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ABSTRACT

Integro-differential equations are encountered in such fields of study as mechanics, physics, chemistry, biophysics,
astronomy, economic theory, and population dynamics. In rare cases the solution methods for differential and/or
integral equations can be generalized to integro-differential equations; but in general, numerical methods have to be
applied. Recent years have seen the development of a large number of methods applicable to integro-differential
equations. The present study aims to compare these newer methods with the classical method of point collocation,
which is one of the weighted residual methods. The method was applied to test problems chosen from the literature,
both linear and nonlinear integro-differential equations, and was seen to give good results.

Keywords: Collocation method, nonlinear integro-differential equations, Volterra integro-differential equation,
Fredholm integro-differential equations, numerical solution.

OZET

Integro-diferansiyel denklemler mekanik, fizik, kimya, biyofizik, astronomi, ekonomi teorisi ve niifus dinamigi gibi
calisma alanlarinda karsimiza ¢ikmaktadir. Nadir durumlarda diferansiyel ve/veya integral denklemlerin ¢6ziim
yontemleri integro-diferansiyel denklemlere genellestirilebilir; ancak genel olarak sayisal yontemlerin uygulanmast
gerekir. Son yillarda integro-diferansiyel denklemlere uygulanabilen ¢ok sayida yontem gelistirilmistir. Bu ¢alisma,
bu yeni yontemleri, agirlikli kalint1 yontemlerinden biri olan klasik nokta kollokasyon yontemi ile karsilagtirmay1
amaglamaktadir. Yontem, literatiirden segilen dogrusal ve dogrusal olmayan integro-diferansiyel denklemlerden
olusan test problemlerine uygulanmis ve iyi sonuglar verdigi goriilmiistir.

Anahtar Kelimeler: Kollokasyon yontemi, dogrusal olmayan integro-diferansiyel denklemler, Volterra integro-
diferansiyel denklemi, Fredholm integro-diferansiyel denklemleri, sayisal ¢6ziim.

To Cite: DURAK, B., SEZGIN, A., OZER, H. O., SAKMAN, L. E. & KAPKIN, S., (2023).
COLLOCATION METHOD APPLIED TO NUMERICAL SOLUTION OF INTEGRO-DIFFERENTIAL
EQUATIONS. Kahramanmaras Siitcii Imam Universitesi Miihendislik Bilimleri Dergisi, 26(4), 1010-
1020.
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INTRODUCTION

The first step in solving physics and engineering problems is the development of a physical-mathematical model of
the problem. This leads to various types of equations which are classified according to the methods developed to
solve them.

An integro-differential equation roughly is an equation that includes both the derivatives and the integrals of an
unknown function u(x) to be solved. Integro-differential equations are encountered in a wide range of problems
including physics and engineering, biomechanics, geophysics, electricity and magnetism, etc.

The works of Abel, Lotka, Fredholm, Malthus, Verhulst and Volterra developed general theories of integral and
integro-differential equations (Lakshmikantham & Rao, 1995). However, the class of analytically solvable equations
is quite limited and numerical solution methods often have to be applied. In recent years a number of novel numerical
methods have been applied for the solution of integro-differential equations to model problems.

Some of these are: Modified Adomian Decomposition Method (MADM) (Olayiwola & Kareem, 2022), Finite
Difference (Cakir & Giines, 2022; Cimen & Enterili, 2020), Romberg extrapolation algorithm (REA) (Al-Towaiq &
Kasasbeh, 2017), Parameterization Method (Dzhumabaev, 2016), Chebyshev Polynomials Method (Boonklurb et al.,
2020, Sakran, 2019), Explicit Methods (Abdi, 2022), Multistep Runge-Kutta methods (Wen & Huang, 2024), Least
squares method and the second kind Chebyshev wavelets (Ahmadinia et al., 2023).

In the next sections, test problems solved by these newer methods taken from literature will be solved by the
collocation method and the results will be interpreted in terms of both effort and solution accuracy.

MATERIAL AND METHODS

A general integro-differential equation involving a single-variable unknown function u(x) can be written as

u™(x) = F[x,u(x),u' (x), ., u®™ V() | + f;K[x, t,u(t), u' (©), .,ux)]dt ,a=0 (1)

F and K (called kernel) are given functions, and the equation is nonlinear if one of F or K is nonlinear. The type in
which the upper limit of the integral is variable (the case here) is called a Volterra type equation. If the upper limit
is a constant, this is called a Fredholm type equation.

