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ABSTRACT 

Collision avoidance mechanisms are important topics for studies in the field of autonomous vehicles. We could 

obtain prior information about the collision from the movement angles of vehicles. Therefore, it is important issue 

to learn the movement angles of vehicles in motion. In the study, an architectural model is developed that learns 

the horizontal movement angles of vehicles to form a base for collision warning systems. YOLOv3 is modified 

and used on motion profiles. Thanks to the learned angle values, also the bounding boxes match the traces in the 

motion profiles smoothly. The results obtained have a mAP value of 79% and an operating speed of 36 FPS. These 

results are better than when trained on motion profiles of the YOLOv3 architecture. In addition, the use of the 

new architecture on motion profiles and factors such as noise and bad weather in the image do not adversely affect 

the results. With these features, a fundamental step has been taken for anti-collision systems. 

Keywords: anti-collision, deep learning, driving videos, movement angle, skew bounding boxes 

ÖZET 

Çarpışma önleme mekanizmaları otonom araçlar alanındaki çalışmalar için önemli bir konudur. Araçların hareket 

açılarından çarpışma hakkında önceden bilgi alma imkanımız olmaktadır. Bu nedenle hareket halindeki araçların 

hareket açılarının öğrenilmesi önemli bir konudur. Çalışmada çarpışma uyarı sistemlerine temel oluşturmak 

amacıyla araçların yatay hareket açılarını öğrenen bir mimari model geliştirilmiştir. Başarılı derin öğrenme 

mimarilerinden biri olan YOLOv3 geliştirilerek elde edilen yeni mimari hareket profilleri üzerinde kullanıldı. 

Öğrenilen açı değerleri sayesinde sınırlayıcı kutular da, hareket profillerindeki izlerle tam olarak eşleşmektedir. 

Elde edilen sonuçlar %79 mAP değerine ve 36 FPS çalışma hızına sahiptir. Bu sonuçlar, saf YOLOv3 mimarisinin 

hareket profilleri üzerinde eğitildiklerinde elde edilen sonuçlardan daha iyidir. Yeni mimarinin hareket 

profillerinde kullanılması ile görüntüdeki gürültü, kötü hava gibi etkenler sonuçlarımızı olumsuz 

etkilememektedir. Bu özellikleri ile çarpışma önleyici sistemler için önemli bir adım atılmıştır. 

Anahtar Kelimeler: çarpışma önleme, derin öğrenme, sürüş videoları, hareket açısı, eğik sınırlayıcı kutular 
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INTRODUCTION 

With the advancement of autonomous systems, studies on autonomous vehicles are also increasing. At the 

forefront of these studies are anti-collision systems. In these systems, it is of great importance to detect the 

surrounding objects and their movements by using images taken from the camera inside the vehicle. Therefore, 

in addition to detecting moving objects, their direction of movement must be successfully detected. While doing 

this, it is necessary to have an architecture that produces fast results in order to be used in real-time systems. One 

of the challenges here is working on images with ever-changing backgrounds. Besides, it is important in terms of 

the durability of the method to be developed in dealing with external factors such as noise, bad weather conditions, 

and reflection in the image. 

 

Collision warning mechanisms are an important issue for today’s autonomous vehicles. We can have information 

about whether there will be a collision by looking at the movement angles of the vehicles. To do this, we need to 

observe both the horizontal and vertical movements of the vehicles. In the study, an architectural model that learns 

the horizontal movement angles of vehicles has been developed to form a basis for collision warning systems. 

The probability of collision is much higher at the point where the horizontal movements of the vehicles are close 

to 0 degrees (Kilicarslan & Zheng, 2018). Therefore, learning the motion angles of moving vehicles is an 

important issue.  

 

In general, objects are detected first and then the detected objects are tracked to make sense of the movements of 

moving objects. Shape-based vehicle detection systems only provide the position of the vehicle within a picture 

frame. For autonomous systems, successful detection of both the vehicle position and the direction of movement 

is a very important criterion. 

