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ABSTRACT 

Advances in imaging and deep learning have fueled interest in ear biometrics, as the structure of the ear offers unique 

identification features. Thermal and visible ear images capture different aspects of these features. Thermal images 

are light-independent, and visible images excel at capturing texture details. Combining these images creates more 

feature-rich composite images. This study examines the fusion of thermal and visible ear images taken under varying 

lighting conditions to enhance automatic ear recognition. The image fusion process involved three distinct 

multiresolution analysis methods: discrete wavelet transform, ridgelet transform, and curvelet transform. 

Subsequently, a specially designed deep learning model was used for ear recognition. The results of this study reveal 

that employing the complex-valued curvelet transform and thermal images achieved an impressive recognition rate 

of 96.82%, surpassing all other methods. Conversely, visible images exhibited the lowest recognition rate of 75.00%, 

especially in low-light conditions. In conclusion, the fusion of multiple data sources significantly enhances ear 

recognition effectiveness, and the proposed model consistently achieves remarkable recognition rates even when 

working with a limited number of fused ear images. 

Keywords: Ear recognition, image fusion, deep learning, multi-resolution analysis methods, thermal and visible 

images. 

ÖZET 

Görüntüleme ve derin öğrenme alanındaki gelişmeler, kulağın yapısı benzersiz tanımlama özellikleri sunduğundan 

kulak biyometrisine olan ilgiyi artırmıştır. Termal ve görünür kulak görüntüleri bu özelliklerin farklı yönlerini 

yakalar. Termal görüntüler ışıktan bağımsızdır ve görünür görüntüler doku ayrıntılarını yakalamada mükemmeldir. 

Bu görüntülerin birleştirilmesi daha zengin özelliklere sahip kompozit görüntüler oluşturur. Bu çalışma, otomatik 

kulak tanımayı geliştirmek amacıyla farklı aydınlatma koşulları altında elde edilen termal ve görünür kulak 

görüntülerinin birleştirilmesini incelemektedir. Görüntü birleştirme işlemi üç farklı çok çözünürlüklü analiz 

yöntemini içermektedir: ayrık dalgacık dönüşümü, ridgelet dönüşümü ve curvelet dönüşümü. Ardından, kulak tanıma 

için özel olarak tasarlanmış derin öğrenme modeli kullanılmıştır. Bu çalışmanın sonuçları, karmaşık değerli curvelet 

dönüşümü ve termal görüntülerin kullanılmasının, diğer tüm yöntemleri geride bırakarak %96.82 gibi etkileyici bir 

tanıma oranı elde ettiğini ortaya koymaktadır. Buna karşılık, görünür görüntüler özellikle düşük ışık koşullarında 

%75.00 ile en düşük tanıma oranını sergilemiştir. Sonuç olarak, birden fazla veri kaynağının birleştirilmesi kulak 

tanıma etkinliğini önemli ölçüde artırmaktadır ve önerilen model, sınırlı sayıda birleştirilmiş kulak görüntüsüyle 

çalışırken bile tutarlı bir şekilde dikkate değer tanıma oranlarına ulaşmaktadır. 

Anahtar Kelimeler: Kulak tanıma, görüntü birleştirme, derin öğrenme, çoklu çözünürlüklü analiz yöntemleri, termal 

ve görünür görüntüler 
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INTRODUCTION 

Biometrics are biological measurements or physical characteristics that can be used to identify individuals (Jain et 

al., 2007). These traits can be chemical-based, such as DNA, physical-based, like fingerprinting, or behavioral-based, 

such as gait. These features are unique to each individual, akin to an individual's signature. Biometric systems offer 

the advantage of stability and durability. Biometric systems can identify a person despite minor differences and 

provide quick results. However, the primary disadvantage of biometric systems is that they are often considered 

invasive, and people may feel uncomfortable sharing their personal information. Additionally, the expense associated 

with biometric systems, including installation, operation, and maintenance costs, can be perceived as a drawback. 

Nevertheless, biometric systems possess the unique ability to recognize personal characteristics in various 

applications. 