The collocation method is widely applicable and stands out due to its simplicity. The main steps in applying the
collocation method to any problem (including integro-differential equations) can be summarized as follows:

1. A polynomial form of approximate solution with unknown coefficients is suggested.

2. The approximate solution is substituted in the equation and the “residual” is evaluated.

3. Collocation points, including the boundary points, are chosen within the solution domain whose number totals the
number of unknown coefficients.

4. The residual is evaluated at the collocation points and the results are equated to zero; this gives an algebraic system
of equations.

5. Solving the algebraic system gives the unknown coefficients.

First example: Linear Volterra integro-differential equation

The linear Volterra integro-differential equation
W) =1—ffu(®)dt, x>0 u(0)=0 )

was solved using Improved Runge-Kutta Methods by Rabiei et al. (2019). For this problem the exact solution is
u(x) = sin(x). Here, the approximate solution will be taken as

u(x) = Xn=g Cpx™ @)

Substituting (3) into (2), the residual is
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RGO = /() = 1+ [ (Zhes Cut™)de @
carrying out the derivative and integral gives

x?%Cy
2

x3¢C,
3

x*Cy
4

x6C5

+ 5x*Cs + - (5)

x5C,

R(X):_1+Cl+ S

+ 3x2C; + + 4x3C, +

+2xC, +

There are N = 5 unknown coefficients; accordingly, the collocation points are chosen as.

1, .
Xp ==, (i=1234,5) (6)

Residual is made zero at these points
This gives a linear system of five equations for the unknown coefficients; in matrix form

1.0041 0.1820 0.0248 0.0030 0.0003] C1]
|1.0165 0.3656 0.099 0.0240 0.0054]
1.0371 0.5522 0.2245 0.0814 0.0277
1.0661 0.7433 0.4010 0.1936 0.0878
1.1033 0.9403 0.6305 0.3795 0.2149J

1]
= | 1| (8)
K

and solving this system gives

C,=0.9999986023769859,

C,=0.000017054191493587497

Cs=-0.16676379652937337

C,=0.0002715464065127452

Cs=0.008014287236481989

The approximate solution becomes

u(x) = 0.00801429x° + 0.000271546x* — 0.166764x3 + 0.0000170542x2 + 0.999999x 9)

The solution was also found for N=10 and N=15 the exact solution together with approximate solutions and error
values are presented in Table 1.

Table 1. Collocation solution and absolute errors for linear Volterra equation

Approximate solution values Absolute Errors
X Exact N=5 N=10 N=15 N=5 N=10 N=15
Solution
0.0 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.00000

0.1 0.099833 0.099806 0.099833 0.099833 2.66x10° 8.74x1013 9.06x101®
0.2 0.198669 0.198634 0.198669 0.198669 3.55x10° 8.44x10°13 8.99x10°1°
0.3 0.295520 0.295483 0.295520 0.295520 3.68x10° 8.27x1013 8.82x10°1°
0.4 0.389418 0.389383 0.389418 0.389418 3.58x10° 7.98x1012 8.49x101°
0.5 0.479426 0.479391 0.479426 0.479426 3.43x10° 7.62x1013 8.16x101°
0.6 0.564642 0.564610 0.564642 0.564642 3.26x10° 7.19x10°18 7.77x10°%
0.7 0.644218 0.644187 0.644218 0.644218 3.06x10° 6.68x1012 7.21x1018
0.8 0.717356 0.717328 0.717356 0.717356 2.81x10° 6.13x1012 6.55x101°
0.9 0.783327 0.783301 0.783327 0.783327 2.56x10° 5.31x1018 5.99x10°%
1.0 0.841471 0.841448 0.841471 0.841471 2.29x10° 1.29x1012 1.09x104
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Second example: Linear Volterra integro-differential equation

We consider the problem

u'(x) = fxx(l + 2x)etC Oy )dt —u(x) + 1 + 2x
u(0)=1(f 0<x<1 (10)

Zarebnia (2010) suggested the Sinc collocation method to solve this problem. The exact solution is e*’. Noting that
u(0) = 1, the approximate solution is taken as

u(x) =1+Y10 Cx™ (11)

Again, the residual is evaluated and set equal to zero at equally-spaced collocation points. The resulting approximate
solutions for N=10, 15 and 20 are

Uy0(x) = 0.0512657x1° — 0.152106x° + 0.29629x8 — 0.254586x” + 0.33159x° — 0.0713121x> +
0.520591x* — 0.00387115x3 + 1.00045x2 — 0.000027284x + 1

u;5(x) = 0.000710335x15 — 0.0034912x* + 0.0098353x13 — 0.0152694x'2 + 0.0196096x*! —
0.00846689x1° + 0.0107384x° + 0.0364841x8 + 0.00189345x” + 0.166146x° +
0.000106283x° + 0.499984x* + 1.60908x107° x3 + x? + 3.97833x10 °x + 1