 

 

Figure 1. The Figure Illustrates the Overall Framework and Pipeline of the Method 

 

 

As an alternative to other methods of identifying vehicles in each video frame and monitoring video frames, 

motion information is extracted and analyzed as smaller-dimensional data. Motion profiles represent picture 

frames that contain summary information about the motion of moving objects. These profiles have smaller sizes 

than normal images. In this way, the processing time is shorter. The movements of the vehicles can be seen as 

certain traces on the movement profiles. These tracks represent information containing relevant movements 

relative to the current vehicle. When looking at the relative movements of other vehicles from the current vehicle, 

it is seen that these movements have a certain structure. The traces left by fixed and background objects can be 

easily distinguished from the structure. Traditional shape-based axis-aligned deep learning architectures have a 

structure based on the x-axis, y-axis, width, and height values of detected objects. Considering these architectures, 

it is seen that the traces left by the vehicles on the movement profiles do not fully comply with these structures. 

Axis-aligned bounding boxes are used in common object detection methods. However, when the movement 

profiles of the driving videos are examined, it is seen that the traces left by the vehicles on the profile are not in 

line with the axis and have an inclined structure depending on the movement speed. 
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The process steps of the developed method from beginning to end are shown in Figure 1. In the first step, the 

whole motion profiles of the video sequences were created. These profiles are increased by some data 

augmentation methods. Then, after a preprocessing step, motion profile patches of 1024x32 dimensions were 

created so that they could be used in the new architecture. For the training process, the dataset was divided into 

training, validation, and testing at the rate of 70%, 20%, and 10%, respectively. After the model training step, the 

obtained model was evaluated on the test data, and the results were interpreted. 

 

 

Figure 2. Different Representations of The Motion Profile of the Whole Video  

 

Figure 2 presents the different types of representations of the whole motion profiles. There is a whole motion 

profile in Figure 2(a), a representation of vehicles with traditional boxes in Figure 2(b), a declaration of vehicles 

with skew boxes in Figure 2(c), and a colored display according to the angle of movement of vehicles in Figure 

2(d).  

 

The remainder of this paper is organized as follows: Section 2 explains the related works. Section 3 presents the 

proposed SDA algorithm, and Section 4 shows the experiments for a proposed method and accuracy evaluation 

results. Finally, Section 5 clarifies the results and informs about future works of the paper. 

RELATED WORK 

Processing video footage is a demanding but challenging task today. With image processing methods, meaningful 

information can be extracted from moving and fixed camera images. One of the most challenging aspects of 

working with motion camera images is the objects' location in an ever-changing environment. In addition, being 

able to deal with noise, reflection, scaling and similar challenges on video images is critical to developing a 

durable model.  

 

Object detection and recognition, which are essential elements of digital image processing applications, have been 

struggling for many years. In recent years, thanks to advances in graphics processing units (GPU) and deep 

learning, object detection, and identification methods have been developed with higher accuracy. Along with these 

developments, many studies (Zhang et al., 2017; Gordon et al., 2018; Cao et al., 2017) have been conducted on 

moving objects in video images. These studies are generally on object detection and tracking of detected objects 

(Behrendt et al., 2017). The first approach using deep learning in multi-object tracking was (Wang et al., 2014), 

presented in 2014. Another study (Cadieu et al., 2008), proposed a two-layer autoencoder used to improve visual 

features. Computation of similarities was performed using an SVM after the feature extraction step and it was 

shown that feature improvement soundly enhanced the model performance. However, the dataset the algorithm 

tested is not widely used and the results are not comparable to other methods.  

 

a b 

d c 
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In a study (Chen et al., 2018) to calculate a similarity score and a bounding box regression simultaneously, the 

convolutional portion of ResNet was used to construct a custom model by stacking an LSTM cell on top of 

convolutions. A visual displacement network was proposed that learns to predict the next position of the object 

based on the preceding positions of the objects and the effect of an object on other objects in the scene (Zhou et 

al., 2018). This network was then used to predict the position of the objects in the next frame, taking their past 

trajectories as input. The network was also competent in extracting visual information from predicted locations 

and principal detections to calculate a similarity score.  