 

In addition to commonly used biometric systems such as fingerprint, iris, retina, and face recognition, extensive 

studies have been carried out on ear recognition. This is because the ear structure has some distinctive features for 

recognizing people. Initially, Iannarelli (1989) conducted experiments to prove that the ear structure is unique for all 

individuals. In his research, Iannarelli manually performed twelve measurements for different regions and thus 

detected differences. However, applying this approach to a real-world scenario is difficult. For this reason, many 

recent studies have focused on automating the ear recognition process by extracting new features for an effective 

system and developing new methods.  

 

Ear images can be easily captured from profile or video images, making them more versatile compared to fingerprint 

and iris recognition, which require direct interaction with a sensor (Emeršič et al., 2017). These images can be 

obtained remotely, without requiring the subject's cooperation, making ear recognition technology similar to image-

based biometric methods such as face and palm recognition. Some studies have even confirmed that even identical 

twins exhibit differences in certain features of their ear structure (Nejati et al., 2012). Furthermore, ear recognition 

systems can complement other biometric modalities, providing identification clues when information from other 

sources is unreliable or unavailable. Recent studies have demonstrated the importance of ear recognition technology 

in multimodal biometric systems (Sarangi et al., 2018; Sarangi et al., 2022; Ma et al., 2020; Maity et al., 2020). 

While ear recognition offers many advantages, it also faces challenges that can impact the recognition process. One 

significant challenge is the illumination level in the environment where ear images are captured, which is a common 

drawback for biometric applications like ear and face recognition (Toygar et al., 2018; Jamil et al., 2014). To address 

this issue, an ear recognition method that can adapt to varying illumination conditions is crucial for effective ear 

biometry. An approach to tackle this problem is the active approach, which uses imaging modalities capable of 

acquiring images independently of illumination. For example, Abaza & Bourlai (2012) demonstrated that their 

proposed ear detection methods worked with promising results in both mid-wave infrared (MWIR) and visible bands, 

unlike previous approaches that only functioned in the visible spectrum. These two different spectrums each have 

their advantages and disadvantages. Thermal imaging is immune to illumination variations but may not capture 

texture features effectively, whereas visible images illuminated with sufficient light offer better texture feature 

representation. To harness the advantages of both methods and gather comprehensive information, this study 

combined thermal and visible images.  

 

Ear recognition can be performed manually or automatically. Prior to automatic recognition, experimental studies 

highlighted the individual recognition potential of ears (Bertillon, 1896; Fields et al., 1960). Iannarelli made a 

significant contribution to this field with a long-term study on ear recognition (Iannarelli, 1989), using over ten 

thousand ear images. Subsequent to this pioneering work, the 1990s marked the advent of automatic ear recognition, 

with different methods being developed. Moreno et al. (1999) used geometric ear features and applied automatic 

classification with compression mesh. Victor et al. (2002) employed Principal Components Analysis (PCA) on ear 

images and achieved successful results. In another study, Gutiérrez et al. (2010) aimed to achieve recognition by 

segmenting ear image data into 12 different modules. Initially, they achieved a success rate of 91.85% without 

applying preprocessing. Subsequently, they applied preprocessing steps, including region of interest determination 

and wavelet transform. These preprocessing steps led to a notable increase in the recognition rate, reaching 97.5%. 

Pflug et al. (2014) conducted a comprehensive study using various feature extraction methods and achieved success 

with Linear Discriminant Analysis. More recently, deep learning methods, particularly Convolutional Neural 

Networks (CNNs), have gained prominence in automatic ear recognition, offering robustness and tolerance to shape 

and visual variations (Galdámez et al., 2017). These networks automatically extract features from images, eliminating 

the need for separate feature extraction algorithms.  
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Deep learning methods have gained increasing prominence in recent times for automatic ear recognition. Among 

these methods, CNNs stand out as one of the most favored choices. When compared to traditional feature-based 

methods like Local Binary Patterns (LBP) (Benzaoui et al., 2015) or Histogram of Oriented Gradients (HOG) 

(Ciresan et al., 2011), CNNs exhibit significantly greater robustness and tolerance to variations in shape and visual 

aspects within images intended for recognition (Galdámez et al., 2017). Additionally, CNNs' convolution layers 

automatically extract features from images, eliminating the need for separate feature extraction algorithms. Alshazly 

et al. (2019) presented and compared manually crafted and CNN-based ear recognition models. They initially 

extracted features using seven different feature extraction methods and classified them using Support Vector 

Machines (SVM). Subsequently, they inputted ear images into AlexNet, a CNN architecture, and trained the model. 

