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ABSTRACT 

Deep learning has shown remarkable success in various applications, such as image classification, natural language 

processing, and speech recognition. However, training deep neural networks is challenging due to their complex 

architecture and the number of parameters required. Genetic algorithms have been proposed as an alternative 

optimization technique for deep learning, offering an efficient alternative way to find an optimal set of network 

parameters that minimize the objective function. In this paper, we propose a novel approach integrating genetic 

algorithms with deep learning, specifically LSTM models, to enhance performance. Our method optimizes crucial 

hyper-parameters including learning rate, batch size, neuron count per layer, and layer depth through genetic 

algorithms. Additionally, we conduct a comprehensive analysis of how genetic algorithm parameters influence the 

optimization process and illustrate their significant impact on improving LSTM model performance. Overall, the 

presented method provides a powerful mechanism for improving the performance of deep neural networks, and; 

thus, we believe that it has significant potential for future applications in the artificial intelligence discipline. 

Keywords: genetic algorithm, hyper-parameter optimization, deep learning, lstm  

ÖZET 

Derin öğrenme, görüntü sınıflandırma, doğal dil işleme ve konuşma tanıma gibi çeşitli uygulamalarda dikkat çekici 

başarılar elde etmiştir. Ancak, derin sinir ağlarını eğitmek, karmaşık mimarileri ve gereken parametre sayısı 

nedeniyle zorlu bir süreçtir. Genetik algoritmalar, derin öğrenme için alternatif bir optimizasyon teknik olarak 

önerilmiştir ve optimal bir ağ parametre setini minimize eden bir amaç fonksiyonu bulmak için etkili bir alternatif 

yöntem sunar. Bu makalede, derin öğrenme ile genetik algoritmaları entegre eden, özellikle LSTM modellerini 

kullanarak performansı artırmayı amaçlayan yeni bir yaklaşım öneriyoruz. Yöntemimiz, genetik algoritmalar 

aracılığıyla öğrenme hızı, grup boyutu, katman başına nöron sayısı ve katman derinliği gibi kritik hiper-

parametreleri optimize eder. Ayrıca, genetik algoritma parametrelerinin optimizasyon sürecini nasıl etkilediğine 

dair kapsamlı bir analiz yaparak, LSTM model performansını iyileştirmedeki önemli etkilerini gösteriyoruz. Genel 

olarak, sunulan yöntem, derin sinir ağlarının performansını artırmak için güçlü bir mekanizma sunmakta olup bu 

nedenle yapay zekâ disiplininde gelecekteki uygulamalar için önemli bir potansiyele sahip olduğuna inanıyoruz. 

Anahtar Kelimeler: genetik algoritma, hiper-parametre optimizasyonu, derin öğrenme, lstm 
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INTRODUCTION 

Machine learning (ML), as a subfield of artificial intelligence, has been boosted by deep learning approaches, 

which have enabled remarkable performance improvement in distinct application domains such as image 

recognition, natural language processing, and speech recognition. However, training deep neural networks is a 

complex process due to having intricate architectures and learning a variety of parameters (Şen and Bakal, 2023). 
One of the most challenging yet critical aspects here is selecting the optimal hyper-parameters, such as the learning 

rate, batch size, number of layers, and number of neurons in each layer. The learning rate controls how much to 

change the model in response to the estimated error each time the model weights are updated, while the batch size 

determines the number of samples to be used in each training iteration. The number of layers and neurons per layer 

defines the depth and width of the neural network, respectively, crucially influencing the model's capacity to learn 

complex patterns and achieve state-of-the-art results. Several optimization techniques, such as stochastic gradient 

descent and Adam optimizer, have been proposed for optimizing hyper-parameters in deep learning models. 

However, these techniques are often too sensitive to the choice of hyper-parameters themselves, and finding their 

optimal set can be a time-consuming task for a given problem. The primary reason for genetic algorithm usage 

instead of commonly used grid search tuning is to utilize the genetic algorithms’ power for hyper-parameter tuning. 

This claim is because genetic algorithms can offer advantages over the grid search approach. These advantages 

include balanced exploration and exploitation, the capability to handle complex search spaces, adaptability to non-

gradient scenarios, parallelizability, robustness to local optima, and flexibility to adapt to changing landscapes. 