Upo(x) = 4.66036x107° x2° — 0.0000241039x° + 0.0000358925x + 0.000124398x17 —
0.000669626x° + 0.0017409x*> — 0.000252207x* + 0.0031339x*3 — 0.00133798x'2 +
0.00183359x* + 0.0073663x1° + 0.000400867x° + 0.0415361x% + 0.0000331973x7 +
0.16666x° + 9.63854x1077x° + 0.5x* + 7.99329x107° x3 + x2 + 1.12238x10 1x + 1 (12)

Figure 1 compares approximate (N=10) and analytic solutions, and Table 2 gives the maximum errors in the
approximate solutions.

Table 2. Maximum absolute errors for different collocation point selections of the solution of Eqg. (10)
Collocation solutions

Sinc collocation
Method N =10 N =15 N=20
(h=0.3141)
9.3x1013 1x106 5x101t 1x1013




KSU Miihendislik Bilimleri Dergisi, 26(4), 2023

Arastirma Makalesi

2.8

2861

24 r

22r

uix)

18r
161
1471

1271

Figure 1. Analytical Solution and Approximate Solution for Ten Collocation Point of Lineer Volterra Integro-

1014

B. Durak, A. Sezgin, H. O. Ozer, L. E. Sakman, . Kapkin

*  Yatacation

0.1 0.2

0.3

0.4 0.5 0.6 0.7
X

Differential Equation

Third example: Linear Fredholm integro-differential equation

The problem

u’(x)=u(x)—%x+;—ln(1+x)+

x+1
u(0)=0

was solved using Homotopy Analysis Method by Jaradat et al. (2008); the exact solution is In (1 + x).

The approximate solution is taken as

u(x) = 211121 Cnx™

and this results in

1 fl ad (t)dt
(In2)2do 142"

0.8 0.9 1

u(x) = —0.00201698x° + 0.0134619x° — 0.0427269x% + 0.0882951x7 — 0.139456x° +
0.190119x°—0.24747x* + 0.332896x> — 0.499952x% + 0.999997x

Table 3 gives absolute errors at various points within the solution domain.

Table 3. Absolute errors for approximate solution of Lineer Fredholm integro-differential equation

KSU J Eng Sci, 26(4), 2023
Research Article

Homotopy Analysis Method Collocation
X |E}’111?4M |E3’111§1M |E}’%1?4M

0.0 0.00000 0.00000 0.00000 0.00000

0.2 1.37x10°% 1.59x107 1.09x108 9.09x108
0.4 6.59x10° 7.64x107 5.26x108 1.25x107
0.6 1.80x10* 2.09x10°¢ 1.44x107 1.78x107
0.8 3.98x10* 4.61x106 3.17x107 2.51x107
1.0 7.81x10* 9.05x10¢ 6.24x107 3.85x107
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Fourth example: Linear Fredholm integro-differential equation

The fourth problem is linear for which Xu (2007) used the variational iteration method for the solution.

4 1
u'’(x) =e*— 3% +f xtu(t)dt
0

u@ =1, u0)=2 (16)

The exact solution is u(x) = x + e*. The approximate solution

u(x) = Xpo Cpx™ 17)
is modified as
u(x) =1+ 2x + Y10, Cx™ (18)

when the initial conditions in (16) are taken into account. Now, there are 9 unknown coefficients. Taking 9 equally-
spaced collocation points gives

u(x) = 4.55861x1077x1% + 2.2831x107°x° + 0.0000254883x% + 0.000197785x” + 0.00138927x° +
0.00833318x°+0.041667x* + 0.16667x3 + 0.5x? + 2x + 1 (19)

Table 4 shows the analytical and approximate solutions by collocation method and the absolute error.

