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Abstract 
 

In this paper, one of the most important problems, Maximum Power Point Tracking (MPPT), in renewable solar power is studied 

and analyzed. In order to obtain the maximum power point in solar cells and panels the voltage and current should be maximized, 

simultaneously. Thus, the easiest way to achieve the maximum power point is tracking the solar energy, daylight, by measuring the 

light intensity in a solar cell or panel coaxially. In this work, the MPPT is achieved by optimizing the light intensity vector on a 

solar panel after measuring the daylight physically with the help of newly designed embedded system, and processing the real 

world values by using Differential Search Algorithm which is a new and improved method based on differential evolutionary 

principles. 
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1. Introduction 

As electricity plays a vital role in the economy and industrial activity of a country, electric power systems have extensively 

expanded in the past decades. Electricity is generated in stations, transmitted by high voltage transmission networks, and delivered 

to consumers. With the ever-growing energy demand, power systems become more complex and difficult to control because the 

systems are being operated under highly stressed conditions such as unscheduled power flows and higher losses (Abaci et al., 

2016). In the recent years, despite the technological progress on science; the problem of lack of energy continues by being much 

more vital. As the quality and accuracy of mathematical and psychical models of electrical systems improve, renewable 

technologies become the focus of theoretical and practical studies. In particular, solar energy attracts much attention. The 

utilization of photovoltaic (PV) conversion energy is today an emerging technology, characterized by gradually declining costs 

and increasing acquaintance with the technology (Belarbi et al., 2016). An accurate equivalent model of PV devices is an important 

task for determining and designing optimal PV systems. In total, three different models are required to model the electrical power 

output of a PV system for given irradiance and ambient temperature. These include a thermal model for finding the PV cell 

temperature, a radiation model for finding the solar energy absorbed in the PV cells and an electrical model for calculating the 

electrical characteristics of the PV system for the calculated absorbed radiation and cell temperature. Over the years, electrical 

models for varied complexities and accuracies have been developed for PV system. These include analytical models based on PV 

cell physics, empirical models and a few models which combine these two approaches (Siddiqui, 2013). But there is also a difficult 

task having similar importance with PV modeling, the maximum power point tracking problem. Thus, it is necessary to study 

MPPT method to extract the maximum power from PV panels. Various algorithms of power tracking are being researched or used 

in PV application (De Vrito, 2013). Those methods include the constant voltage tracking (CVT), the perturbation and observation 

algorithm (P&O), the incremental conductance algorithms (INC), OVC method, IC and IC Based on PI method, System Oscillation 

and Ripple Correlation, Beta Method, Temperature Method, Fixed Duty Cycle method and artificial intelligence methods such as 

fuzzy logic method, neural network method (Zhiqianf et al., 2017). 

 

In order to simulate and realize the MPPT behavior and solve the problem, PV cells should be modeled and classified. In literature, 

the cells are modeled in two basic types which are one diode equivalent model and two diodes equivalent model. The quality and 

accuracy of a model increase as the number of parameters of the model increase but concerns of mathematical difficulties and 

simulation duration cause model parameters to be chosen fixed or neglected. There have been various studies on PV cell modeling 

and parameter estimation. Marion (Marion et al., 2004) determined the current and voltage curves by using interpolation technique 

while King (King et al., 2004) develops an experimental model for PV devices. Townsend (Townsend, 1989) developed a PV 

model equivalent circuit model by using four parameters and which neglects and chooses the shunt resistance infinite. Due to the 

accuracy issues of four parameter model, Beckman (Duffie, 1991) asserted a new model and mathematical solution which is called 

five parameter model in which the parameters can be defined as IL, I0, a, Rs, Rsh where shunt resistance is also processed despite 

causing nonlinearity. Later, new methods are developed for determining the solution set of parameters by using the I-V curve 

(Desoto et al., 2006) and the five parameter model is improved (Valerio et al., 2010). 

 

Due to nonlinearity of the model, it is not possible to find a definite solution set for both PV model and MPPT numerically. Thus, 

estimation and optimization methods are used to determine these parameters with the purpose of converging to measured or 

simulated parameters as soon as possible. There are different methods have been used to estimate the parameters in literature. In 

some studies nonlinear solver scripts are used to determine the parameters while solving the equations numerically by defining and 

fixing a parameter in some others (Boyd et al., 2011), (Villavla et al., 2009) or solving the nonlinear equations iteratively with the 

minimum convergence error (Carrero et al., 2016). In various numerical and heuristic optimization techniques are used to estimate 

the model parameters for different characteristics of PV cells. Levenberg-Marquardt optimization technique and simplex search 

algorithm are used in literature recently (Ikegami et al., 2001), (Siddiqui, 2011). 

