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ABSTRACT

Lithium-ion (Li-ion) batteries have become popular recently by performing better than conven-
tional batteries. With the advancements in battery technologies, the amount of energy stored by 
li-ion batteries increases, and important developments occur in control systems. In this article, 
temperature approaches to the design of advanced electrolyte solutions for Li-ion batteries, elec-
trochemical and electrode effects are examined. As a result of the study, it was observed that the 
amount of energy stored by Li-ion batteries increased with the developments in battery technolo-
gies and that there were significant developments in control systems. 

Cite this article as: Roshanaei K, Taşkesen E, Özkaymak M. Recent advances in lithium–ion 
battery utilization: A mini review. Sigma J Eng Nat Sci 2023;41(6):1272−1286.

Review Article

Recent advances in lithium–ion battery utilization: A mini review 

Khandan ROSHANAEI1 , Edip TAŞKESEN2,* , Mehmet ÖZKAYMAK1

1Department of Mechanical Engineering, Dusseldorf University, Dusseldorf, 40225, Germany 
2Department of Energy Systems Engineering, Faculty of Engineering, Şırnak University, Şırnak, 73000, Türkiye

ARTICLE INFO

Article history
Received: 10 November 2021
Revised: 19 January 2022
Accepted: 21 February 2022

Keywords:
Lithium-ion Battery; 
Temperature; Cathode; Anode 
and Separator

*Corresponding author.
*E-mail address: edip.taskesen@sirnak.edu.tr
This paper was recommended for publication in revised form by 
Regional Editor Ali Erdoğmuş

Published by Yıldız Technical University Press, İstanbul, Turkey
Copyright 2021, Yıldız Technical University. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

INTRODUCTION 

As it is obvious today energy and energy storage play 
more important role than any time in our history. Figure 2 
shows the global market values of the lithium-ion battery 
annually with the statistics from 1992 to 2020. To achieve 
the support of expansion in energy and power density, it is 
indispensable to imagine our future challenges for energy 
furthermore; energy storage by the use of new materials of 
chemistry. The general scheme of the battery has shown in 
the Figure 1. We should find paths for synthesizing new 
Nano-materials with up-to-date and latest properties, that 
can be used as electrodes or electrolytes in LIB’s [1].

With the advancement of technology, interest in lith-
ium-ion batteries is increasing. As the various articles 
revealed, the total consumption amount of energy increased 
drastically in a couple of years[6]. Also, energy usage in the 
countries with higher GDP is more than in other countries Figure 1. Illustrative sketch of LIB [2].
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[7]. Besides, results confirm the presence of a positive rela-
tionship between energy consumption and GDP per capita 
in both developed and underdeveloped countries [8]. The 
neutrality hypothesis reveals there is no causality between 
the consumption of energy and economic growth. The 
feedback hypothesis claims the presence of mutual inter-
dependence of economic growth and energy consumption 
[9]. As word oil forecast from 2008 to 2030 demonstrates, 
fossil fuels production will be decrease promptly, which 
means countries will not have the chance to use that kind of 
fuel forever [10]. With regards to robust empirical findings, 
we can conclude that due to massive consumption of fos-
sil fuels, the rapid degradation of the region’s environment 
moreover, carbon emission has happened all around the 
world. Indeed, a majority of environmental challenges in so 
many regions are exacerbated by the consumption of fossil 
fuels. It means that burning fossil fuels and carbon emis-
sion has parallel and direct relation [11].To surpass and 
diminish all the problems of fossil fuels and environmen-
tal problems one approach can be utilizing the renewable 
sources and energies like solar power, biofuel, etc. But the 
main problem in all these types of sources is their non-uni-
form energy output [12]. The most emphasize point due 
to the mentioned problems is to make a balance between 
the energy output and energy storage. The spirit item in 
the modern chain of energy supply is energy storage as the 
main factor to boost the grid stability and grow the pen-
etration of renewable energy resources, affect the energy 
productivity of the systems above all, deplete the environ-
mental impact of energy generation [13]. Though, to bal-
ance among the energy output and also the energy storage 
by employing the battery to reservoir energy. The battery 
utilizes a chemical reaction to convert the stored chemical 
energy into electrical energy and produce a voltage between 
two terminals. Batteries are used frequently in so different 
and various industrial and domestic fields. There are sev-
eral types of batteries also Lithium batteries with diverse 
battery technologies are used in off-grid, on-grid, hybrid 
and energy storages of the vehicles fields [14]. Lithium 