Table 4. Absolute error values of collocation solution for Eqg. (16)

X Analytical Results Collocation Values Absolute Error
0.1 1.0000000000 1.00000000000 3.45x1012
0.2 1.2051709180 1.20517091807 7.92x10°12
0.3 1.4214027581 1.42140275816 1.23x101*
0.4 1.6498588075 1.64985880758 1.69x10°
0.5 1.8918246976 1.89182469765 2.14x10°%
0.6 2.1487212707 2.14872127072 2.61x10°
0.7 2.4221188003 2.42211880041 3.08x101*
0.8 2.7137527074 2.71375270750 3.56x10!
0.9 3.0255409284 3.02554092852 4.06x101
1.0 3.3596031111 3.35960311119 4.46x1011

Fifth example: Linear Volterra-Fredholm equation
The problem is

u'(x) = —2sin(x) — x? sin(2x) + 2 sin(2x) — 2xcos(2x) — 2e* + 5e*~1 + 2x + fox cos(t + x) u(t)dt +
fol e~ tu(t)dt
u(0) = 0 (20)

and it was solved by Rahmani et al. (2011) using Block Pulse Functions and Operational Matrices Method. Taking
the approximate solution.

u(x) = Y12, Cx™ (21)

gives the coefficients as
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C, =—7.278x10"* (4, = 2.9880x1071°
C, = 1.0000 C, = —4.018x1071°
C; = —9.044x10712 (g = 3.3680x1071° (22)
C, = 4.518x10711 Cy = —1.598x1071°
Cs = —1.439x1071° (C;, = 3.2730x107 ¢

Ignoring the extremely small coefficients the approximate solution becomes u(x) = x2, which is actually the exact
solution. Here collocation points are distributed evenly between 0 and 1.

Sixth example: Nonlinear Volterra equation
The problem is given as

X
W) = —1+f w(Odt ,  x20

u(0)=0 ’ (23)

For this problem, Sepehrian & Razzaghiand (2004) suggested the single term Walsh series method, while
Avudainayagam & Vani (2000) used the Wavelet-Galerkin method for the solution. Taking the approximate solution
as

u(x) = Xply Cux™ (24)

the residual is
R(x) = u'(x) + 1 — [; (T, Cut™)?dt (25)

By calculating the coefficients C, the collocation solution is

u(x) = —0.00004x"° 4 0.0007x° — 0.0012x® — 0.0027x” — 0.00075x® + 0.00032x°+0.083x* +
0.000017x> — 2.004x107%x% — x (26)

Table 5 gives the comparison of the collocation results with the other two references. While finding an approximate
solution, collocation points are distributed equally between 0 and 1.
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Table 5. Comparison of the collocation method results with Wavelet-Galerkin
Method and Walsh Series Method
Wavelet-

. . Walsh Series Collocation
X Exact Solution Galerkin Method Method
Method

0.0000 0.000000 0.0000 0.00000 0.00000
0.0625 -0.06250 -0.0625 -0.06250 -0.06249
0.1250 -0.12498 -0.1250 -0.12498 -0.12498
0.1875 -0.18740 -0.1874 -0.18740 -0.18739
0.2500 -0.24967 -0.2497 -0.24967 -0.24967
0.3125 -0.31171 -0.3117 -0.31171 -0.31170
0.3750 -0.37336 -0.3734 -0.37336 -0.37335
0.4375 -0.43446 -0.4345 -0.43446 -0.43445
0.5000 -0.49482 -0.4948 -0.49482 -0.49482
0.5625 -0.55423 -0.5542 -0.55423 -0.55422
0.6250 -0.61243 -0.6124 -0.61243 -0.61243
0.6875 -0.66917 -0.6692 -0.66916 -0.66916
0.7500 -0.72415 -0.7242 -0.72415 -0.72415
0.8125 -0.77709 -0.7771 -0.77709 -0.77709
0.8750 -0.82767 -0.8277 -0.82766 -0.82766
0.9375 -0.87557 -0.8756 -0.87557 -0.87556
1.0000 -0.92048 -0.9205 -0.92047 -0.92047

In this problem if five collocation points are used, surprisingly, multiple solution sets are found including complex
ones. Our impression is that taking the real solutions with the least absolute values gives both satisfactory results and
a method of choosing among the many solutions. Table 6 shows the estimated solution values obtained by taking the
real solution: C; = 138.918,C, = —877.202,C; = 2594.84,C, = —3445.43,C; = 1786.8and the complex
solution C; = —3109.7 — 4719.65i,C, = 31682.5 + 59409.17i,C; = —127778.8 — 228312.45i,C, =
214035.32 + 341606.73i, C5 = —123282.4 — 173256.87i

Table 6. Values of approximate solutions for different real or complex coefficients

