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Abstract

The aim of the present paper is to introduce a Sasakian manifold immersed with a quarter-
symmetric semimetric connection to a tangent bundle. Some basic results are given on a
Riemannian connection and a QSSC to the tangent bundle on a Sasakian manifold. The
geometrical properties of a Sasakian manifold to its tangent bundle are also discussed.

1. Introduction

A quartersymmetric linear connection with an affine connection ∇ in differentiable manifolds was defined and studied by
Golab [1]. Let T̃0 be a torsion tensor defied as

T̃0(X0,Y0) = u(Y0)φX0−u(X0)φY0, (1.1)

where u ∈ ℑ1
0(M),φ ∈ ℑ1

1(M), then ∇ is known as a quarter symmetric connection.
Several authors made precious contributions to a QSSC including ( [2], [3]). Dida et. al. ( [4], [5]) studied the geometry of II
order tangent bundle and Ricci soliton on the tangent bundle with semisymmetric metric connection. Golden Riemannian
structure on tangent bundles were studied and some basic results was proved on it by Peyghan et. al. [6]. Recently, Altunbas
et. al. [7] introduced and obtained fundamental results on Ricci soliton on tangent bundles by applying complete lifts.
Some theorems on a Lorentzian para-Sasakian manifold with a quartersymmetric metric connection on tangent bundles are
determined [8].
In this study, we apply the complete and vertical lifts on tensor fields and connections. The development of the theory of
hypersurfaces prolonged to tangent bundle with respect to complete lifts of metric tensor of a Riemannian manifold is attributed
to Tani [9]. In 2022, Khan [10] studied submanifolds of a Riemannian manifold endowed with a new type of semi-symmetric
non-metric connection in the tangent bundle. Different geometers have studied and defined different types of connections and
structures which can be seen in ( [11]- [17]).
Lifts of hypersurface from a Sasakian manifold to its tangent bundle connected to a QSSC are examined in the proposed work.
Key findings include the following:
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• We proved the induced connection on a Sasakian manifold with QSSC concerning the unit normal is also a QSSC.
• We determined the formula for ∇̄C and ∇̂C with a QSSC on T M.
• We developed a relation between a QSSC ∇̊C with respect to Riemannian connection ∇C in (T S, g̃).
• We proved some theorems on geometrical properties with respect to ∇̊C and ∇C.

2. Preliminaries

Let M (dim= n) be a Riemannian manifold. For φ ∈ ℑ1
1(M),η0 ∈ ℑ0

1(M),ξ ∈ ℑ1
0(M) fulfilling

φ
2X =−X0 +η0(X0)ξ , (2.1)

M is called an almost contact manifold [18] and the structure (φ ,ξ ,η0) is called an almost contact structure on M. In addition,
there exists a metric tensor g satisfying

g(φX0,φY0) =g(X0,Y0)−η0(X0)η0(Y0),

g(X0,ξ ) =η0(X0),

then M is called an almost contact metric manifold [19].
The vector field ξ is said to be a Killing vector field if it generates a group of isometries or equivalently if g(∇X0 ξ ,Y0)+
g(∇Y0ξ ,X0) = 0.
If ξ is a Killing vector field then the contact metric manifold (φ ,ξ ,η0) is called a K-contact structure, and such a manifold
is called a K-contact manifold [19]. A K-contact Riemannian manifold (M,g) is called a Sasakian manifold ( [2], [20]) if
∀X0,Y0 ∈ ℑ1

0(M), we have

(∇X0φ)(Y0) = g(Y0,X0)ξ −η0(Y0)X0. (2.2)

Besides the relations (2.1) and (2.2), the following relations also hold in a Sasakian manifold

φξ = 0, η0(ξ ) = 1, ∇X0ξ =−φX0, g(φX0,Y0)+g(X0,φY0) = 0,

∀X0,Y0 ∈ ℑ1
0(M).

The torsion tensor T̂0 with the Levi-Civita connection ∇ and the linear connection ∇̂ is defined as

T̂0(X̂0,Ŷ0) = ∇̂X̂0
Ŷ0− ∇̂Ŷ0

X̂0− [X̂0,Ŷ0], (2.3)

∀X̂0,Ŷ0 ∈ ℑ1
0(M).