The results indicated that the AlexNet architecture achieved a 22% higher success rate. Similar research employing 

the AlexNet architecture is available in the literature (Abd Almisreb et al., 2018). In another study, Emersic et al. 

(2017) achieved high accuracy rates, even with limited training data, using different CNN architectures such as VGG-

16 and SqueezeNet. Furthermore, El Naggar & Bourlai (2022) attained impressive success rates of 98.76% for visible 

images and 96.93% for thermal images through pre-trained CNN architectures and transfer learning on various ear 

datasets obtained under the same lighting conditions. These studies collectively demonstrate that deep learning 

methods consistently outperform feature extraction-based machine learning methods in ear recognition applications. 

In some face recognition studies, researchers have successfully addressed illumination challenges by combining 

thermal and visible images (Kong et al., 2007; Choi et al., 2012; Seal et al., 2017). For instance, Kong et al. (2007) 

proposed combining visible and thermal images using a multi-scale data fusion method based on the Discrete Wavelet 

Transform (DWT) to enhance face recognition performance. However, there is limited research exploring the fusion 

of thermal and visible images for ear recognition. Ariffin et al. (2017) conducted one such study, combining images 

using simple fusion rules like simple average and mean average along with DWT. They extracted features from these 

images using the Histogram of Oriented Gradients (HOG) method and classified them using SVM, reporting 

improved results with fused images. In our study, we took a different approach, combining thermal and visible ear 

images using Multiresolution Analysis (MRA) methods. To our knowledge, no previous research has combined 

thermal and visible ear images using MRA and classified them using deep learning methods. In this context, the 

findings of our study represent a significant advancement in the field of ear recognition. 

 

In this study, the DIAST dataset, which comprises both thermal and visible ear images, was used. In this phase, it 

was employed various MRA techniques to combine thermal and visible ear images. These fused images were 

subsequently employed to train and assess the performance of our custom-designed CNN model. It was conducted 

experimental studies under diverse illumination conditions to evaluate the effectiveness of our proposed method, and 

recognition rates were calculated to gauge its performance across different modalities. The key contributions of this 

study can be summarized as follows: 

 

 MRA-Based Fusion: It was employed three distinct MRA methods for image fusion, allowing us to capture 

and amalgamate distinctive features present in thermal and visible ear images acquired under varying 

illumination conditions. These fusion techniques excel in preserving details, demonstrating improved 

generalization capabilities, and delivering superior visual results. 
 

 Unique CNN Model: It was designed a specialized CNN model tailored for extracting ear features from the 

fused images. Impressively, this model achieved outstanding results while using a minimal number of 

parameters, even with the constraints of limited available data. 
 

 Enhanced Recognition: The findings underscore the significant improvement in the success of ear 

recognition applications achieved through the fusion process. This enhancement in performance is 

particularly noteworthy when dealing with variations in illumination conditions. 

 

In essence, our study showcases the potential of MRA-based fusion techniques in conjunction with a carefully crafted 

CNN model to significantly enhance the efficacy of ear recognition, even in challenging scenarios characterized by 

varying illumination levels. 

METHODOLOGY 

This study aims to create a system capable of automatically determining the correct class or identity of the fusion 

image by combining thermal and visible ear images obtained under different lighting conditions using MRA-based 

methods. In this context, a unique CNN model was designed. This section comprises three separate sub-steps: (1) 
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Multiresolution analysis methods, (2) Pixel-level fusion of thermal and visible ear images, and (3) the designed 

convolutional neural network Model and parameters. 