Consequently, genetic algorithms can provide an efficient and effective strategy for optimizing configurations in 

hyper-parameter tuning tasks.   
 
The proposed study investigated the changes in fitness levels across three generations within a particular population 

by addressing the challenge of fitness (Kramer and Kramer, 2017). The obtained results suggest that the optimized 

model varies significantly with the percentage of data used for the training process. For 5% of the dataset, there 

was an observed decrease in fitness of approximately 0.47%. In contrast, a 10% dataset was associated with an 

increase in fitness of 4.2%, and a 20% dataset resulted in a fitness increase of 3.45%.  Our fitness score, accuracy, 

measures the model's predictive accuracy, with higher values indicating better performance. Since our problem is a 

maximizing problem, the goal is to maximize the accuracy score to achieve optimal model performance. 

 

To effectively manage computational resources while still maintaining scientific rigor, a subset approach was 

adopted for data analysis. This approach involved utilizing varying percentages of the dataset (5%, 10%, and 20%) 

to evaluate its impact on observed outcomes, specifically focusing on fitness metrics. The rationale behind this 

strategy lies in its ability to provide insights into the relationship between dataset size and analytical outcomes, 

allowing for a nuanced understanding of the dataset's characteristics without overwhelming computational 

resources.  

 

Results indicate that, despite the reduced dataset sizes, meaningful trends in fitness were still discernible. For 

instance, the analysis revealed that a 5% dataset was associated with a slight decrease in fitness of approximately 

0.47%, suggesting potential limitations in capturing finer details due to the reduced sample size. Conversely, both 

the 10% and 20% datasets exhibited notable increases in fitness, showcasing the potential benefits of larger dataset 

size in enhancing analytical outcomes. These findings underscore the importance of carefully selecting dataset sizes 

relative to available computational resources, ensuring that analytical objectives are met while mitigating resource 

constraints. 

 

Overall, this study highlights the critical role of genetic algorithms for hyperparameter selection to achieve an 

optimal deep learning performance and expresses the need for further research to address this challenge. The 

obtained outcomes also demonstrate valuable insights into the impact of dataset size on fitness levels in 

evolutionary dynamics. 

 

In the subsequent sections, we first discuss the general background and some related work in Section 2. We provide 

details regarding the dataset used in our experiments in Section 3. Then, we present thorough explanations of the 

models we constructed in Section 4, including feature extraction, data preprocessing, and technical aspects of 

genetic algorithms, such as selection and mutation. Section 5 demonstrates the results and discussion from unique 

angles. Ultimately, we conclude with critical remarks in Section 6. 
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BACKGROUND 

In this section, we provide a comprehensive overview of genetic algorithms (GAs). We begin by discussing the 

basic principles of GAs, including the representation of solutions, the fitness function, and the genetic operators. 

We then discuss the different types of GAs and the factors that affect their performance. Finally, we discuss related 

literature in the parallel domain. 

Genetic Algorithms 

Genetic algorithms (GAs) are a class of optimization algorithms inspired by the process of natural selection and 

genetics concepts. GAs are broadly employed to solve widespread optimization problems, including but not limited 

to engineering design, finance, production systems, and many others. The idea of using the genetics principles for 

optimization was first proposed by Holland (1992a, 1992b) in the 1960s. Since then, GAs have been developed and 

refined by many researchers and are now known as one of the most powerful optimization techniques available. 

 

The basic idea behind GAs is to simulate the natural selection process for solving problems in computational 

studies. In a GA, a population of candidate solutions is evolved over many generations using three basic operations: 

selection, crossover, and mutation (Katoch, Chauhan, and Kumar, 2021; Kramer and Kramer, 2017; Lambora, 

Gupta, and Chopra, 2019). Selection is the process by which fitter individuals are selected from the current 

population to form the basis of the next generation. Crossover involves exchanging genetic information between 

two individuals to create new offspring. Mutation introduces random changes in the genetic makeup of individuals 

to help explore distinct regions of the solution space. 