 

Fuzzy optimization (Chen, 2001), (Lin, 2010) neural network based methods (Chen, 2010), (Chen, 2011) and heuristic methods 

(Moldovan et al., 2009) are used to determine the model parameters of a PV cell. 

 

Recently, a population based method, differential search algorithm (DSA), which is a new and effective differential evolutionary 

method based algorithm for solving real-valued numerical optimization problems is presented by Pinar Civicioglu (Civicioglu, 

2012). In this paper, a novel DSA-based approach is proposed for the purpose of solving the OPF problem. The main contribution 

of this paper is determining the MPPT and position of PV panel by using DS algorithm. The accuracy of the estimated parameters 

by using DS algorithm are compared to simulated base model and results are presented.  

2. PV Cell Modeling 

 

The equivalent circuit shown in Figure 1 consists of a light generated current source, a p-n junction diode and two resistances. I–

V relationship in the equivalent circuit of Figure 1 is expressed by Eq. (1). The characteristic of any PV device are included in the 

model by five model parameters (IL, Io, a, Rs, Rsh). The model that describes the electrical performance of a PV device represented 

by Figure 1 using Eq. (1) is called the five parameter model (Siddiqui, 2013).  

𝐼 = 𝐼𝐿 − 𝐼0 (exp (
𝑉+𝐼.𝑅𝑠

𝑎.𝑉𝑇
) − 1) −

𝑉+𝐼.𝑅𝑠

𝑅𝑠ℎ
         (𝑉𝑇 =

𝑘.𝑇𝑐

𝑞
)        (1)      
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where q, k and Tc are elementary charge, Boltzmann's constant and cell temperature, respectively. 

 
Figure 1: Equivalent circuit of a PV cell (Gray, 2011) 

 

Eqs. (2) - (6) can be used to calculate the parameters in a desired operating condition which is dependent on cell temperature, solar 

radiation and band-gap energy of the PV material. Thus, the I-V and P-V characteristic of the PV cell can be predicted by using 

Eq. (1). 

𝑎 = 𝑎𝑟𝑒𝑓 (
𝑇𝑐

𝑇𝑟𝑒𝑓
)                                                                        (2) 

 

𝐼𝐿 =
𝑆

𝑆𝑟𝑒𝑓
(𝐼𝐿,𝑟𝑒𝑓 + (𝑇𝑐 − 𝑇𝑟𝑒𝑓)                                                 (3) 

 

𝐼0 = 𝐼0,𝑟𝑒𝑓 (
𝑇𝑐

𝑇𝑟𝑒𝑓
)
3

exp((𝑁𝐶𝑆.
𝑇𝑟𝑒𝑓

𝑎𝑟𝑒𝑓
)((

𝐸𝑔,𝑟𝑒𝑓

𝑇𝑟𝑒𝑓
) − (

𝐸𝑔

𝑇𝑐
)))       (4) 

 

𝑅𝑠ℎ = 𝑅𝑠ℎ,𝑟𝑒𝑓 (
𝑆𝑟𝑒𝑓

𝑆
)                                                                     (5) 

 

𝑅𝑠 = 𝑅𝑠,𝑟𝑒𝑓                                                                                 (6) 

 

 

The notation of ref describes the parameters at standard test conditions (STC) where temperature and solar radiation are 25C and 

1000W/m2 respectively in general. NCS and Eg represents the number of cells and band-gap energy, respectively. Eq. (7) can be 

used to calculate the band-gap energy for a current condition for different values of temperature where Eg = 1.43eV for GaAs type 

of material (Desoto et al., 2006). 

 

𝐸𝑔 = 𝐸𝑔,𝑟𝑒𝑓 (1 − 0.0003174 (
𝑇𝑐

𝑇𝑟𝑒𝑓
))                                     (7) 

 

2.1. PV Cell Objective Function 

 

In order to achieve a valid solution set for the model parameters by using evolutionary methods, the objective function must be 

described in desired constraints and rules. The objective function namely fitness function is used to calculate and minimize the 

global error which leads the algorithm to a better solution set in the current space.  The objective function, the normalized error 

function, is given in Eq. (8) below where m and e subscripts represent modeled and estimated values of variables, respectively. 