Multiresolution analysis methods 

The development of wavelets has made Multiresolution Analysis (MRA) methods very popular. MRA methods, 

operating at various scales, are frequently employed in image processing applications to capture different features of 

images (Cihan & Ceylan, 2021). By displaying images at different scales, one can easily detect inconspicuous 

features at various levels (Morlet et al., 1982). In this study, three different MRA methods were used for the fusion 

of thermal and visible images: discrete wavelet transform, ridgelet transform, and curvelet transform. Due to their 

diverse capabilities in identifying points, edges, and curves, these methods are often preferred for tasks such as image 

denoising, object recognition, and image fusion. Moreover, each of these methods offers different levels and versions 

of transformations. 

 

Discrete wavelet transform (DWT): The Wavelet Transform is among the MRA methods used for the analysis of 

both stationary and non-stationary signals. It serves as an effective tool in image analysis methods by enabling local 

analysis through the separation of data into various frequency components. This segmentation allows the examination 

of large signals in small areas (Cihan & Ceylan, 2021). Figure 1 illustrates the 2D-DWT process involving low-pass 

and high-pass filter banks. This process yields the low-resolution counterpart of the original image (LL subband), 

which contains the approximation coefficients, as well as images with detail coefficients (HL, LH, and HH subbands) 

that convey additional information. The LL subband can be further transformed to achieve higher levels of 

transformation. 

 

Equation 1 is used to apply WT in discrete form, where 𝑖, 𝑤𝑖, 𝑠𝑖, 𝑝𝑖 and Ψ(t) are the numbers of the samples, weight 

coefficients, scales, positions and mother wavelet, respectively. 

 

ℎ̂(𝑥) ≈ ∑ 𝑤𝑖Ψ(
𝑥−𝑝𝑖

𝑠𝑖
)𝐾

𝑖=1                                                                              (1) 

 

 
Figure 1. The Decomposition Of A Visible Ear Image Using 2D-DWT Involves A Two-Step Process. Initially, 

Filter Banks (Comprising Low-Pass And High-Pass Filters) Are Applied Horizontally To The Image. Following 

This Horizontal Filtering, Subbands Are Generated By Applying Filter Banks Vertically To The Results Obtained 

In The Previous Step. 

Ridgelet transform (RT): Ridgelet transform (RT) offers several advantages over the wavelet transform. While DWT 

can capture horizontal, vertical, and diagonal components in an image pointwise, it cannot capture linear components 

and curvilinear structures, such as edges and corners, at various angles. Wavelets struggle to effectively represent 

objects with highly anisotropic elements due to their limited edge curve regularity and non-geometric nature. In 

contrast, RT is preferred in many computer vision applications because of its ability to capture linear components at 

various angles (Rane & Bhadade, 2020; Chen et al., 2021). 

 

When applying RT (the method of choice in image analysis studies), the Ridgelet function (Equation 2) is used. 

Thanks to the included angle parameter, the Ridgelet function provides a versatile analysis along a straight line. RT 

is implemented similarly to WT. The RT coefficients of a 2D signal 𝑓 (𝑥1, 𝑥2 ) are obtained from the product of the 

original signal and the Ridgelet function (Equation 3). In Equation 3, 𝛹(. ) 𝑟epresents 1B Wavelet function so that 
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 𝑥 = (𝑥1𝑥2) ∈ 𝑅2 condition is satisfied. In the same equation, 𝜃 (𝜃 ∈ [0,2𝜋)) is the direction parameter (Do & 

Vetterli, 2003). 

𝛹𝑎,𝑏,𝜃(𝑥) = 𝑎−1/2𝛹((𝑥1𝑐𝑜𝑠𝜃 + 𝑥2𝑠𝑖𝑛𝜃 − 𝑏)/𝑎)                                                     (2) 

𝑅(𝑎, 𝑏, 𝜃) = ∫ 𝛹𝑎,𝑏,𝜃(𝑥)𝑓(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2
 

𝑅2                                                                 (3) 