 

GAs offer several unique advantages compared to traditional methods of problem-solving. One of their key benefits 

is their ability to function without requiring imitative information, which is often not even available in real-life 

problems. In addition, genetic algorithms are more effective and efficient compared to primitive methods, 

possessing well-aligned capabilities that can optimize both continuous and distinct functions and multi-purpose 

problems. Another critical advantage is that genetic algorithms aim to provide not just one but the best possible 

solutions, ensuring a comprehensive exploration and resolution of the corresponding problem. Additionally, genetic 

algorithms continually improve the accuracy and refinement of their solutions over time, providing satisfactory 

answers to complex problems in various fields, such as engineering, finance, and computer science, particularly in 

cases of large search spaces with multiple parameters (Hajireza, Darabi, and Najafi Moghaddam, 2023; Lambora et 

al., 2019). 

 

In summary, genetic algorithms are a subclass of stochastic optimization techniques extensively studied and 

applied in various fields (Haldurai, Madhubala, and Rajalakshmi, 2016). GAs are inspired by the natural selection 

process, in which individuals with better traits are more likely to survive and reproduce. GAs use this principle to 

search for optimal solutions to problems by iteratively generating and evaluating a population of candidate 

solutions. The fundamental steps of a GA are as follows: 

 

1. Initialize a population of candidate resolutions. 

2. Evaluate the fitness of each solution. 

3. Select the best solutions to form a new population. 

4. Generate new solutions by recombining and mutating the best solutions. 

5. Repeat steps 2-4 until yielding a stopping criterion. 

 

Since the utilization of GAs is practical, researchers intensively employ them in solving various optimization 

problems, including scheduling, routing, and machine learning (Peng et al., 2019; Zivkovic et al., 2021). 

DATASET DETAILS 

In data analysis studies, the accuracy and interpretability of the results heavily depend on the quality and relevance 

of the dataset. This section outlines the collection process and key statistics of the dataset. The data instances were 

collected and generated as a Drug Review Dataset by Kallumadi and Grer (2018) from the drugs.com website. 

Each data sample consists of a personal opinion about a drug taken for a condition, corresponding drug and disease 

names, and a rating score between 1 and 10. The original data set contains 215,063 data records and the distribution 

of the records is visually represented in Figure 1. 
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Figure 1. Class Distribution of Drug Review Examples in the Dataset 

 

We categorized them into three groups based on their “rating” value, resulting in 142,306 annotated positive-class 

instances, 64,295 annotated negative-class instances, and 8,462 labeled neutral-class examples. The records were 

annotated as positive if the rating score was greater than or equal to 7. Conversely, the records were labeled as 

negative if the rating value was less than or equal to 5. The rest of the records sharing a rating value of 5 were 

annotated as neutral. 

METHODOLOGY 

This section provides a comprehensive overview of our proposed approach. In particular, we covered the principal 

details of data pre-processing and the structure of a deep learning model we built through the genetic algorithms’ 

utilization in detail, as well as the fundamental concepts in genetic algorithms in the following subsections. This 

work adheres to the ethical standards and principles governing scientific research and publication. 

Data Preprocessing and Partitioning 

In our investigation, we chose not to perform any text cleaning or n-gram separation. Instead, we used the 

Tokenizer function available in the Keras library (Chollet et al., 2015) to convert the textual review column into an 

array. This strategy resulted in the average, maximum, and minimum lengths of the text instances being 89, 1992, 

and 0, respectively. Based on these length values, we set the maximum length for the padding sequence to 1000. As 

mentioned in Section 3, we utilized the rating scores to establish the class distribution for categorizing the 

unprocessed drug reviews in the dataset. Then, we exploited the label-encoder package from the Sklearn library 

(Pedregosa et al., 2011) to convert the resulting class distribution into multi-class digital data. Here, the obtained 

annotated data will be employed to train machine learning models that can predict the sentiment of the drug review 

instances in the test set. Lastly, we divided the data set into three separate collections, with 70% assigned to 

training, 20% to testing, and 10% to validation. 