batteries component is lithium metal as an anode. The 
privilege of these batteries such as, safety, abundance and 
low cost of cathode material make them favorable for the 
future too. Lithium oxides and salts can be recycled which 
is the promising point of these batteries [15]. Li-ion bat-
teries can be designed for different ranges of power and 
energy due to cell sizes, thicknesses of the electrode, also 
relative quantities of material can be used [16]. Lithium bat-
tery manufacturers can produce small portable also large 
industrial batteries as power sources by addressing a very 
large market from portable phones to EVs [17]. Lithium 
batteries has so many advantages despite that, factors such 
as safety concerns, thermal runaway, short-circuiting, toxic 
gas emissions, overcharging, high cost reflect pettifogging 
and performance issues in those batteries [18]. One of the 
most important factors in LIB’s is safety. However, if they 
operated improperly, the chemical energy can be briskly 
rescued in the form of fire or explosions [19,20]. The other 
main concerns are the generated heat within the cell, which 
may be due the onset of thermal runaway [21–23]. Methods 
to ensure battery safety involve external or internal protec-
tion mechanisms External protection depends on external 
electronic devices like temperature sensors and pressure 
valves that increase the dead weight/volume of the bat-
tery. Internal protection relies on to focusing the inherent 
materials as battery elements and is considered being the 
summit solution for battery safety [24]. In recent times, the 
aging and deterioration of LIB cells and their reaction due 
to thermal effects and analyzing the effect of temperature 
has been studied and investigated in so many researches 
[25–35]. As the life cycle of LIB, thermal management is 
one of the key factors. Besides optimum operating tem-
perature of Lithium-ion battery pack is about 25–40 °C 
[36]. Reports illustrate that Li-ion cell performance, due 
to capacity fade, is sensitive to the operating temperature 
[30,37]. Likewise, cell action is commonly defined with a 
technique as Electrochemical Impedance Spectroscopy 
(EIS) [34,38]. As mentioned above temperature plays a 
vital role in LIB’s, also the increased temperature around 
LIB’s has resulted from the heat generation phenomena of 
Lithium-ion cells that happened while charging and dis-
charge cycles [39]. However, this study differs from existing 
papers in that it comprehensively analyzes the effects on the 
efficiency of LIBs and their use in various fields.

Effect of Temperature 
As Figure 3 reveals Lithium-ion batteries do not the 

look like the other type of batteries. In the other kinds, the 
temperature is so effective factor in their efficiency, e.g. the 
efficiency of the batteries has fluctuated due to the weather 
temperature. Although in LIB’s the efficiency does not 
change and rises up and down regards the outside factors. 

Researches demonstrate that power and capacity can 
diminish significantly while cells operated or are stored at 
temperatures above 50 °C and high States Of Charge (SOCs) 
[30]. One of the studies reports that high temperatures 

Figure 2.World market of LIB’s from 1992 to 2020 [3–5].
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hasten capacity decay, although temperatures, especially 
during charging, are also destructive, as they conduct the 
lithium plating and dendrite growth [25]. 

Figure 4. Shows various Cobalt oxides composites and 
inorganic materials are concerned on assorted industries. 
The major raw material as an anode for preparation of LIBs 
is Co3O4. Due to the researches which, illustrates Co3O4 
with obverse spinal constructions supposed to be used 
widely in new types of LIBs why has a great performance of 
high redox capacitance, physical effects and giant chemical 
freshness [41].

Figure 5, all the reversible and irreversible due to heat 
generation processes have been illustrated. Due to the 
figure, reversible process and entropy change on the elec-
trochemical reactions. Moreover, it shows the irreversible 
process and active polarization process on charge transfer 
resistance, ohmic heating process on transport resistance in 
phases, heating due to mixing on inhomogeneous ion dis-
tribution, and finally enthalpy change on the diffusion of 
Lithium ions has been shown [42].

