 62, 
3

DR ={1,5,7,11} 

If all vehicles are arrived to warehouse; 
maxC =max { 

11,1 11,2 11,3 11,1 11,2, , , ,TD TD TD TT TT } = { 62, 20, 62, 62, 68 

} According to the solution of the greedy algorithm, the highest service end time is found to be 68. The 

solution of the algorithm is given in Figure 25. A comparison is made between the heuristics algorithm and 
the proposed mathematical model in terms of execution time and makespan of problems (see in Table 5). 

Some heuristics solutions are better than mathematical model solutions because of the solution time limit 

of the mathematical model. 

 

 

Figure 25. Solution presentation of the greedy algorithm (Scenario 1, 9 customers, 2 trucks, 3 drones, 

α=2) 

7. CONCLUSIONS 

 

Drone applications, increasingly prevalent across various sectors, introduce a diverse array of challenges, 
with many centered around drones as the primary factor. While technological advancements enhance drone 

capabilities, the associated costs can be prohibitive, especially for high-capacity vehicles. This study 

explores the synergistic use of drones with another vehicle, broadening operational capabilities and 

optimizing efficiency. The objective is to facilitate a more effective and economical deployment of drones 
in conjunction with other vehicles. 

 

Existing literature has predominantly focused on drone-centric scenarios, emphasizing combined 
operations as a distinct area of inquiry. This study delves into routing problems to strategically plan 

synchronized operations involving drones and other vehicles as cohesive working units. 

 
The study underscores its motivation by illustrating that diverse vehicle types working in tandem prove 

more efficient than relying solely on a single vehicle type, as commonly observed in classical Vehicle 

Routing Problem (VRP) and Traveling Salesman Problem (TSP) methods. The application of multiple 

vehicles in collaborative routing scenarios significantly outperforms studies employing a single drone and 
a single vehicle. Consequently, the study aims to determine routes for capacitated vehicles and drones, 

minimizing the maximum arrival time at the warehouse. To address this, a mixed-integer mathematical 

model is formulated, termed the Multiple-Drone Assisted Capacitated Vehicle Routing Problem 
(mDroneCVRP). 

 

Several assumptions in the mDroneCVRP model differentiate it from other studies. A crucial and distinctive 

aspect is the flexibility introduced into rendezvous operations between drones and vehicles, mirroring real-
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world scenarios. This flexibility allows drones to land on vehicles other than the one they took off from, 

with specific limits imposed on the number of take-off and landing operations on a given vehicle. 
 

To validate and verify the model, a systematic approach is employed, generating 360 data sets comprising 

five scenarios, varying numbers of nodes, and different velocity coefficients between drones and trucks. 

These instances are solved within an 8000-second time limit. The solutions demonstrate the efficiency gains 
achieved by employing multiple drones, including the drone's ability to land on various trucks, conduct 

direct flights from customers to the warehouse, and return independently to the warehouse while servicing 

customers. Furthermore, the study explores the transformation of the model into representations found in 
other studies, indicating its adaptability to solving diverse problems. 

 

As evident in the solutions, the NP-Hard nature of the problem results in solution times surpassing limits 

as the number of nodes increases. Future research should focus on developing heuristic methods to address 
larger-scale problems. To this end, a solution construction heuristic algorithm is introduced, providing 

initial solutions for forthcoming metaheuristic algorithms. This algorithm, grounded in familiar heuristics 

from scheduling problems, proves effective in producing consistent and quality solutions. 
 

The burgeoning interest in drone studies gives rise to novel problem variants. One such variant involves 

the delicate balance between drone load and energy consumption, especially pertinent to optimizing battery 
weight. Future studies should explore these challenges, alongside the evolution of rendezvous points and 

the incorporation of multiple warehouses. 

 

As drones play an increasingly vital role in humanitarian logistics, the study's application of routing 
problems to drone and vehicle combined operations signifies broader implications. While many studies aim 

to reduce costs, this research underscores the paramount importance of time over cost in real-world 

scenarios, offering valuable insights into optimizing time utilization within diverse environments. 
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Appendix A Parameters Used in the Mathematical Model 

Sets 

C   Set of customer, C ={1,...,c} 

0N  Set of nodes to which vehicles can be departed ,  0N  ={0,1,...,c} 

N+  Set of nodes to which vehicles can arrive,  N+  ={1,...,c+1} 

ortN  

Node set ordered according to average of travel truck times of each node , ortN = 

{i,j,...,k}, ...
2 2 2

hi hj hk

h h h

tTim tTim tTim

c c c
 

+ + +

  
 

DN  Set of nodes to which drones can fly ,  DN  ={1,...,c+1} 

TN  Set of nodes to which vehicles can serve ,  TN  ={1,...,c+1} 

TR   Highway vehicle groups, TR  ={1,...,v,...,VN}  

DR  Set of drones, DR  ={1,...,d,...,DN} 

ijvtTim   Time to go from node i to node j by highway vehicle v 0, { : },i N j N j i v TR+     

ijddTim   
Flight time of drone d from node i to j, 

0, { : },i N j N j i d DR+     
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