Selection in Genetic Algorithms 

In genetic algorithms, the selection concept chooses individuals from a population to participate in reproduction 

processes. The main goal is to ensure that the best individuals in the population are more likely to be selected for 

reproduction so that their genes can be transferred to the next generation. In our experiments, we employ a 

selection operator based on fitness proportionate selection to determine the parents for the next generation, 

commonly referred to as roulette wheel selection (Jebari, 2013; Katoch et al., 2021; Lipowski and Lipowska, 2012; 

Rathore and Rathore, 2016). This approach gives individuals with higher fitness scores a greater likelihood of being 

selected as parents. Then, we normalize the fitness scores of all individuals such that they sum up to one for 

satisfying proportionality. Subsequently, we randomly selected two parents from the population based on their 

normalized fitness scores. Apart from the proportionate fitness selection, there are several selection methods 

available in genetic algorithms, such as those mentioned below: 

 

 Tournament selection: In this method, a few individuals are randomly selected from the population, and 

chosen the best among them as a parent for the next generation. This process is repeated to select the 

second parent (Fang and Li, 2010; Greenstein, Elsey, and Hutchison, 2023; Jebari, 2013; Katoch et al., 

2021; Rathore and Rathore, 2016). 
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 Rank-based selection: This approach assigns ranks to individuals based on their fitness scores and selects 

parents based on their ranks rather than their fitness scores (Jebari, 2013; Katoch et al., 2021; Pencheva, 

Atanassov, and Shannon, 2009; Rathore and Rathore, 2016; Zheng and Wen, 2023). 

 Stochastic universal sampling: This strategy assigns probabilities to candidate solutions based on fitness 

and selects them using a roulette wheel approach. This method promotes diversity while favoring fitter 

solutions (Jebari, 2013; Katoch et al., 2021; Pencheva et al., 2009). 

Crossover in Genetic Algorithms 

The crossover is a genetic operator that combines the genetic information of two parents to generate new offspring. 

It is one way to stochastically generate new solutions from an existing population and is naturally analogous to the 

crossover that happens during sexual reproduction in biology. In this study, we utilize a one-point crossover 

(Katoch et al., 2021; Pachuau, Roy, and Kumar Saha, 2021; Rathore and Rathore, 2016) operator that involves 

choosing a random crossover point and exchanging the values of the parameters before and after that point between 

two parents to generate two offspring. Specifically, we select a random crossover point for each parent pair and 

swap the values of the parameters before and after that point. We add the offspring produced by each parent pair to 

the next generation. We repeat this process until we obtain the desired number of offspring. Additionally, other 

crossover techniques used in genetic algorithms are listed below: 

 

 Multi-point crossover: This approach involves selecting multi-crossover points instead of one and 

exchanging the parameter values between the parents within that segment (Katoch et al., 2021; Pachuau et 

al., 2021; Rathore and Rathore, 2016). 

 Uniform crossover: In this method, each parameter value of the offspring is randomly selected from either 

parent with equal probability (Katoch et al., 2021; Pachuau et al., 2021; Rathore and Rathore, 2016). 

 Arithmetic crossover: This operator considers taking a weighted average of the parameter values of the 

parents to generate the offspring (Kora and Yadlapalli, 2017; Pachuau et al., 2021; Rathore and Rathore, 

2016). 

Mutation in Genetic Algorithms  

The mutation is a genetic operator that introduces random changes to an individual’s genetic structure (Katoch et 

al., 2021; Rathore and Rathore, 2016). It is analogous to the usual mutation process that happens during biological 

reproduction. Technically, it is advantageous to introduce new genetic characteristics into the population, which 

can help to improve the population’s diversity and prevent it from becoming stagnant. In this study, the mutation 

probability was 0.5, so each parameter is randomly mutated for each offspring in the current generation. If a 

parameter is selected for mutation, a new random value is generated for that parameter within its search space 

limits. By incorporating this technique, the population can explore new and unexplored search space areas beyond 

those generated by the crossover operator. This process can potentially lead to the identification of more optimal 

solutions and the avoidance of local optima. There are various mutation techniques applicable in genetic 

algorithms, including: 

 

 Gaussian mutation: This method adds a random value drawn from a Gaussian distribution to the parameter 

value (Rathore and Rathore, 2016; Yan, 2023). 

 Boundary mutation: This operator perturbs the parameter value by a fixed amount and ensures that the new 

value remains within the search space limits (Katoch et al., 2021; Rathore and Rathore, 2016). 

 Non-uniform mutation: This approach involves applying a varying amount of perturbation to the parameter 

value depending on the generation number or the fitness score of the individual (Katoch et al., 2021; 

Rathore and Rathore, 2016). 