A QSSC ∇ in (M, ĝ) is defined as [21]

∇X̂0
Ŷ0 = ∇̂X̂0

Ŷ0− η̂(X̂0)φ̂Ŷ0 + ĝ(φ̂ X̂0,Ŷ0), (2.4)

which satisfies

(∇X̂0
ĝ(X̂0,Ŷ0) = 2η̂(X̂0)ĝ(Ŷ0, Ẑ0)− η̂(Ŷ0)ĝ(φ̂ X̂0, Ẑ0)+ η̂(Ẑ0)ĝ(φ̂ X̂0,Ŷ0), (2.5)

∀X̂0,Ŷ0 ∈ ℑ1
0(M), where ∇̂ is a Riemannian connection in (M, ĝ) and P̂ ∈ ℑ1

0(M) given by ĝ(P̂, X̂0) = η̂(X̂0).

Let T M be the tangent bundle of M. Superscripts C and V denote the complete and vertical lifts of the tensor fields. The
following characteristics of these lifts ( [10, 22, 23]):

[X̂0
C
,Ŷ0

C
] =[X̂0,Ŷ0]

C ; φ̂
C(X̂0

C
) = (φ̂(X̂0))

C,

φ̂
V (X̂0

C
) =φ̂

C(X̂0
V
) = (φ̂(X̂0))

V ; φ̂
V (X̂0

V
) = 0,

η̂0
V (X̂0

C
) =(η̂0(X̂0))

V ; η̂0
C(X̂0

C
) = (η̂0(X̂0))

C,

ĝC(X̂0
V
,Ŷ0

C
) =ĝC(X̂0

C
,Ŷ0

V
) = (ĝ(X̂0,Ŷ0))

V , (2.6)

ĝC(X̂0
V
,Ŷ0

C
) =(ĝ(X̂0,Ŷ0))

C,

∇̂
C(X̂0

C
,Ŷ0

C
) =(∇̂(X̂0,Ŷ0))

C,

∇̂
C(X̂0

C
,Ŷ0

V
) =(∇̂(X̂0,Ŷ0))

V ,

∀X0,Y0 ∈ ℑ1
0(M),η ∈ ℑ0

1(M),φ ∈ ℑ1
1(M).
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Let S (dim= n−1) be a manifold such that a mapping B : S→M. The tangent map of B represented by B̃ : T (T S)→ T (T M),
where B̃ : T S→ T M. The hypersurface S is a Riemannian manifold and g is induce metric on S such that

g(X0,Y0) = ĝ(BX0,BY0),

and

∇̂BX0BY0 = B(∇X0Y0)+h(X0,Y0)N, (2.7)

∀X0,Y0 ∈ ℑ1
0(M), where ∇̂ is induced connection, N is the unit normal vector field and h is the second fundamental tensor field

on (S,g) ( [9, 24]). The relation

h(X0,Y0) = g(HX0,Y0),H ∈ ℑ
1
1(S).

Definition 2.1 (i) If h = 0 then S is said to be totally geodesic with respect to ∇.
(ii) If h is proportional to g then S is said to be totally umbilical with respect to ∇ [25].

3. Lifts of a QSSC to the Tangent Bundle on a Sasakian Manifold

Let ∇̊ is a QSSC induced on the hypersurface S from ∇̄, fulfills

∇̄BX0BY0 = B(∇̊X0Y0)+h(X0,Y0)N, (3.1)

∀X0,Y0 ∈ ℑ1
0(S),m ∈ ℑ2

0(S).
Putting M = H−λ I, we get the relation

m(X0,Y0) = g(MX ,Y0),

∀I ∈ ℑ1
1(S).

Definition 3.1 (i) If m = 0 then S is said to be totally geodesic with respect to ∇̊.
(ii) If m ∝ g then S is said to be totally umbilical with respect to ∇̊.
In view of (2.4), we infer

∇̄BX BY = ∇̂BX BY − η̂0(BX)BφY0 + ĝ(BφX0,BY )ξ̂ , (3.2)

∀X0,Y0 ∈ ℑ1
0(S).

Using equations (2.7), (3.1) and (3.2), we obtain

B(∇̊X0Y0)+m(X0,Y0)N = B(∇X0Y0)+h(X0,Y0)N− η̂0(BX0)BφY0 + ĝ(BφX0,BY0)(Bξ +λN),

Put ξ̂ = Bξ +λN, where λ is a function, ξ ∈ ℑ1
0(S) and η0 ∈ ℑ0

1(S) determined by η0(X0) = η̂0(BX0) ( [19, 27, 28]).
Comparing the tangential and normal parts from both sides, we infer

∇̊X0Y0 =∇XY −η0(X0)φY0 +g(φX0,Y0)ξ ,

m(X0,Y0) =h(X0,Y0)+λg(φX0,Y0).