RT is fundamentally rooted in the Radon transform, which itself relies on the Fourier transform. To derive the Radon 

transform coefficients of an image, a two-dimensional Fourier transform is initially applied to the image. These 

coefficients are then interpolated along a straight line. Subsequently, applying a one-dimensional inverse Fourier 

transform to the interpolated result yields the Radon coefficient. Notably, the Radon transform serves to convert the 

curves present in an image into point discontinuities. The Radon transform of an image (𝑓(𝑥, 𝑦)) can also be 

expressed as follows to show a 𝛿 Dirac distribution: 

𝑃(𝑡, 𝜃) = ∫ 𝑓(𝑥, 𝑦)𝛿(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 − 𝑡)𝑑𝑥𝑑𝑦
 

𝑅2                                                (4) 

If 1D WT is applied to the Radon coefficients, RT coefficients are reached (Equation 4). The application of RT 

depending on the Fourier transform is given in Figure 2. 

𝑅(𝑎, 𝑏, 𝜃) = ∫ 𝛹𝑎,𝑏(𝑡)𝑃(𝜃, 𝑡)𝑑𝑡
 

𝑅2                                                             (5) 

 
Figure 2. The Ridgelet Transform Flowchart Involves Processing Each Radial Line In The Fourier Domain 

Individually. First, A 1D Inverse Fast Fourier Transform Is Calculated Along Each Radial Line. Subsequently, The 

Ridgelet Coefficients Are Derived From The 1D Non-Orthogonal Wavelet Transform. 

Curvelet transform (CT): While RT is effective in capturing regions containing edges and linear components in 

images, it falls short in capturing regions with curvilinear components. To address this limitation, the Curvelet 

Transform (CT) was developed by Fadili and Starck in 2009. 

 

CT, first introduced by Candes & Donoho (1999) and later revised by Starck et al. (2003), represents a high-

dimensional generalization of the WT. This MRA method is specifically designed to represent images at various 

angles and scales. CT can be visualized as a multi-scale pyramid, with its frame elements indexed based on 

parameters such as scale, direction, and position. Notably, the curvelet pyramid offers exceptional directional 

sensitivity and a degree of anisotropy, as demonstrated by AlZubi et al. (2011). 

 

There are two types of CT methods: first-generation CT and second-generation CT. First-generation CT is designed 

to reduce noise in images but requires more processing time compared to second-generation CT. It has a more 

complex structure. Conversely, the numerical implementation of second-generation CT is simpler and can be 

executed in less time with fewer operations (Candes et al., 2006). In this study, second-generation CT was employed 

using both real and complex values. While real-valued CT provides only amplitude components, complex-valued CT 

additionally extracts phase components, enhancing its directional selectivity. However, working with complex 

numbers can introduce greater computational complexity, necessitating more computational resources and processing 

power. In contrast, real-valued CT, relying solely on real numbers, is known for its simplicity and speed in 

computations. Complex-valued CT is typically chosen when capturing fine details is critical, especially in tasks like 

high-resolution image processing and signal analysis. Conversely, real-valued CT is better suited for applications 

prioritizing efficient and rapid computations. Figure 3 illustrates the schematic of the second-generation CT. 
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Figure 3. The Flowchart For The Second-Generation Curvelet Transform Involves The Separate Processing Of 

Frequency Windows Between Radial Lines In The Fourier Domain. Initially, The 2D Inverse Fast Fourier 

Transform Is Computed For Each Frequency Window, Resulting In The Derivation Of Second-Generation Curvelet 

Coefficients. These Frequency Windows Can Be Assigned Individual Names, And The Name Of The Frequency 

Window Within The Red Region Is Highlighted. 

Pixel-level fusion of thermal and visible ear images 

Image fusion is the process of combining images obtained from different sensors in a way that complements each 

other's missing aspects. The fusion is based on using datasets containing diverse information for the same data, which 

can be collected with different sensors or under varying conditions. In computer vision, image fusion is defined as 

the collection of critical information from multiple images, often resulting in a single, enriched image. The fused 

image contains more information than any individual input image (Haghighat et al., 2011). Previous studies have 

explored various techniques, including pixel-level fusion and MRA methods (Pajares & De La Cruz, 2004; Singh et 

al., 2004). 