Search Space and Optimization Parameters for Hyper-parameter Tuning 

This section describes the search space and optimization parameters used in hyperparameter tuning. Hyper-

parameters are parameters specified before model training and can significantly affect the model’s performance. 

The hyper-parameter tuning identifies the optimal combination of hyper-parameters to optimize the model 

performance. The search space consists of the distinct value spectrums explored for each hyper-parameter during 

optimization. In this study, we address the following mentioned six hyper-parameters and their respective ranges: 

 

 Embedding size: an integer value between 32 and 128. 

 Number of neurons in the first hidden layer: an integer between 1 and 4. 
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 Number of neurons in the second hidden layer: an integer between 1 and 8. 

 Learning rate: a float value between 0.0001 and 0.1. 

 Batch size: an integer value between 32 and 256. 

 Number of epochs: an integer value between 1 and 20. 

 

These parameters are carefully chosen to explore a wide range of possibilities while optimizing the model's 

performance. For instance, an embedding size of 85 is selected from the range of 32 to 128, balancing 

computational efficiency with embedding dimensionality. Similarly, a learning rate of 0.0473, chosen from the 

float range of 0.0001 to 0.1, facilitates efficient gradient descent during model training. Each parameter's range 

ensures thorough exploration, aiming to discover the most effective configuration that enhances model accuracy 

and generalization. During the optimization, the hyper-parameters are randomly sampled from the corresponding 

sub-search space, and the model’s performance is evaluated using these hyper-parameter values. Furthermore, we 

specify the population size and the number of generations used in the genetic algorithm optimization to discover 

the best combination of hyper-parameters. In our investigation, we set the population size of six and evolved the 

models for up to three generations. In conjunction with the decision to employ a population size of six and restrict 

the number of generations to three, our choice was also informed by the nature of our dataset, which exhibits 

characteristics conducive to rapid learning due to its size and inherent simplicity. Given the dataset's substantial 

volume and straightforward patterns, we anticipated that the genetic algorithm would efficiently navigate the 

hyper-parameter space and converge to optimal or near-optimal solutions within a relatively short span of 

generations. Therefore, our experimental design aligns with the advantageous properties of the dataset, enabling us 

to leverage its ease of learning to achieve effective optimization outcomes within the specified constraints. Finally, 

we employed a mutation rate of 0.5 to introduce additional variation in the population. 

Experimental Model Configurations  

In this section, we present the deep learning models conducted for our sentiment analysis experiments, which 

incorporate LSTM architecture and genetic algorithms. 

Long Short-Term Memory (LSTM) Model 

Long short-term memory (LSTM) is a typical recurrent neural network (RNN) used to process sequential data. 

RNNs are a class of neural networks designed to process data in a sequence form, such as text or speech (Bozkurt 

et al., 2024; Kolukisa et al., 2021; Sherstinsky, 2020). Nevertheless, LSTMs are specifically designed to address 

the vanishing gradient issue, which can occur in RNNs when they are trained on long data sequences. 

 

In our study, we constructed our deep-learning model for LSTM algorithms using the Keras deep neural network 

library (Chollet et al., 2015). The model architecture comprised an input layer with a dimension of 1000 as the 

input array was padded using the pad sequence arrangement. We then added an embedding layer with the size of 

which we used a number chosen randomly from the search space using genetic algorithms. Following, we 

incorporated a bidirectional Bi-LSTM layer (which is a powerful component for understanding long-range 

dependencies in the data by learning from both the antecedent and subsequent parts of a sequence), also with a 

number randomly chosen from the search space by genetic algorithms and included a dropout layer for fixing over-

fitting issues. Finally, we repeated this process for Bidirectional LSTM and dropout layers before adding a dense 

layer to serve as the output layer. The activation function was “Softmax”, while the optimizer function was the 

“Adam” algorithm for the model. The loss function was determined as the sparse-categorical-cross-entropy for the 

LSTM model. In the training phase, the batch size was set to a number selected randomly from the search space 

using genetic algorithms. Then, we trained the entire LSTM network for several epochs randomly picked by the 

genetic algorithms while maintaining a dropout value of 0.5. 