Figure 6 shows the different looming monitoring the 
internal temperature of LIBs regards the sealed nature reac-
tions during operation. The approaches are classified in two 
brackets that include contact measurement and contactless 
measurement [42].

Effect of temperature on Lithium ion batteries
Figure 7 illustrates the effects of various temperature 

range and their effects on the negative electrode. Besides 
the effect of electrolyte decomposition has been depicted by 
details in the mentioned figure [43]. 

Figure 8 shows the results and consequences of high 
temperature on the cathode. Also, the depletion of viscosity 
by boosting the coating temperature enhances the produc-
tivity of the cathode [44].

Simply can be easily understood that thermal effect on 
Lithium ion batteries plays a vital role in the battery per-
formance besides the battery safety. Though; to clarify the 
temperature effect on the batteries, one can note the ther-
mal effects, which leads to the chemical reactions that hap-
pened in the batteries. Due to the chemical reactions, the 

        

Figure 3. As the figure shows, LIB’s efficiency remains constant as a result of seasonal changes [40].

Figure 4. Lithium ion batteries anode materials [41].
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connection among the changing rate of them and response 
of temperature that obey the Arrhenius equation [45]. In 
table 1 the thermal effects on the lithium ion batteries have 
been listed and depicted.

Effect on electrolyte
The electrolyte as part of polymer science is an interdis-

ciplinary field that encircles the polymer and chemistry as 
electrochemistry, organic chemistry, inorganic chemistry 
[47]. Also, the science of polymer electrolytes was emerged 
[48]. The lithium-ion batteries that recruit a solid-state 

Figure 5. Heat generation reversible and irreversible processes in LIBs [42].

Figure 7. Negative electrode and temperature effect [43].

Figure 6. Systematization of temperature monitoring ap-
proaches [42].
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electrolyte, due to the amount of flammability factor com-
monly are safer than the other types of electrolytes that uti-
lize the liquid organic electrolytes. To improve the quality 
of all-solid-state lithium-ion batteries should have the qual-
ifications such as giant conductivity of lithium ion batteries, 
good level of stability towards the chemical reaction with 
lithium in the anode part finally the good electrochemical 
capacity to use the high- voltage cathode materials [49]. As 
a general, there is the belief that states solid oxides elec-
trolytes have more advantages regards to their chemical 
stability and handling in comparison with the inorganic 
materials. Otherwise, the lithium-ion conductivity of the 
solid oxide electrolytes is less than the liquid organic elec-
trolytes and solid sulfide electrolytes [50–53]. 

Thermal runaway 
Nowadays by the rapid growth of population and as a 

sequence, huge needs for electric gadgets and equipment 
lithium-ion batteries and their role in the technology has 
been emphasized [19,54,55]. Nevertheless, safety in bat-
teries still is the chief problem and concern for scientists. 
The major calamitous failure of the LIB’s is their thermal 
runaway or simply TR, which should be avoided to be hap-
pened. Thermal runaway could happen as a result of over-
charging, short circuits of the interior cell, or in some cases 
the collision of the gadget. Moreover, during the thermal 

runaway chain reactions of sourcing the heat generation 
might be occurred [56–58]. Besides the exact source of the 
happening the thermal runaway mechanism of lithium-ion 
batteries need more comprehensive researches and inves-
tigations [59] as in some cases there is clear field failures 
thermal runaway also in others there are not clear causes 
[60].

Cathode, Anode and Separator 
As it is clear all kind of batteries involve the cathode, 

anode and electrolyte. The cathode is generally an oxide 
that embedded Lithium with very little chemical poten-
tial confirms a large open-cell voltage for the battery. Also 
Lithium intercalation causes remarkable electron move to 
the Oxygen ions in the structure [61]. Most research for 
cathode materials has concentrated on transition-metal 
oxides; the reason of this tendency is transition-metal oxide 
delivers a better cell voltage than most sulfides [61]. While 
the battery, which includes the Lithium-ion, has been 
charged Li+ ions are removed from the frame and moved 
through the electrolyte to the anode. Transfer electrons of 
the Li ions tends to de-stabilize the shape with regards to 
the increasing repulsion between the bare oxygen layers 
that face each other [61].