 

In the method developed based on deep learning to detect and monitor traffic lights in real-time (Behrendt et al., 

2017), 2 different neural networks were used to detect and monitor traffic lights based on YOLO architecture. 

One of the neural networks was trained for traffic light detection and the other one was trained to detect cases 

where traffic lights are misperceived. In another study (John & Mita, 2019), an image-based semantic 

interpretation architecture was proposed for the autonomous vehicle. To understand the movements of 

neighboring vehicles, a view-based vehicle spatio-temporal prediction framework was proposed using YOLOv3 

and the new multi-frame semantic segmentation architecture. A rule-based system was used to make sense of the 

movements of neighboring vehicles by using the estimated vehicle location and movement information.  

 

In the study, which is aimed at real-time in-vehicle video analysis to find and follow the vehicles in front (Jazayeri 

et al., 2011), the features extracted from the video are continuously projected and followed on a 1D profile. The 

hidden Markov Model (HMM) was used to separate and track target vehicles from the background. The method 

is tested in daytime and night-time videos on different road types, where it is robust and effective in dealing with 

background and lighting changes, as well as working in real time for dash cams. In the method (Li et al., 2020) 

that detects the rotated objects based on the YOLO architecture, although the rotated state of the object was 

detected, no information about the rotation angle was accessed. A summary of the above-mentioned studies is 

given in Table 1. 

 

Image and video processing methods have various application areas mentioned above. One of these application 

areas is autonomous vehicles and advanced driving support systems. Today, object detection from images has 

reached high levels of accuracy. However, these methods usually detect objects independent of the temporal 

dimension and then try to establish relationships between objects by following the objects using models such as 

LSTM (Hochreiter & Schmidhuber, 1997; Liang & Zhou, 2018). LSTM is a recurrent neural network (RNN) that 

remembers values at promiscuous intervals. Each sequence requires four linear layers per cell at a time step and 

for each row. These layers consume large amounts of memory bandwidth. Therefore, most computational units 

cannot be used when the system does not have sufficient memory bandwidth to feed the computational units. 

There may be such constraints in the use of LSTMs as it is difficult to add more memory bandwidth. This makes 

it difficult to use in real-time systems. Detection of vehicles in traffic, which is one of the applications that need 

to work in real-time, is an important problem for advanced driver support systems (ADAS) and autonomous 

systems. Therefore, it is necessary to detect the target vehicle and make sense of its movement, both with high 

accuracy and in real-time. In safe driving systems, to understand the vehicle-vehicle interaction, the direction of 

movement of the target vehicle relative to the vehicle must be detected instantaneously. 

 

When previous studies were examined, no detailed study was found on learning the direction of movement of 

vehicles. Therefore, a study was conducted to learn the movement angles of the vehicles. Some angle values are 

more effective in causing an accident. The importance of this study is that angular movements can be detected 

instantly at continuous values. In this way, it can be used for autonomous vehicles and collision avoidance 

systems. 

 

Table 1.  Comparative Table of the Literature Works 

Authors Cadieu  

et al., 2018 

Jazayeri  

et al., 2011 

Wang  

et al., 2014 

Behrendt   

et al., 2017 

Chen  

et al., 2018 

Zhou  

et al., 2018 

John & Mita, 

2019 

Li  

et al., 2020 
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Methodology Two-layer 

encoder  
and SVM 

Hidden 

Markov 
Model 

Multi-object 

tracking 

Detect-track        

approach, two 
different 

YOLO 

architecture 

ResNet  

and LSTM 
combination 

Visual 

displacement 
network  

 

YOLOv3, 

semantic 
segmentation, 

and rule-based 

approach 

Rotated 

object 
detection 

using YOLO 

architecture 

 