 

In this study, it was performed the fusion of thermal and visible ear images using pixel-level fusion in the multi-scale 

transform (MST) domain. MST-based fusion necessitates the conversion of source images into the MST domain 

before applying fusion rules. These fusion rules are then applied to the coefficients in the MST domain, resulting in 

a fused image obtained through inverse transformation. The specific methods employed for MST-based fusion are 

detailed in the subsection Multiresolution Analysis Methods. 

 

In this study, it was used the mean selection rule to combine images after obtaining multi-scale coefficients of the 

thermal and visible ear images using MRA methods. Given the brightness of the thermal images, it was reasoned that 

the mean selection rule, as opposed to maximum or minimum rules, would yield more accurate results. In Equation 

6, T and V represent the transform coefficients obtained from the thermal and visible images, respectively. The mean 

rule was applied to each value within the coefficient matrices, resulting in a fused image for each ear instead of two 

separate images. An example of a DWT-based fusion method is illustrated in Figure 4. 

𝐹 = (𝑇 + 𝑉)/2                                                           (6) 

 

Figure 4. An Example Of A DWT-Based Fusion Method: First, The Coefficients Of The Thermal And Visible 

Images Is Obtained At Various Scales Using DWT. Next, The Mean Selection Rule To These Coefficients Is 

Applied. The Mean Selection Rule Is Used To Combine Information From Both Thermal And Visible Images 

Effectively. Finally, A Fusion Image Is Created By Performing An Inverse DWT On The Processed Coefficients. 
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The designed convolutional neural network model and parameters 

Convolutional Neural Networks (CNNs) are a subset of deep neural networks and represent a specialized version of 

multilayer perceptrons. They find widespread use in various applications, including image classification (Cihan et 

al., 2022a), medical image analysis (Yu et al., 2021), image clustering (Guérin et al., 2021), and object recognition 

(Ashiq et al., 2022). A typical CNN architecture comprises several essential components, including a convolution 

layer, pooling layer, activation function, and fully connected (FC) layer (Cihan et al., 2022b). 

 
Figure 5. The Designed CNN Model Includes Several Key Components: Conv (Convolution), BN (Batch 

Normalization), Maxpool (Maximum Pooling), And FC (Fully Connected). 

The designed CNN model comprises convolution and pooling layers that change during feature extraction, followed 

by deep fully connected layers for the final classification stage.  Figure 5 illustrates the layer structure of the network, 

while Table 1 provides details about the parameters of the model. The network begins with three convolution layers. 

The fused images are fed into the first convolution layer, followed by subsequent layers with 8, 16, and 32 filters, 

respectively, each with a filter size of 3×3. Batch Normalization (BN) is applied after each convolution layer to 

enhance speed and stability. After each convolution layer, a 2×2 maximum pooling layer is used to reduce the size 

of the feature maps. Dropout layers are introduced after the second and third max-pooling layers, with a dropout rate 

of 0.5. The ReLU activation function is applied to each convolution layer. The data are then flattened and transformed 

into one-dimensional tensors. Three Fully Connected (FC) layers follow this step, with dropout layers introduced 

after each FC layer to prevent overfitting, each with a dropout rate of 0.4. The first two FC layers contain 256 and 

128 neurons, respectively, while the third FC layer, serving as the output layer, consists of 55 neurons (corresponding 

to the number of classes). Finally, as there are multiple classes in total, the classification is performed using the 

softmax function. 

Table 1. Parameters Of The Designed CNN Model. 
Layer (type) Output Shape Parameter 

input_1 (InputLayer) (125, 125, 1) 0 

conv2d_1 (Conv2D) (123, 123, 8) 80 

BN_1 (123, 123, 8) 32 

max_pooling2d_1 (61, 61, 8) 0 

conv2d_2 (Conv2D) (59, 59, 16) 1168 

BN_2 (59, 59, 16) 64 

max_pooling2d_2 (29, 29, 16) 0 

dropout_1 (Dropout) (29, 29, 16) 0 

conv2d_3 (Conv2D) (27, 27, 32) 4640 

BN_3 (27, 27, 32) 128 

max_pooling2d_3 (13, 13, 32) 0 

dropout_2 (Dropout) (13, 13, 32) 0 

flatten_1 (Flatten)           5408 0 

fc_1 (FC)               256 1384704 

dropout_3 (Dropout)           256 0 

fc_2 (FC)               128 32896 

dropout_4 (Dropout)           128 0 

fc_3 (FC)               55 7095 

Total parameters: 1,430,807 
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EXPERIMENTAL SETUP AND RESULTS 