There are various effective items for designing and set-
tling the materials and development. The most functional 
factors could be arranged by different scaling. The first one 
is energy density and it is the amount of  energy  that can 
be stored or kept in a special mass of a substance or sys-
tem [62]. Also Density here determines the energy density 
with the articles reversible capacity or their operating volt-
age. In the second and third factors, electronic and ionic 
movability are the key factor [63]. The second factor is 
rate capability that relies on the fraction of maximum to 
minimum charge or discharge rate of a battery [64]. The 

Figure 8. Positive electrode and temperature effect [43].

Table 1. The most effective factors as thermal effects on the LIB’s.

Electrolyte decomposition [46].
Short circuit [46].
Electrolyte burning [46].
Separator melting [46].
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third element is cycling life performance. It is the round of 
the full recharges numbers depending on time and charge 
or discharge cycles. Now day’s batteries after reaching the 
maximum life cycle start to deteriorate faster and also their 
capacity to be recharged fully decreases [65]. The last two 
features are safety and cost. As it is clear the mentioned 
items should be assumed in the maximum level to reach 
the superior design [63]. 

Cathode
The three key components in batteries are cathode, 

anode and electrolyte. In today’s trading LIB’s, both anode 
and cathode materials are embedded materials. As we know 
from basic chemistry rules, the metal oxides in cathodes 
include of fixed host with specific sites for Lithium ions. 
Electrons tend to move from cathode to anode by the exter-
nal current collectors, which are named as electric circuit. 
In Lithium-ion batteries the chemical potential of Lithium 
is higher in the anode due to the cathode, though electric 
energy is stored in the form of (electro) chemical energy 
[63]. The separators must separate the cathode and anode 
areas. The separator is a micro-porous membrane, which 
lets the electrolyte enter or prevent the shorting circuit of 
electrodes [63]. The cathode material is usually the most 
expensive one with highest weight in the battery, which jus-
tifies the intense research focus on this electrode. Even in 
figure 9, the battery market share of lithium-ion batteries 
shows the percentage of each cathode, anode, separator and 
electrolyte quantity from 2018 to 2024 years. 

Lithium-ion Battery Market by Material has been 
divided into below groups [66]: 
•	 LCO (Lithium Cobalt Oxide)
•	 NMC (Lithium Nickel Manganese Cobalt Oxide)
•	 NCA (Lithium Nickel Cobalt Aluminum Oxide)
•	 LMO (Lithium Manganese Oxide)
•	 LPF (Lithium Iron Phosphate)

Anode
According to statistics for more than three decades 

Lithium batteries are used as energy storage technology 
also major power source in electronic appliance especially 
in different portable electronic devices [67,68]. The tech-
nology of the batteries is growing to be significant to the 
demands of large-scale devices that utilize the batteries. 
Though most important factors to meet their requirements 
like energy density and power performance are the research 
topics of the researchers. The market LIB’s due to their 
energy amount and power density, as anode type arranged 
to graphite type and remain batteries, according to cathode 
type can be ordered in lithium-phosphate- based and lith-
ium-metal-oxide type [69]. In Figure 10, potential alterna-
tive elements with reliable safety and steadiness cycling to 
traditional carbon-based anodes with tiny structure change 
have been revealed [70–72]. The development of high-ca-
pacity materials for LIB’s principally for cathode and anode 
materials provide a great moment for the execution of 
modern and newest batteries [73]. In general for anode 
materials, three types of reaction mechanisms outlined 

Figure 9. Global forecast for Lithium-ion battery market 2018-2024, Left graph shows the market share (percent) by ma-
terials, the right one reveals the market share by electrolyte [66].

Figure 10. The phase diagram of Ti-based [78].
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[74]. A graphitic carbon is the mainstay as successful inter-
calation-type material for the anode in today’s lithium-ion 
technology has commercialized [67,68]. Although the 
weaknesses of the graphite materials is their poor electrical 
conductivity of them even though their large irreversible 
capacity [75]. Over and above to classify the anode materi-
als based on the intercalation reaction mechanism Ti-based 
oxides such TiO2 and Li4Ti5O12 [76–78]. Moreover, in the 
figure 10, the phase diagram of Titanium base batteries has 
been drawn. 