SKEWED-YOLO FOR DETECTION ANGLES AND DIRECTIONS 

YOLOv3 is an efficient convolutional neural network used for object detection. This architecture splits any input 

image into the SxS grid system. Each grid in the input image is accountable for object detection. Grid cell estimates 

the number of bounding boxes of an object (Hui, 2018). There are five items for each boundary box (x, y, w, h, 

confidence score). (x,y), w and h are the coordinates, width, and height of the object in the input image, 

respectively. The confidence score is the probability that the box contains objects and how precise the bounding 

box is. Such algorithms are frequently used in real-time object detection. YOLOv3 has many features we need for 

real-time object detection by correctly classifying objects. In the study, a new architecture was created by 

developing the YOLOv3 architecture, which is one of the existing axis-aligned deep learning methods, on learning 

the angular values of the target vehicles, movement directions, and movements of the vehicles by working with 

in-vehicle video images.  

 

 

Figure 3. Creating Motion Profiles from Video Frames. 

 

The new architecture seen in Figure 1 was trained on image fragments containing motion information of vehicles, 

called motion profiles, and a study was conducted to form a basis for anti-collision systems. Thanks to motion 

profiles, several video frames are combined into a single frame. Thus, the size of the data to be processed is 

significantly reduced. Since the obtained method works with the smallest size images suitable for the problem, it 

also improved the FPS value that YOLOv3 obtained on 416x416 images, which can be used in real-time 

applications. In addition, the method, without the need for an object detection-tracking paradigm, it has been 

transformed into a single combined image processing as in conventional shape-based object detection methods. 

In addition, the angle parameter, which is a newly added parameter to architecture different from others, was 

learned by participating in the training process. 

Creation of Motion Profiles 

In the training phase of the obtained architecture, picture fragments containing the motion information of the 

vehicles, called motion profiles, were used. While creating motion profiles, a one-dimensional array is obtained 

by vertically averaging the pixel values in that area along a certain height from the ground near the horizon 

according to the camera’s point of view. “dt” of these sequences will be combined sequentially to form the 
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horizontal movement information of the vehicles. Here, “dt” also denotes the retrospective video frame count 

used to create the motion profile. The motion profile shows the relative motion relative to another vehicle. The 

formula (Kilicarslan & Temel, 2022) for the creation of motion profiles is as in (1).  

𝑀𝑃𝐼(𝑥; 𝑡) = ∑ 𝐼(𝑥, 𝑦, 𝑡)

ℎ+𝑑ℎ

𝑦=ℎ

 
 

(1) 

Here “h” represents a point close to the horizon line, and “dh” represents the height of the piece to be taken from 

the horizon line. An example of this is shown in Figure 3. The yellow cross-section in this picture shows the area 

used when creating the motion profile, and the orange line shows the “h” point. Movement profiles are in the 

structure given in Figure 2(a). The boxes on the motion profiles represent vehicles and their motions. Since it is 

averaged in the “dh” range, smooth transitions and continuity of the tracks are ensured in the driving videos. Also, 

luminance consistency is not required like in optical flow-based methods. Therefore, interruption in intensity 

luminosity will not influence the understanding of motion.  

Choosing the “dt” value is very important to understand the movements in the movement profiles. When very 

small "dt" values were selected, the angles could not be learned sufficiently because there was not enough vehicle 

motion information in the motion profiles. At very large "dt" values, it may contain more than one movement 

pattern other than the current situation. In this case, an attempt will be made to learn the angle value on a wrong 

pattern, and this will cause inconsistency. 

Taking these considerations into account, “dt” is set to 16 frames (0.8 s) in MPI as the motion profile patch image. 

However, these patches are resized to 32 pixels to be compatible with YOLOv3 sublayers. In this way, the size 

of the image to be used as input is reduced by 24 times. 

 

Angles of Moving Objects 

After creating motion profile images, angles must be calculated. Bounding boxes in labeled videos were used 

while performing this process. While calculating the angles, bounding boxes between the current frame and 

previous dt frames are used. The midpoints of the two bounding boxes are found, then these midpoints are 

connected with a straight line to find the motion direction. The position of the vehicle we are in does not affect 

the calculation. Because the angle is calculated depending on the movement of the surrounding vehicles between 

the previous position of the “dt” frame and the bounding boxes in their current positions. We can test this by 

making use of the feature of motion profiles providing us with backward motion information.  