Hence, we state the following:

Theorem 3.1. The connection induced on a Riemannian manifold’s hypersurfaces with a QSSC on a Sasakian manifold with
respect to the unit normal is also a QSSC.

Let ĝ be an element of M and the complete lift ĝC be the element of T M. The induced metric on T S from ĝC by ĝ. Then

g̃(XC
0 ,Y

C
0 ) = ĝC(B̃XC

0 , B̃YC
0 ),∀X0,Y0 ∈ ℑ

0
1(S).

Let Riemannian connection ∇̂ be an element of (M, ĝ), then ∇̂C will be an element of (T M, ĝC). Let ∇ be an induced connection
in (S,g), then ∇C is an element of (T M, g̃).
We shall first state known results ( [6, 29])

Theorem 3.2. If T̂0 is torsion tensor of ∇̂ in (M, ĝ), then T̂0
C is torsion tensor of ∇̂C in (T M, ĝC).

Theorem 3.3. ∀X0,Y0 ∈ ℑ1
0(S)

η̂0
V (B̃XC

0 ) =η̂0
V (B̃XC̄

0 ) = #(η̂0
V (B̃XC

0 ) = #(η̂0(B̃X0)
V = (η̂0(B̃X0)

V̄ ,

η̂0
C(B̃XC

0 ) =η̂0
C(B̃XC̄

0 ) = #(η̂0
V (B̃X )

0 = #(η̂0(B̃X0)
C = (η̂0(B̃X0)

C̄,
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where # represents an operation of restriction and C̄ and V̄ represent complete and vertical lifts operatons on π
−1
M (τ(S)).

Applying the complete lifts on (2.4) and with the help of (2.6), we infer

(∇̄BX BY )C̄ =(∇̂BX BY )C̄− (η̂0(BX)BφY0)
C̄ +(ĝ(BφX0,BY )ξ̂ )C̄

(∇̄BX BY )C̄ =(∇̂BX BY )C̄− (η̂0(BX))C̄(BφY0)
C̄ + η̂0(BX))V̄ (BφY0)

V̄ )

+(ĝ(BφX0,BY ))C̄ξ̂ )V̄ +(ĝ(BφX0,BY ))V̄ ξ̂ )C̄

∇̄
C
B̃XC

0
B̃YC

0 =(∇̂C
B̃XC

0
B̃YC

0 − η̂0
C(B̃XC

0 )(B̃(φY0)
V )− η̂0

V (B̃XC
0 )(B̃(φY0)

C)

+(ĝC(B̃(φX0)
C, B̃(φX0)

C
ξ̂ )V̄ +(ĝC(B̃(φX0)

V , B̃(φX0)
C

ξ̂ )C̄.

We have

∇̄
C
B̃XC

0
B̃YC

0 − ∇̄
C
B̃YC

0
B̃XC

0 − [XC
0 ,Y

C
0 ] =− η̂0

C(B̃XC
0 )(B̃(φY0)

V )− η̂0
V (B̃XC

0 )(B̃(φY0)
C)+ η̂0

C(B̃YC
0 )(B̃(φX0)

V )

+ η̂0
V (B̃YC

0 )(B̃(φX0)
C).

From equation (2.3) and Theorem 3.2, we get

T̄C(BXC,BYC) =η̂0
C(B̃YC

0 )(B̃(φX0)
V )+ η̂0

V (B̃YC
0 )(B̃(φX0)

C)− η̂0
C(B̃XC

0 )(B̃(φY0)
V )− η̂0

V (B̃XC
0 )(B̃(φY0)

C). (3.3)

Now,

ĝC(∇̄C
B̃XC

0
B̃YC

0 , B̃ZC
0 )+ ĝC(B̃YC

0 , ∇̄C
B̃XC

0
B̃ZC

0 ) =ĝC(∇̄C
B̃XC

0
B̃YC

0 − η̂0
C(B̃XC

0 )(B̃(φY0)
V )− η̂0

C(B̃YC
0 )(B̃(φX0)

V )

+ ĝC(B̃(φX0)
C, B̃YC

0 )ξ̂ V̄ + ĝC(B̃(φX0)
V , B̃YC

0 )ξ̂ C̄, B̃ZC
0 )

+ ĝC(B̃Y0, ∇̂
C
B̃XC

0
B̃ZC

0 − η̂0
C(B̃XC

0 )(B̃(φZ0)
V )