Mechanism of Genetic Algorithm-Driven Approach 

In this experimental effort, we operate a population-based optimization approach to create the initial generation of 

candidate solutions. Specifically, we initialize the population by generating a list object called population. The 

population capacity is determined by the population size defined in Section 4.5. The whole process is graphically 

illustrated in Figure 2 with the subfigures. Technically, we iterate over each parameter space in the “search space” 

list using a loop mechanism to generate each candidate solution. We use the “random.uniform” function to generate 

a random value within the lower and upper bounds of the corresponding space for continuous variables. However, 

we round the relevant value to the nearest integer for discrete variables. Each parameter value is then appended to a 

list of parameters for that iteration. Finally, we append the list of parameters to the “population” list. This process is 
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repeated for each iteration of the population size, resulting in a population of randomly generated parameter values 

sampled from the search space explained in Section 4.5. After generating the initial population, the next step is to 

evaluate the fitness of each candidate solution, and thus, for assessment purposes, we use accuracy as our fitness 

measure. Once we have calculated the fitness scores, we normalize them to ensure they sum up to one. This 

operation is achieved by dividing each fitness score by the sum of all fitness scores. The resulting normalized 

fitness scores are then treated as probabilities for selecting parents for the reproduction process described in Section 

4.2. To select parents, we use a stochastic method called roulette wheel selection, where the probability of picking a 

candidate solution as a parent is proportional to its normalized fitness score expressed in Section 4.2. Specifically, 

we randomly choose two parent candidates from the population for each offspring. Next, we make new offspring 

through the reproduction mechanism. In this work, we utilize a crossover operator to produce the offspring. In 

particular, we randomly choose a crossover point for each parent pair and swap the values of the parent parameters 

before and after the crossover point. This procedure is repeated until we have the desired number of offspring, as 

stated in Section 4.3. Finally, the newly generated offspring are added to the population by replacing the least fit 

members of the previous generation. This process is repeated for a fixed number of generations or until a solution 

that meets the desired criteria is discovered. Afterward, we implement a mutation operator in some of the offspring 

to promote additional diversity in the population. Specifically, we randomly select an offspring in the current 

generation and apply the mutation operator to one of its parameters with a probability score of 0.5. As applied for 

each selected parameter, we generate a new random value within its corresponding search space bounds using the 

“random.uniform” function. 

 

                               
                      (a)                                                                   (b) 

 

Figure 2. The sub-figure (a) represents the overall flow diagram of the proposed approach with LSTM integration, 

while the sub-figure (b) shows the internal LSTM architecture. The Genetic Algorithm selects *Embedding size 

and **Number of neurons in the corresponding layers. 

RESULTS AND DISCUSSION 

We conducted an experimental study to investigate the effectiveness of using a genetic algorithm-driven approach 

for hyper-parameter optimization in deep learning models. We specifically built LSTM models for sentiment 

analysis and found that the genetic algorithm approach was highly successful in tuning the hyper-parameters of the 

models, resulting in improved performance. Our results suggest that the genetic algorithm approach is a promising 
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technique for hyper-parameter optimization in deep learning, especially when an adequate amount of data is 

available. 

 

As seen in Table 1 and inspected from Figures 3a, 3b, and, 3c, the fitness results indicate that exploiting genetic 

algorithms in deep learning can yield improved performance (the fitness score represents the accuracy achieved by 

the LSTM model using the hyperparameters determined by the genetic algorithm at each generation), but the 

amount of data used is a critical factor. When using only 5% of the data, a decrease of approximately 0.47% is 

observed. Nevertheless, we noticed increases in performance of 4.2% and 3.45%, respectively. These outcomes 

illustrate the potential value of genetic algorithms in deep learning and underscore the importance of considering 

the quantity of data when evaluating their efficacy. 