Solid-Electrolyte interphase (SEI) 
Broadly the solid-electrolyte interphase or simply SEI 

is substantially for the existent operation of Lithium ion 
batteries, as principle and minor power sources [79]. Also, 
Peled in 1979 confirmed that the SEI model was reasonable 
for all alkali metals and; alkaline piles of earth in non-aque-
ous-battery systems [79]. Then the layer that formed 
directly, alongside contact of the metal with the solution, 
contains unsolvable and partly solvable cutting products 
of electrolyte components. The depth and diameter of the 
newly shaped layer are regulated and controlled by the elec-
tron-tunneling span. The layer functions as the interphase 
among the solution and the metal additionally, the layer has 
the possessions of a solid electrolyte with high electronic 
resistance [79]. Even the solid-electrolyte interphase is the 
key element that dictates the morphology, power capability 
and the most emphasized the safety of the lithium depos-
its and the cycle life of the batteries[80,81]. The SEI should 
be flexible and mechanically stable. Therefore, the cation 
transportation number must be close to unity. For this rea-
son, the concentration polarization should be eliminated 
and the metallic anode dissolution/deposition process 
operated easily. Besides, to generate a protective SEI on the 
alkali-metal anodes, the vital point is the volume of the SEI 
materials should be larger than the amount of the anode, 
otherwise the SEI will not cover the surface and layer of the 

anode completely, and results he corrosion on top of the 
anode [82]. The most emphasized factors for the SEI are 
such as: high electrical resistance of solid-electrolyte inter-
phase or simply RSEI, the thickness close to a few nanome-
ters, selectivity and permeability, giant amount of strength, 
toleration to the enlargement and growth of contraction 
stresses, amount of unsolvable character in the electrolyte, 
further the stability over a wide range of functioning tem-
peratures and potentials [83].

MATERIALS AND METHODS

Lithium-ion batteries or simply LIB are used increas-
ingly as the principle of the electronic devices especially in 
vehicle markets and electronic vehicles (EV). Moreover, the 
performance of the mentioned batteries directly depends 
on the operating temperature and working voltage as shown 
in Figure 11 [84].

Bulk size of batteries in electronic vehicles face hard 
and harsh circumstances such as thermal, electrical and 
uncomplimentary loading that cause the short circuit 
and parallels deteriorated performance and explosion 
[30,86–99]. Reaction rates escalate while the temperature 
increases and leading the heat decadences and eliciting 
greater temperatures [100]. In this stage, if the produced 
heat will not evacuated drive the thermal runaway [101]. 
As consequences of the detritions in batteries thermal 
runaway (TR) could lead the deathly occasions. In reality, 
in modern battery, electrified vehicles, the most concern 
with vital priority is the safety of the system [102]. Though 
for battery safety it should be kept in a controllable envi-
ronment where the temperature and heat gradient could 
be scanned and detected to prevented happening the ther-
mal runaway and assure the safety [84]. As a result, there 
are various methods to cool down or prevent the caus-
ing the thermal runaway and manage the heat of battery 
Lithium-ion batteries (Table 2).

Figure 11. Working temperature interval of batteries [85].
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Air-cooling 
One of the natural methods for cooling down the bat-

teries is air-cooling system. The mentioned structure had 
specific advantages such as low cost, negligible weight, 
easy maintenance and most important is their simplicity 
[102,109]. As the natural air-cooling had some disadvan-
tages and drawbacks such as the high temperature working 
circumstances, the technology of the forced-air with differ-
ent additions and extra items had structured [110–121].

Liquid and Refrigerant Cooling 
The liquid and refrigerant cooling in a comparison with 

the air-cooling system has the better thermal performance. 
Then nowadays it has been using widely as the common 
technique in various batteries [122]. There are diverse flu-
ids that using for heat transfer directly or indirectly to cool 
the liquid-based battery systems such as liquid metal, water, 

de-ionized water, blend of water and Ethylene glycol, and 
other divergent fluids [90,123–130]. 

