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Abstract: In this study, we consider an inverse nodal problem of recovering integro-differential operator
with the Sturm-Liouville differential part and the integral part of Volterra type. Furthermore, we obtain a
reconstruction formula for functionM. So, we reconstruct the operatorL with a dense subset of nodal points
provided that the functionq is known. Even if not all nodes are taken as data but a dense subset of nodes,
inverse problem is determined.
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1. Introduction

The inverse nodal problem which was first studied by McLaughlin in 1988 is the problem of

finding potential function and boundary conditions by usingonly a dense subset of nodal points of

eigenfunctions. She posed and solved this problem for the Sturm-Liouville operator with Dirichlet

boundary conditions in addition to showing that knowledge of a dense set of nodal points can alone

determine the potential function of the Sturm-Liouville problem up to a constant. Independently,

Shen studied the relation between nodes and density function of string equation in 1988 (see [2]).

Moreover, nodal data can help to solve inverse problems for certain classes of operators such as

integro-differential and string operators (see [3], [4]).The nodes provide more information than

spectral data. Such type of problem was studied by many authors (see [5], [6], [7], [8], [9], [10],

[11], [12], [13], [14], [15], [16]).

We consider a perturbation of the Sturm-Liouville operatorby a Volterra type integral operator of

the form

Ly=−y′′+q(x)y+

x
∫

0

M(x, t)y(t)dt = λy,x∈ [0,π] (1)

y(0) = y(π) = 0, (2)
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whereλ = ρ2 is a spectral parameter,q andM are real-valued functions,q∈ L2(0,π) andM(x, t)

is integrable onD = {(x, t) : 0≤ t ≤ x≤ π} (see [3], [4]).

The inverse problem for this operator consists of the reconstruction of the functionM from the

spectra by the assumption givenq. In [4], Kuryshova and Shieh prove a uniqueness theorem and

provide reconstruction formula for the potential functionq under the assumption integral per-

turbation is known. In this study, we obtain some asymptoticformulas for nodal parameters to

reconstruct the functionM by using a dense set of nodal points and the potential function q. In

this respect, our results differ more from the results whichare given in [4].

However, classical inverse problem methods are not always applicable for integro-differential op-

erators. Then, there are comparatively few references on inverse problem forL. Nevertheless,

some authors have obtained some important results for the problem (1)-(2) (see [17], [18], [19]).

Let S(x,λ ) be the solution of (1) with the initial conditions

S(0,λ ) = 0,S′(0,λ ) = 1, (3)

of the form [3], [19],

S(x,λ ) =
sin(ρx)

ρ
+

x
∫

0

sin[ρ(x− τ)]
ρ



q(τ)S(τ ,λ )+
τ

∫

0

M(τ ,s)S(s,λ )ds



dτ . (4)

Let 0< xn
1 < ... < xn

n−1 < π, i = 1,2, ...,n−1 be the nodal points of then-th eigenfunction. The

double sequence{xn
i } is called the nodal sequence associated with operatorL. Also, let In

i =
[

xn
i , xn

i+1

]

be thei-th nodal domain of then-th eigenfunction andln
i = |In

i | = xn
i+1 − xn

i be the

associated nodal length. We also define the functionjn(x) on (0,π) by jn(x) = max{ i| xn
i ≤ x}

[1].

2. Main Results

In this section, we obtain some asymptotic results for nodalparameters and a reconstruction for-

mula for the functionM which is obtained as a solution of an inverse nodal problem. Since the

asymptotic expansions of nodal parameters containρn, we express the relation of the eigenvalues

for the problem (1)-(2) which is given by Yurko in the following lemma (see [19]).

Lemma 1 ([19]). The eigenvalues{λn}n≥1 of the boundary value problem (1)-(2) coincide with

the zeros of the function∆(λ ) = S(π,λ ) and have the following asymptotic formula, forn→ ∞

ρn =
√

λn = n+
A1

n
+

Kn

n
, {Kn} ∈ l2, A1 =

1
2π

π
∫

0

q(t)dt. (5)
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Theorem 1. Let q∈ L1(0,π) andM(x, t) ∈W2
1 (D). Then, asn→ ∞,

x(n)i =
iπ
ρn

+
1

2ρ2
n

x(n)i
∫

0

[1−cos(2ρnτ)]q(τ)dτ −
1

2ρ3
n

x(n)i
∫

0

M(τ ,τ)sin(2ρnτ)dτ +o

(

1
ρ3

n

)

, (6)

l (n)i =
π
ρn

+
1

2ρ2
n

x(n)i+1
∫

x(n)i

[1−cos(2ρnτ)]q(τ)dτ −
1

2ρ3
n

x(n)i+1
∫

x(n)i

M(τ ,τ)sin(2ρnτ)dτ +o

(

1
ρ3

n

)

, (7)

for the problem (1)-(2).

Proof: We consider the solution of the integral equation (1)

S(x,λ ) =
sin(ρx)

ρ
+

x
∫

0

sin[ρ(x− τ)]
ρ



q(τ)S(τ ,λ )+
τ

∫

0

M(τ ,s)S(s,λ )ds



dτ .

After some algebraic operations, we obtain

S(x,λ ) =
sin(ρx)

ρ
+

sin(ρx)
2ρ2

x
∫

0

sin(2ρτ)q(τ)dτ −
cos(ρx)

2ρ2

x
∫

0

[1−cos(2ρτ)]q(τ)dτ

+
1

ρ2

x
∫

0

sin[ρ(x− τ)]
τ

∫

0

M(τ ,s)sin(ρs)dsdτ +o

(

1
ρ3

)

.