The calculation of the formula is shown in (2) and Figure 2. While the red boxes in Figure 5 show the bounding 

box in the previous picture as much as the “dt” video frame, the blue ones show the bounding boxes of the same 

vehicle in the current video frame. We find the midpoints of both boxes on the horizontal axis and combine them 

with a line to determine the slope of this line as the angle of the vehicle’s movement. Colored curved lines are the 

line segments that show the movement angles of the vehicles. 

 

𝛼 = atan⁡(
⁡Xcenter(t) − Xcenter(t − dt)

𝑑𝑡
) 

  (2) 

Xcenter = midpoint of the horizontal axis of the bounding box 

t = current video frame 

dt = number of images to be taken backward from the current video frame (time interval) 
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Figure 4. Colored Representation of the Created Angles on the Coordinate System. 

 

In a complicated background, distance background objects may have similar traces to the target vehicles, and 

empty regions in between two vehicles cause ambiguities. Hence, angles less than minus 85 degrees and greater 

than 85 degrees were considered as background objects. The visual representation of the coloring of the skewed 

bounding boxes depending on the angles in the test phase is as in Figure 4. 

 

New IOU 

While the results are being obtained, the IOU metric is different from the one used in general object detection, 

and the angle difference between the learned angles and the real angles is also obtained by participating in the 

calculation, following the problem. The mentioned formula is shown in (3). In the new architecture created, 

besides the x-coordinate, y-coordinate, width, and height information of the object, the angle is also included in 

the calculation as a parameter to be learned. 

𝐼𝑂𝑈𝑛𝑒𝑤 =
(

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑟𝑒𝑎

𝑏𝑜𝑥1𝐴𝑟𝑒𝑎 + ⁡𝑏𝑜𝑥2𝐴𝑟𝑒𝑎 − 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑟𝑒𝑎
)

𝑥 cos(𝑏𝑜𝑥1𝛼 − 𝑏𝑜𝑥2𝛼)

 

 

(3) 

Loss Function Calculation 

In addition to the total loss function used in YOLOv3, the loss function of the angles has also been added. The 

mean square error method was used while calculating the loss function of the angles and width-height of the 

boxes. For loss calculation of confidence, class, and x-y coordinates of boxes binary cross entropy was operated. 

The formula for the calculation is as in (4). Besides, the weight value of Lx is set larger than the other loss functions 

to increase the learning rate of the angles. 

Lloss = Lxy + Lwh + Lconfidence + Lclass + Langle (4) 

Table 2.  Model Training Parameters 

 YOLOv3  SDA-YOLOv3  

Learning Rate 0.001 0.0001 

Batch Size 32 32 

Epoch 51 101 

Optimizer Adam Adam 

Anchors (w x h) [40 x 24]  

[120 x 24]  

[350 x 24] 

[10x32] [16x32] [28x32] 

[42x32] [62x32] [96x32] 

[116x32] [156x32] [337x32] 
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Image size (w x h) 1024 x 64 1024 x 32 

 

EXPERIMENTS 

In the study, the publicly available Toyota Motor Europe Motorway Dataset (TME) (Caraffi et al., 2012) dataset 

was used. This dataset consists of image frames with a resolution of 768 x 1024. The number of frames per second 

is 20. TME dataset consists of a total of 28 videos containing more than 30000 images. 20 of these videos covering 

different conditions were selected. The TME dataset consists of videos at different times of the day. In this way, 

data with different lighting conditions are available. Data is taken only from the highway. It includes all possible 

traffic conditions on the highway. The videos were converted into images and 20600 images were obtained. 

Images obtained from the videos were increased using the data augmentation method. 

The SDA model is developed in Python using Tensorflow Keras API and trained on the Nvidia Tesla T4 graphics 

card with 16GB memory and with Cuda v12 dependencies for GPU support. Also, 12 GB of memory is enough 

to handle the model creation and testing task. Experiments and inferences are made on an Ubuntu machine with 

Intel(R) Xeon(R) CPU 2.20GHz and Tesla T4 GPU hardware. For all the training experiments, the default 

YOLOv3 parameters are used. different from the default settings, anchors are set to different scales in Table 2. 