PCM Cooling 
As phase change materials can absorb the huge quantity 

of heat, which has generated by Lithium-Ion Batteries has 
a great capacity to utilize as a cooling technique in battery 
systems [131]. The introductory of utilizing the PCM’s for 
commercial use had started from the automotive imple-
mentation industry [108]. A phase change material is a 
kind of components that can store the heat and also expel 
it from the system and is categorized as cost effective and 
cheap moreover non-corrosive materials [132–135]. In 
different surveys, researchers demonstrated that cooling 
with PCM has disadvantages of lower thermal conductivity 
[136]. There are diverse ways to improve the drawbacks of 
PCM in cooling such as adding graphite, metal foams, and 

Table 2. Categorization of the thermal management system of batteries[102–108].

Battery cooling 
system

Power consumption
Passive cooling

Active cooling

Heat transfer medium

Air cooling 
Natural 
Forced

Liquid cooling

Liquid jacket cooling
Cold plate cooling
Mini/Micro channel cooling
Serpentine channel cooling plates
Submerged battery packs in coolant

Phase change material (PCM) 
cooling

Liquid-Vapor phase change/ 
refrigerant cooling
Solid-Liquid phase change
Composite PCM

Contact between the coolant & 
battery surface

Direct contact

Indirect contact

Based on cell configuration

Series

Parallel 

Series+parallel

Cross flow

Staggered

Other techniques

Thermoelectric cooling 

Heat pipe cooling

Ultra thin heat pipe 
Flat heat pipe 
Oscillating heat pipe 
Use water bath& water
Micro heat pipe array 

Use of hydrogels

Vortex generator 

Mist cooling 

Hybrid battery cooling systems
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moreover adding the paraffin to improve the thermal con-
ductivity of PCM [137–139].

Heat Pipe 
Heat pipes are applications, which transfer the heat and 

are filled with a fluid that evaporates to produce heat [140]. 
Nowadays heat pipes are widely commercialized in battery 
packs [122]. The list of merits and benefits of the HP’s are 
so much which some of the emphasized items are great high 
thermal conductivity, lightweight, reliability, flexiility, low 
conductivity, volume expansion [141–145]. Table 3 demon-
strates the most relevant classification of the heat pipes 
which has been evaluated and arranged by many scientists 
[122].

BATTERY TECHNOLOGY AND APPLICATION 
AREAS 

Electrification is proceeding notably with the common 
transportation category like any kind of commercial vehi-
cles, buses, cars, railways, aviation, marine and road mobil-
ity, moreover; working on the emergency power backup, 
solar power storage, alarm systems in isolated places 
and finally portable power packs which empowered and 
expanded as giant factory -scale production of Lithium-Ion 
battery automation [151]. Some of the most important fac-
tors which affects the commercial vehicle’s storage energy 
are the weight of the battery system and battery manage-
ment system or basically BMS, battery system performance, 
cost of the battery, life cycle of the battery, being environ-
ment friendly, the power and the energy of the battery, 
even the most notable is the battery safety. Due to so many 
researches, LIB’s allows the maximum level of energy den-
sity [152]. Lithium-ion batteries have various merits such 
as long life and low self-discharge, furthermore, these bat-
teries have great cycling performances [153]. In the below 
table, as in table 4 the general application area of the LIB’s 
has been demonstrated.

CONCLUSION

As a result of the research on Li-ion batteries, the fol-
lowing results were obtained. As the advances in battery 
technologies, the amount of energy stored by Li-ion bat-
teries increases and important developments occur in con-
trol systems. Even more, with the decrease in Li-ion battery 
prices, it is observed that the usage rate has increased in 
many areas. It has been observed that the voltage, current, 
and temperature of the cells commonly affect these batter-
ies. According to the statistics, it has been observed that 
there is a significant annual increase in the global market 
values ​​of the Lithium-ion battery from 1992 to 2021.

Subscripts
GDP 	 Gross Domestic Product
EV		 Electric Vehicle 
LIB	 Lithium Ion Batteries
TR		 Thermal Runaway
PCM	 Phase Change Materials
HP		 Heat Pipe
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