− η̂0
V (B̃XC

0 )(B̃(φZ0)
C)+ ĝC(B̃(φX0)

C, B̃ZC
0 )ξ̂

V̄

+ ĝC(B̃(φX0)
V , B̃ZC

0 )ξ̂
C̄)

=ĝC(∇̄C
B̃XC

0
B̃YC

0 , B̃ZC
0 )+ ĝC(B̃YC

0 , ∇̄C
B̃XC

0
B̃ZC

0 )

+(η̂0(B̃Z0))
V (ĝ(B̃φX0, B̃Y0))

C

+(η̂0(B̃Z0))
C(ĝ(B̃φX0, B̃Y0))

V +(η̂0(B̃Y0))
V (ĝ(B̃φX0, B̃Z0))

C

+(η̂0(B̃Y0))
C(ĝ(B̃φX0, B̃Z0))

V

=(B̃XC
0 )ĝ

C(B̃YC
0 , B̃ZC

0 )+(η̂0(B̃Z0))
V (ĝ(B̃φX0, B̃Y0))

C

+(η̂0(B̃Z0))
C(ĝ(B̃φX0, B̃Y0))

V +(η̂0(B̃Y0))
V (ĝ(B̃φX0, B̃Z0))

C

+(η̂0(B̃Y0))
C(ĝ(B̃φX0, B̃Z0))

V .

On solving, we get

ĝC(∇̄C
B̃XC

0
B̃YC

0 , B̃ZC
0 ) = (η̂0(B̃Z0))

V (ĝ(B̃φX0, B̃Y0))
C

+ (η̂0(B̃Z0))
C(ĝ(B̃φX0, B̃Y0))

V

+ (η̂0(B̃Y0))
V (ĝ(B̃φX0, B̃Z0))

C

+ (η̂0(B̃Y0))
C(ĝ(B̃φX0, B̃Z0))

V . (3.4)

Hence, we state the following:

Theorem 3.4. Let ∇̄ be a QSSC with respect to ∇̂ in (M, ĝ) that fulfills equations (2.4) and (2.5). Then the QSSC ∇̄C on a
Sasakian manifold with respect to ∇̂ in (T M, ĝC) is represented by (3.4).

Now, applying the complete lifts on (2.4) and with the help of (2.6), we infer

(∇̄BX BY )C̄ =(∇̂BX BY )C̄− (η̂0(BX)(BφY0))
C̄ +(ĝ(BφX0,BY )ξ̂ )C̄,

(∇̄BX BY )C̄ =(∇̂BX BY )C̄− (η̂0(BX)C̄(BφY0)
V̄ + η̂0(BX)V̄ (BφY0)

C̄)+(ĝ(BφX0,BY ))C̄ξ̂ )V̄ +(ĝ(BφX0,BY ))V̄ ξ̂ )C̄,

∇̄
C
B̃XC

0
B̃YC

0 =∇̂
C
B̃XC

0
B̃YC

0 − η̂0
C(B̃XC

0 )(B̃φYV
0 )+ ĝC(B̃(φX0)

C, B̃YC
0 ))ξ̂ )V̄ + ĝC(B̃(φX0)

V , B̃YC
0 ))ξ̂ )C̄,

for arbitrary vector fields X0 and Y0 in S. Hence, from the equation (2.7) and the equation (3.1), we get

(B(∇̊XY )+m(X0,Y0)N)C̄ =(B(∇XY )+h(X0,Y0)N)C− η̂0
C(B̃XC

0 )(B̃(φY0)
V )− η̂0

V (B̃XC
0 )(B̃(φY0)

C)

+ ĝC(B̃(φX0)
C, B̃YC

0 ))(B̃ξ̂ )V +λ
V NV̄ )+ ĝC(B̃(φX0)

V , B̃YC
0 ))(B̃ξ̂ )C +λ

CNC̄ +λ
CNV ),
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B̃(∇̊XY )C =B̃(∇XY )C− η̂0
C(B̃XC

0 )(B̃(φY0)
V )− η̂0

V (B̃XC
0 )(B̃(φY0)

C)+ ĝC(B̃(φX0)
C, B̃YC

0 ))(B̃ξ̂ )V

+ ĝC(B̃(φX0)
V , B̃YC

0 ))(B̃ξ̂ )C. (3.5)

mV (XC
0 ,Y

C
0 )NC̄ +mC(XC

0 ,Y
C
0 )NV̄ =hV (XC

0 ,Y
C
0 )NC̄ +hC(XC

0 ,Y
C
0 )NV̄ )+λ

V ĝC(B̃(φX0)
C, B̃YC

0 )NV̄ )