In this section, the dataset used is first introduced. It is then merged thermal and visible ear images using the MRA-

based fusion methods described in the previous section. Subsequently, it is employed the resulting fusion images to 

train the designed CNN model. The experimental outcomes and findings are then presented and discussed. 

Dataset  

In this study, it was used the DIAST dataset, which includes both thermal and visible ear images, as detailed by 

Ariffin et al. (2016). This dataset comprises a total of 2200 ear images, representing 55 different individuals. 

Specifically, the dataset consists of 1100 thermal images and 1100 visible images. Each individual's ear images were 

acquired separately for the left and right ears. The raw images in the dataset are grayscale and stored in jpg format, 

with a spatial size of 125x125 pixels. What sets this dataset apart is that images for each individual were captured 

under five distinct illumination levels, spanning a wide range of light intensities from 2 lux to 10700 lux. These 

images are categorized into three lighting conditions based on their lux values: 'dark' for lux values ranging from 0 

to 20, 'average' for lux values between 21 and 100, and 'bright' for lux values exceeding 100. To provide a visual 

representation, Figure 6 showcases example images obtained under different illumination levels. 

 

Figure 6. The Examples Of Thermal And Visible Ear Images At Different Illumination Levels In The DIAST 

Dataset. 

Performance metrics and protocols 

In this experiment, fusion images obtained through MRA methods were used for an identification task, and the results 

were evaluated using the designed CNN model. The dataset, comprising images captured at different illumination 

levels, was used to train the network, with the goal of assigning test images to one of the 55 available classes. The 

primary performance metric used in this study was the recognition rate, which calculates the ratio of correctly 

predicted data to the total number of data. 

 

For the experiment, an 80%-20% split was employed, with 80% of the total data used for training and the remaining 

20% for testing. To enhance model reliability and detect overfitting, 5-fold cross-validation was performed during 

training. The CNN model was trained with a batch size of 6 over 200 epochs. 

Results and discussions      

In this experiment, thermal and visible images captured under the same illumination conditions were combined using 

MRA methods. Each MRA method created 1100 fusion images, evenly distributed between right and left ears. 

Separate and joint recognitions were performed for the right and left ears. Figure 7 provides visual examples of fusion 

images obtained using different MRA methods, with a total of three MRA methods used in this study. These included 

2-level and 3-level DWT fusion and RT fusion as well as real-valued CT (RCT) and complex-valued CT (CCT) 

fusion for second-generation CT. 
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Image features were automatically extracted using the convolution and maximum pooling layers within the CNN 

model. Ten images from each subject (either right or left ear) were available under varying illumination levels. Eight 

of these images per subject were used for training, resulting in a total of 440 training images. The remaining two 

images from each subject were reserved for testing, totaling 110 testing images. To ensure robustness and reliability, 

5-fold cross-validation was employed, using images from all illumination levels for both training and testing. The 

same number of ear images was sampled from both the right and left ears. 

 

The experimental results are summarized in Table 2. Notably, visible images achieved the lowest recognition rate at 

75.00%, which can be attributed to the challenges posed by poorly illuminated images that hinder accurate feature 

extraction. Upon reviewing all results, the highest recognition rate of 96.82% was achieved using CCT with thermal 

images. Thermal images demonstrated superior recognition rates due to their consistent representations across 

different lighting conditions. 

 

Figure 7. Original Thermal And Visible Images For Three Different Illumination Levels And Fusion Images 

Obtained Using Different MRA Methods. 