To learn the angles better, the loss values of the angle were multiplied by a larger weight value. 

During the training phase, 70% of the dataset was used, while 20% and 10% were used for validation and testing, 

respectively. The bounding boxes in the existing labeling have been changed to cover only the rear of the vehicles. 

In addition, vehicles are not labeled in cases where there is no rear view of the vehicles and some parts of them 

are covered by different vehicles. In addition, the oncoming vehicles were excluded from the data set, since the 

movements of oncoming vehicles left traces in the motion profiles similar to the background image, and the 

outgoing and incoming vehicles in the data set were clearly separated by a barrier. Data distributions according 

to the angles are given in Figure 7. As seen in Figure 7(a), the data in the dataset is not evenly distributed according 

to the angles. This creates an obstacle to learning the angles that do not have enough numbers. Therefore, the data 

augmentation process has become mandatory. While increasing the data, the number of data was doubled, and the 

pictures were rotated to be symmetrical with respect to the y-axis. In addition, the coordinates and angles of the 

vehicles were recalculated according to the formula (5) and added to the available data, and the training process 

was repeated under the same conditions.  

Xcenteraugmented = 𝑊𝑖 − ⁡Xcenter 

Ycenteraugmented = 𝑌center 

𝑊𝑖𝑑𝑡ℎ = 𝑊𝑖𝑑𝑡ℎ 

𝐻𝑒𝑖𝑔ℎ𝑡 = 𝐻𝑒𝑖𝑔𝑡ℎ 

𝛼augmented = (−1) ∗ ⁡𝛼 

 

 

 

 

 

(5) 

 

 

a 

b 
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Figure 5. a. Motion Directions are Color Lines, Red Boxes are Current Frame, Blue Boxes are dt Frame 

Previous b. Visualization of Determining the Direction of Movement. 

 

In the study, progress was observed in learning the angle as a new parameter on the YOLOv3 (Muehlemann, 

2019) deep learning architecture. Generally, each picture is given separately to the training process. Instead, a 

single motion profile picture of the video was created, and this whole profile was cut piece by piece in the code 

(Figure 6) and participated in the training process. In this way, the time taken to read the picture at each step is 

shortened. The training process has been expedited. Model training time is important for practical 

implementations. The average training time for SDA-YOLOv3 is 9 hours, this training time with YOLOv3 is 

approximately 10 hours. While the model size obtained using the YOLOv3 architecture is 246 MB, this value is 

236 MB in the SDA-YOLOv3 architecture. While calculating the average precision value, the values produced 

for each of the test images were compared with the ground truth values. Boxes with an intersection-over-union 

(3) value above 0.5 were considered TP. The values that should not be in the picture but we found are accepted 

as FP, and the values that should be but we could not find are accepted as FN. When the results were 

interpreted, a 79% average precision value, which is better than the average precision value obtained on black 

padded motion profiles (Kilicarslan & Temel, 2022) of the YOLOv3 architecture used for object detection, was 

found.  

Mean average precision (mAP) is used to evaluate object detection models. mAP compares the ground truth 

bounding box with the detected box and returns a score. The higher the score, the more accurate the model's 

determinations. When a model has high recall but low precision, the model correctly classifies most positive 

examples but has many false positives. When a model has high precision but low recall, the model is accurate 

when it classifies an example as positive but can classify only a fraction of the positive examples.  

Since it is known that there is a general trade-off between precision and recall, a balanced precision-recall graph 

is required to obtain the best mAP results. Since the mAP metric is used in the testing phase of general object 

detection algorithms, this metric was used as the accuracy metric for YOLOv3 and SDA-YOLOv3. Thanks to 

the high mAP value, we can make more accurate determinations. In the proposed method, the 3% difference in 

mAP value is a significant difference for object detection models. 