+λ
cĝC(B̃(φX0)

C, B̃YC
0 )NC̄)+λ

CĝC(B̃(φX0)
C, B̃YC

0 )NV̄ ). (3.6)

(∇̊XY )C =(∇XY )C−η
C
0 (X

C
0 )(φY0)

V −η
V
0 (X

C
0 )(φY0)

C + g̃((φX0)
C,YC

0 )ξV + g̃((φX0)
V ,YC

0 )ξC, ∇̊C
XC

0
YC

0 (3.7)

=∇
C
XC

0
YC

0 −η
C
0 (X

C
0 )(φY0)

V −η
V
0 (X

C
0 )(φY0)

C + g̃((φX0)
C,YC

0 )ξV + g̃((φX0)
V ,YC

0 )ξC (3.8)

We have

∇̊
C
XC

0
YC

0 − ∇̊
C
YC

0
XC

0 − [XC
0 ,Y

C
0 ] = ηC

0 (Y
C
0 )(φX0)

V +ηV
0 (Y

C
0 )(φX0)

C−ηC
0 (X

C
0 )(φY0)

V −ηV
0 (X

C
0 )(φY0)

C

Similarly,

g̃(∇̊C
XC

0
YC

0 ,ZC
0 ) =XC

0 (g̃(Y
C
0 ,ZC

0 ))+(η0(Z0))
V g̃((φX0)

C,YC
0 )+(η0(Z0))

Cg̃((φX0)
V ,YC

0 )+(η0(Y0))
V g̃((φX0)

C,ZC
0 )

+(η0(Y0))
Cg̃((φX0)

C,ZV
0 ),

∇̊
C
XC

0
g̃)(YC

0 ,ZC
0 ) =(η0(Z0))

V g̃((φX0)
C,YC

0 )+(η0(Z0))
Cg̃((φX0)

V ,YC
0 )

+(η0(Y0))
V g̃((φX0)

C,ZC
0 )+(η0(Y0))

Cg̃((φX0)
V ,ZC

0 ). (3.9)

Hence, we state the following:

Theorem 3.5. Let ∇̊ be a QSSC with respect to ∇ in (S,g). Then the QSSC ∇̊C on a Sasakian manifold with respect to ∇C in
(T S, g̃) is represented by (3.9).

The QSSC ∇̊C on (T S, g̃) is defined as

∇̊
C
XC

0
YC

0 = ∇
C
XC

0
YC

0 −η
C
0 (X

C
0 )(φY0)

V −η
V
0 (X

C
0 )(φY0)

C + g̃((φX0)
C,YC

0 )ξV + g̃((φX0)
V ,YC

0 )ξC.

On applying the complete lifts of (3.1), we get

∇̄
C
B̃XC

0
B̃YC

0 = B̃(∇̊C
XC

0
YC

0 )+mV (XC
0 ,Y

C
0 )NC̄ +mC(XC

0 ,Y
C
0 )NV̄ .

From the equation (3.6), we acquire

mV (XC
0 ,Y

C
0 ) =hV (XC

0 ,Y
C
0 )+λ

CĝC(B̃(φX0)
V , B̃YC

0 )

mC(XC
0 ,Y

C
0 ) =hV (XC

0 ,Y
C
0 )+λ

V ĝC(B̃(φX0)
C, B̃YC

0 )+λ
CĝC(B̃(φX0)

V , B̃YC
0 )NV̄ ).

Thus, T S is totally umbilical iff

mV (X̃0,Ỹ0) =δ g̃(X̃0,Ỹ0),

mC(X̃0,Ỹ0) =µ g̃(X̃0,Ỹ0),

∀X0,Y0 ∈ ℑ1
0(S), where δ and µ are differentiable functions. If δ = µ = 0, then T S is totally geodesic.

Hence, we state the following:

Theorem 3.6. T S is totally umbilical corresponding to the QSSC ∇̊C on a Sasakian manifold iff it is totally umbilical or totally
geodesic with respect to ∇C.

4. Conclusion

We introduced and studied a Sasakian manifold immersed with a QSSM connection to the tangent bundle and some fundamental
results are obtained of it. Certain theorems on geometrical properties like totally umbilical, totally geodesic on a Sasakian
manifold on the tangent bundle are proved.
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