X Exact Solution Real Coefficients CO”_‘P'GX
Coefficients
0.0000 0.000000 0.00000 0.0000
0.0625 -0.06250 5.83844 -98.6-113.6i
0.1250 -0.12498 7.93987 -94.7-29.4i
0.1875 -0.18740 8.46831 -75.5+80.7i
0.2500 -0.24967 8.73501 -78.1+130.9i
0.3125 -0.31171 9.40295 -103.4+100.7i
0.3750 -0.37336 10.6913 -130.7+15.2i
0.4375 -0.43446 12.5800 -131.03-74.3i
0.5000 -0.49482 15.0142 -81.9-110.4i
0.5625 -0.55423 18.1086 18.6 -49.5i
0.6250 -0.61243 22.3523 138.4 +118.5i
0.6875 -0.66917 28.8130 196.5 +350.6i
0.7500 -0.72415 39.3416 49 +530.4i
0.8125 -0.77709 56.7767 -524.2+448 4i
0.8750 -0.82767 85.1489 -1834.9-217 .4i
0.9375 -0.87557 129.886 -4299.3-1922.1i

1.0000 -0.92048 198.016 -8453.08-5273.07i
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Seventh example: High order Fredholm equation
The third order problem

/2
u'’(x) = sinx —x — f xtu' (t)dt
0

u(0) =1
u'(0)=0

u'(0)=-1,0<x<

IS

(27)

was also studied by Al-Saar & Ghadle (2021) and the exact solution is u(x) = cos(x). Paying attention to the initial
conditions in (27) approximate solution is taken as

u(x) =1- %xz + 310, Cox™ (28)
Absolute error values for various N values are given in Table 7.

Table 7. Absolute error values for collocation solutions

X Exact SSI?JIII%C?%& Absolute error Absolute error

Solution N=15 for N=10 for N=15
0.00000 1.00000 1.00000 0.00000 0.00000.
0.15708 0.987688 0.9876883 2.03x1010 1.30x10 %
0.31415 0.951057 0.9510565 1.05x10°° 2.08x1010
0.47123 0.891007 0.8910065 2.54x10° 1.05x10°°
0.62831 0.809017 0.8090169 4.65x10°° 3.33x10°
0.78539 0.707107 0.7071067 7.31x10° 8.13x10°
0.94247 0.587785 0.5877852 1.04x10°8 1.68x10°8
1.09956 0.453990 0.4539905 1.39x10°8 3.12x108
1.25664 0.309017 0.3090170 1.78x10°8 5.32x108
1.41372 0.156434 0.1564345 2.17x108 8.53x108
1.57080 6.12x10% 1.301x1077 2.58x108 1.30x107

Eighth example: Nonlinear Fredholm equation

Finally, we use the same method to find the approximate solution of the nonlinear Fredholm integro-differential
equation which is studied by Islam et al. (2013).

1 1
u'(x) +ulx) = E(e_2 -1+ f u?(t)dt

0

u(0) =1 (29)
Exact solution is u(x) = e™* . Approximate solution for (29) is taken as

u(x) =143 Cx" (30)

and after evaluating the coefficients C,, the collocation solution is
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u(x) =1 —0.999x + 0.499x2 — 0.166x3 + 0.041x* — 0.008x° + 0.001x°
—0.0001x7 + 0.00002x8 — 0.000002x° + 1.677 X 1077 x10 (31)

Table 8 gives the errors in collocation as well as the two other methods indicated above.

Table 8. Comparison of absolute error values of the approximate solutions of Eq. (29)

X Haar wavelet B-Spline wavelet Collocation
0.125 3.759x10°7 7.5x10°7 6.2983x101
0.250 6.6413x107 2.0x107 6.4948x101
0.375 8.6917x107 1.8x10° 6.7090x10°1
0.500 1.0020x10® 3.0x10°® 6.9033x102
0.625 1.0757x10® 3.4x10°6 7.0754x10713
0.750 1.1029x10 3.0x10 7.2214x10°18
0.875 1.0944x108 1.6x10® 7.3024x10713

CONCLUSION

Linear and nonlinear Volterra-Fredholm integro-differential equations were solved using the point collocation
method. Eight test cases were chosen from the literature and the solutions were carried out using 5 to 20 collocation
points. In all cases, it was observed that the solution is very close to exact solution for even 5 or 10 collocation points.
The nonlinear problems naturally lead to a nonlinear system of algebraic equations which are considerably harder to
solve than linear systems. It was observed that, of possible multiple solutions of the nonlinear system, the ones with
the smallest absolute values give very good approximate solutions.

In terms of effort, the other solution methods mentioned above use complicated and computationally more costly
mathematical operations compared to the collocation method which simply forms the residual and obtains a system
of equations without any intermediary operations. Therefore, it is safe to conclude that the collocation method
requires less effort.

These results show that the collocation is a powerful and simple to apply method which can easily be adopted to
other types of equations such as fractional differential equations.
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