The angles obtained in the test results were compared with the ground truth data. It can find angles with an 

average difference of 3 degrees. When the angle differences between ground truth data and predicted data are 

examined, it is seen that the angle differences of the data, which are very few in number in ground truth data, are 

much higher. This is clearly seen in Figure 8. Angles can be found with a difference of about 2 degrees in the 

parts where the data is sufficient. 

 

Figure 6. The Transition from Whole Profile to Motion Profile for the Training Process. 
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In the test part, the necessary development has been made for the drawing of angular bounding boxes, unlike the 

normal bounding boxes. In this way, bounding boxes can be drawn on the motion profiles that fully adapt. This 

shows that the angle can be learned together with the coordinate information of the boxes. This is shown in Figure 

9. 

 

Figure 7. Chart Showing the Distribution of the Data by Angles. (a) Normal Data, (b) Augmented Data) 

 

RESULTS AND FUTURE WORKS 

Looking at the results in Table 3, better results were obtained with the normal YOLOv3. In addition, motion 

angles could be detected with high accuracy. Due to the high number of FP’s in both YOLOv3 architectures, the 

mAP rate is low. The reason for this is that the background images and vehicle reflections have similar images to 

the vehicle movement, so even if there is no vehicle there, it can produce results as a vehicle. Therefore, not only 

the motion information is sufficient, but also the shape information must be added.  

 

Figure 8. The Average Difference of the Angles Learned According to the Degree Distribution of the Data in 

the Training Data 

 

The main purpose of the study is to present a new architecture that learns the angle parameter rather than increasing 

the accuracy of a found method. Therefore, although the mAP value seems low, the results are sufficient to have 

better results than normal YOLOv3. Learning the movement angles and directions of the vehicles is important in 

terms of making sense of the movements of the vehicles and thus using them in anti-collision systems. The test 

results of the presented method and the test results of the YOLOv3 architecture are given in Figure 10. The results 

obtained by learning the movement angles are more suitable for oblique patterns. The green skewed boxes 

a b 



KSÜ Mühendislik Bilimleri Dergisi, 27(1), 2024                     102 KSU J Eng Sci, 27(1), 2024 

Araştırma Makalesi  Research Article 

T. Temel, M. Kılıçarslan, Y. Hoşcan 

 
represent the results obtained from the SDA-YOLOv3 architecture. The yellow bounding boxes are the test images 

obtained from the YOLOv3 architecture. 

In the method offered, bad weather conditions, noise in the image, etc. factors do not adversely affect the results. 

Thus, we have obtained a more consistent and durable system. 

Table 3.  Overall Results and Comparison 

 YOLOv3 (Kilicarslan & 

Temel, 2022) 

SDA-YOLOv3 (Proposed)  

mAP 73% 79% 

FPS 35 36 

Angle Difference No Angle Information ~3 degrees 

 

In such applications, motion information is mostly obtained by using the optical flow method (Liu et al., 2013; 

Yun et al., 2022). Then, working on sequential data such as LSTM for object tracking recurrent neural networks 

are used. Since the method we presented does not use methods such as optical flow and LSTM, we have obtained 

a real-time application that works faster. In addition, by improving on the current deep learning architecture used 

in object detection, we were able to find the direction and angle of movement of the vehicle on a single image 

without using any tracking algorithms. In this way, a study that can be the basis of anti-collision systems has been 

revealed. 

 

Figure 9. Images of Test Results on Motion Profiles (Motion Angles and Colorized Representation) 

 

 

Figure 10. Comparative results of YOLOv3 and SDA-YOLOv3 architectures on visual example. 
 

In the next study, the sigma parameter, which gives us the approach-divergence ratio of the vehicles, can be added 

to the training process. In another study, both horizontal and vertical movement information can be obtained by 

using vertical and horizontal movement profiles together. In this way, both studies can create a method that can 

be used in collision avoidance systems. 

SUPPLEMENTARY MATERIAL 
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Sample video of test results can be found at the following link: 

https://drive.google.com/file/d/1deo4Ct_CKQuNQfgBsX7ljLMEyHa6qkM9/view?usp=sharing 
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