By using some trigonometric formulas and a change of variables in the last term, we obtain

S(x,λ ) =
sin(ρx)

ρ
+

sin(ρx)
2ρ2

x
∫

0

sin(2ρτ)q(τ)dτ −
cos(ρx)

2ρ2

x
∫

0

[1−cos(2ρτ)]q(τ)dτ

−
sin(ρx)

ρ3

x
∫

0

M(τ ,τ)cos2(ρτ)dτ +
cos(ρx)

ρ3

x
∫

0

M(τ ,τ)cos(ρτ)sin(ρτ)dτ +o

(

1
ρ3

)

.

If S(x,λ ) = 0, then as long as cos(ρx) is not close to zero, then

0 =
tan(ρx)

ρ
+

tan(ρx)
2ρ2

x
∫

0

sin(2ρτ)q(τ)dτ −
1

2ρ2

x
∫

0

[1−cos(2ρτ)]q(τ)dτ

−
tan(ρx)

ρ3

x
∫

0

M(τ ,τ)cos2 (ρτ)dτ +
1

2ρ3

x
∫

0

M(τ ,τ)sin(2ρτ)dτ +o

(

1
ρ3

)

,
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and

tan(ρx)

(

1+o

(

1
ρ

))

=
1

2ρ

x
∫

0

[1−cos(2ρτ)]q(τ)dτ −
1

2ρ2

x
∫

0

M(τ ,τ)sin(2ρτ)dτ +o

(

1
ρ2

)

.

Now, we takeρ = ρn and x = x(n)i for large values ofn. Hence by Taylor’s theorem for the

arctangent function for some integeri,

ρnx(n)i = iπ +
1

2ρn

x(n)i
∫

0

[1−cos(2ρnτ)]q(τ)dτ −
1

2ρ2
n

x(n)i
∫

0

M(τ ,τ)sin(2ρnτ)dτ +o

(

1
ρ2

n

)

.

Then, the Riemann Lebesque lemma implies that,

x(n)i =
iπ
ρn

+
1

2ρ2
n

x(n)i
∫

0

[1−cos(2ρnτ)]q(τ)dτ −
1

2ρ3
n

x(n)i
∫

0

M(τ ,τ)sin(2ρnτ)dτ +o

(

1
ρ3

n

)

.

Therefore, the nodal length is

l (n)i =
π
ρn

+
1

2ρ2
n

x(n)i+1
∫

x(n)i

[1−cos(2ρnτ)]q(τ)dτ −
1

2ρ3
n

x(n)i+1
∫

x(n)i

M(τ ,τ)sin(2ρnτ)dτ +o(
1

ρ3
n
),

or

l (n)i =
π
ρn

+
1

2ρ2
n

x(n)i+1
∫

x(n)i

[1−cos(2ρnτ)]q(τ)dτ +
1

2ρ3
n

x(n)i+1
∫

x(n)i

M(τ ,τ)dτ +o(
1

ρ3
n
).

Lemma 2. Suppose thatG∈ L1(0,π) . Then,

lim
n→∞

ρn

x(n)i+1
∫

x(n)i

G(t, t)dt = G(x,x),

for almost everyx∈ (0,π), with j = jn(x).

Proof. It can be proved by using similar way with in [8].

Theorem 2. Suppose thatq∈ L1(0,π) andM(x, t) ∈W2
1 (D). Then, the functionM satisfies

M(x,x) = lim
n→∞

[

2ρ3
n

(

ρnl (n)i −π
)

−ρnq(x)
]

,

for almost everyx∈ (0,π) with j = jn(x).
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Proof: By Theorem 1,

l (n)i =
π
ρn

+
1

2ρ2
n

x(n)i+1
∫

x(n)i

[1−cos(2ρnτ)]q(τ)dτ +
1

2ρ3
n

x(n)i+1
∫

x(n)i

M(τ ,τ)dτ +o(
1

ρ3
n
).

By using some computations, we obtain

2ρ2
n

(

ρnl (n)i −π
)

= ρn

x(n)i+1
∫

x(n)i

[1−cos(2ρnτ)]q(τ)dτ +
x(n)i+1
∫

x(n)i

M(τ ,τ)dτ +o(1).

For the large values ofn, the termsρn

x(n)i+1
∫

x(n)i

cos(2ρnτ)q(τ)dτ and ρn

x(n)i+1
∫

x(n)i

q(τ)dτ tend to zero and

q(x), respectively. It can be shown easily by considering [8] and Lemma 2. If we use this fact, we

obtain

ρn

[

2ρ2
n

(

ρnl (n)i −π
)

−q(x)
]

= ρn

x(n)i+1
∫

x(n)i

M(τ ,τ)dτ +o(1). (8)

Taking the limit on both sides of (8) asn→ ∞, and using similar procedure, we obtain

M(x,x) = lim
n→∞

ρn

[

2ρ2
n

(

ρnl (n)i −π
)

−q(x)
]

, (9)

for almost everyx∈ (0,π). This completes the proof.

3. Conclusions

In this study, we have attempted to reconstruct the given operator L with a dense subset of the

nodal points provided that the functionq is known. We have expressed a reconstruction formula

for the functionM.
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