Table 2. Experimental Results Including Recognition Of Ear Images Obtained Using Different Imaging Modalities 

And Pixel-Level Fusion With The Designed CNN Model. The Best Performances Are Marked In Bold. 

Image Modalities 
Recognition Rate (%) 

Right Left Both 

Visible 74.55 75.46 75.00 

Thermal 97.27 96.36 96.82 

2-level DWT 93.64 95.46 94.55 

3-level DWT 95.46 96.36 95.91 

RT 91.82 96.36 94.09 

RCT 95.46 96.36 95.91 

CCT 96.36 97.27 96.82 

Figure 8 illustrates the model's loss and accuracy for the two most successful methods. When considering the use of 

thermal images, the model was trained in a shorter time compared to the CCT method. However, a closer look at test 

accuracy reveals that the CCT model achieves impressive results within a shorter training duration. This can be 

attributed to the incorporation of valuable textural information from visible images into the composite image after 

fusion. These graphs clearly show a simultaneous increase in model accuracy alongside a decrease in model losses 

for both methods. Importantly, there is no evidence of underfitting or overfitting, except in cases related to the 

recognition rate observed during cross-validation. 

 

Extracting low-level features, particularly texture, from visible ear images captured under dark lighting conditions 

presents a significant challenge. The lack of distinctive features in these dark images hinders the fusion process, as 

they fail to complement the information from thermal images effectively. The experimental results in Table 2 confirm 
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that the deficiencies in features obtained from dark images negatively impacted the quality of fusion images, resulting 

in a decrease in the recognition rate. 

 
Figure 8. Model Losses And Accuracies a. Thermal Images b. CCT. 

The proposed model has delivered remarkably successful results. With a total of six layers, including three 

convolution layers and three fully connected layers, this model showcases high-performance capabilities while 

maintaining a significantly reduced parameter count in comparison to established deep learning architectures such as 

VGG, AlexNet, ResNet, and others. The exceptional performance achieved by the proposed method eliminates the 

need for off-the-shelf architectures, emphasizing the effectiveness of this approach. 

CONCLUSION AND FURTHER STUDY 

The performances obtained through the mean fusion rule, employing three MRA methods (DWT, RT, CT), were 

compared in the proposed ear recognition system. Additionally, the effects of thermal and visible images on 

performance under different illumination conditions were evaluated. Subsequently, the obtained results are presented 

as follows: 

 

 Thermal imaging remains unaffected by illumination variations but tends to struggle in capturing texture 

properties. Conversely, well-illuminated visible images excel at capturing textures. To leverage the strengths 

of both imaging modalities without sacrificing information, appropriate fusion techniques are employed. This 

fusion combines the distinctive features of thermal and visible images, resulting in successful outcomes. 
 

 When dark images are used during the CNN model training, visible images exhibit lower recognition 

performance compared to thermal and fusion images. 
 

 CCT stands out as the most efficient MRA method for ear recognition, as evident from the recognition rates. 

CCT's ability to effectively capture directional selectivity in ear images using both phase and amplitude 

information contributes to its superior performance. Thermal images yield the best results for the right ear, 

while CCT achieves the highest recognition rate for the left ear. Additionally, RCT and 3-level DWT 

demonstrate high recognition rates for both the right and left ears. These results underscore the enhancement 

of ear recognition through the fusion process. However, it's worth noting that there is no single optimal fusion 

technique for ear recognition. 
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This study worked with a limited dataset of ear data, yet our results showcase the potent application of deep learning 

and image fusion techniques even within data-limited domains. These methodologies empower us to achieve high-

quality results, overcoming the constraints posed by limited data. Furthermore, they establish a crucial foundation 

for future research in this domain. The findings from this study offer valuable inspiration for all fields confronted 

with data limitations.  

 

In further studies, expanding the dataset and training the CNN model with more data would be beneficial. 

Additionally, it would be valuable to compare results using CNN architectures like AlexNet, VGG, and SqueezeNet. 

Given the limited dataset size, the application of pre-trained models for transfer learning holds the potential to yield 

faster and more effective results in further research. Furthermore, exploring different fusion methods and fusion rules 

for evaluations could provide valuable insights. 
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