 

Table 1. Fitness Scores of Models 

Generation Steps 

Percentage 1 2 3 

5% 0.716690 0.706872 0.712014 

10% 0.696820 0.738896 0.733286 

20% 0.733021 0.726826 0.767504 

 
These results have important implications for the deep learning models. Hyperparameter tuning is a crucial aspect 

of deep learning, as it can significantly impact the model’s performance. Traditional methods for hyper-parameter 

tuning, such as grid search and random search, can be computationally expensive and time-consuming, specifically 

when dealing with large and complex models. However, genetic algorithms offer a more efficient and automated 

approach to hyper-parameter tuning, potentially saving significant time and resources. Still, it is important to note 

that the effectiveness of genetic algorithms for hyper-parameter tuning may vary depending on the specific 

characteristics of the data and model being used. For instance, the optimal hyperparameters for a given model may 

differ depending on the data set being used, and the effectiveness of the genetic algorithm may depend on the 

model’s complexity and the hyper-parameter space’s size. Therefore, it is important for future research to explore 

the effectiveness of genetic algorithms across a range of data sets and model types 

. 

 
                              a                                                          b                                                         c 

 

Figure 3. Overall Graphical Representation of the Fitness Scores with Unique Dataset Usage Rates. From Left to 

Right Images, a. 5% Fitness over Generation, b. 10% Fitness over Generation, c. 20% Fitness over Generation, 

Respectively. 

 

In addition, it may be valuable to investigate the impact of other factors on the efficacy of genetic algorithms for 

hyper-parameter tuning. For example, the population size and selection criteria used in the genetic algorithm can 

significantly impact its performance. Similarly, the choice of hyper-parameter search space and encoding method 

can also play a role in determining the algorithm’s effectiveness. By exploring these factors, researchers can gain a 

better understanding of the conditions under which genetic algorithms are most effective for hyper-parameter 

tuning.  In addition to the merits of the genetic approach used, we presented classification results based on the 

cumulative use of the dataset, as shown in Figure 4, by confusion matrices. The average correct classification 
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percentage increased by 4% when the dataset size was increased from 5% to 10%. A further increase in the dataset 

size from 10% to 20% resulted in a 7% improvement. These findings underscore the direct correlation between 

dataset size and classification accuracy, reinforcing the importance of data volume in enhancing the efficacy of our 

genetic approach. Plus, these results suggest that the genetic method is a promising method for classification tasks, 

even with a small amount of data, and offers valuable insights into the potential scalability and robustness of our 

methodology across diverse dataset scales. Ultimately, they highlight the promising applicability of our approach to 

various real-world scenarios characterized by varying data availability. 

Figure 4. Confusion Matrix Representation of the Models Constructed by 5, 10, and 20 Percentages of the Dataset 

(0: negative, 1: neutral, 2: positive). 

 
Overall, the findings of this study demonstrate the potential of genetic algorithms as a tool for hyper-parameter 

tuning in deep learning, mainly when large amounts of data are available. By further exploring the factors that 

impact the effectiveness of genetic algorithms, researchers can continue to refine and improve this approach, 

potentially leading to even more significant advancements in deep learning. 

CONCLUSION 

In conclusion, this study highlights the effectiveness of genetic algorithms for hyperparameter tuning in deep 

learning, specifically when ample amounts of data are available. The results show that increasing the data amount 

used for training can lead to performance improvements, indicating the potential of genetic algorithms to explore 

the hyperparameter space and identify better configurations. The findings have important implications for deep 

learning applications, as hyperparameter tuning is crucial for optimizing model performance. Genetic algorithms 

offer a more efficient and automated approach to hyper-parameter tuning, potentially saving time and resources 

compared to traditional methods. Nevertheless, the effectiveness of genetic algorithms may depend on the specific 

characteristics of the data and model chosen, and further research is needed to explore the impact of other factors, 

such as population size and selection criteria. Overall, this study suggests that genetic algorithms have great 

potential as a tool for hyper-parameter tuning in deep learning, and continued research in this area could lead to 

even better advancements.  

FUTURE WORK 

In the context of future research directions, this study suggests exploring the efficacy of various hyperparameter 

optimization techniques, including genetic algorithms, grid search, Bayesian optimization, and random search. By 

conducting a comprehensive comparison of these optimization approaches in terms of their time efficiency and 

performance, researchers can gain valuable insights into their respective strengths and limitations for addressing the 

problem at hand. Moreover, considering ensemble-based methods and meta-learning techniques for hyperparameter 

optimization could also be promising avenues for future investigation. By systematically investigating and 

integrating these diverse approaches, researchers can make significant strides in improving the optimization process 

and furthering advancements in the field. 
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