 

𝑛𝑒 = 𝑎𝑏𝑠 (
𝐼𝑀𝑃,𝑚−𝐼𝑀𝑃,𝑒

𝐼𝑀𝑃,𝑒
) + 𝑎𝑏𝑠 (

𝑉𝑀𝑃,𝑚−𝑉𝑀𝑃,𝑒

𝑉𝑀𝑃,𝑒
) + 𝑎𝑏𝑠 (

𝐼𝑆𝐶,𝑚−𝐼𝑆𝐶,𝑒

𝐼𝑆𝐶,𝑒
) + 𝑎𝑏𝑠 (

𝑉𝑂𝐶,𝑚−𝑉𝑂𝐶,𝑒

𝑉𝑂𝐶,𝑒
)         (8) 

 

The electrical characteristic of the model is given by Table 1. I-V and P-V curves for the assumed model parameters are given by 

Figure 2 and Figure 3, respectively. 
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Table 1: Electrical characteristics of the PV model 

 

Characteristic Value 

Short circuit current (Isc)     3.14 A 

 Open circuit voltage (Voc)      19.29 V 

MPP current (IMP)     2.83 A 

  MPP voltage (VMP)       12.57 V 

Number of cells in series (NCS)      32-cells   

 

 

Figure 2: I-V curve for assumed parameters 

 

 

Figure 3: P-V curve for assumed parameters 
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3. Differential Search Algorithm (DS) 

 
DS is a newly developed optimization algorithm based on differential evolutionary principles which simulates the Brownian-like 

random-walk movement used by a living organism to migrate. 

 

Quality and efficiency of the food sources in the nature such as meadows and lakes may vary because of the climatic changes 

during a year, decade or century. In order to find high quality food sources and overcome the famine, living organisms migrates 

seasonally through intervals. This behavior assures the organism move to a new environment where the food source is of a high 

quality and variation. 

 

The migrating organisms form a super organism which comprises large number of individuals, and the superorganism starts to 

change its location by moving to areas containing high quality food sources. Movement of a super organism can be described by a 

Brownian-like random-walk model. The behavior of superorganisms has been modeled using a number of computational 

intelligence algorithms, such as PSO, cuckoo search, ant colony, and artificial bee colony. Many species of predatory living beings, 

before moving or migrating to a site, control the fertility of this one. In other words, if a superorganism desires to move to a new 

site that can meet its needs, this superorganism settles in this new site at least for a period of time. However, if a more fertile area 

is found, the superorganism continues its migration (Civicioglu, 2012). 

 

It is assumed, in DS algorithm, that a population made up of random solutions of the respective problem corresponds to an artificial-

superorganism migrating. In DS algorithm, artificial-superorganism migrates to global minimum value of the problem. During this 

migration, the artificial-superorganism tests whether some randomly selected positions are suitable temporarily during the 

migration. If such a position tested is suitable to stop over for a temporary time during the migration, the members of the artificial-

superorganism that made such discovery immediately settle at the discovered position and continue their migration from this 

position on (Civicioglu, 2012).  

 

The pseudo-code indicating the DS algorithm is given by Figure 4, where N is the population size, D is the dimension of the 

problem and G is the maximum number of generation.  

 

As shown in the formulation above, the DS algorithm employs multiple random numbers in order to generate new artificial 

organisms and select artificial organisms randomly for the purpose of converging to global optimum. Primarily, there are 4 

numbers; randg, rand1, rand2, rand3 randomly generated in each iteration which are used to generate new artificial organisms. 

Also, there are 6 randomly generated numbers; rand6, rand7, rand8 rand9, rand10 are used in the process of random selection. 

Thus, the processes aforementioned lead the algorithm to diverge from local minimum and search for possible global optimum 

meanwhile keeping the variables in constraints (Abaci & Yamacli, 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Research and Development, Vol.9, No.3, December 2017, Special Issue 

167 

 

 

 

𝑁: 𝑆𝑖𝑧𝑒𝑜𝑓𝑡ℎ𝑒𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

𝐷:𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑝𝑟𝑜𝑏𝑙𝑒𝑚  

𝐺:𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡ℎ𝑒𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛  

1:𝑆𝑢𝑝𝑒𝑟𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(), 𝑤ℎ𝑒𝑟𝑒𝑆𝑢𝑝𝑒𝑟𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚 = [𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑖] 
2:𝑦𝑖 = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑖) 
3:𝑓𝑜𝑟𝑐𝑦𝑐𝑙𝑒 = 1: 𝐺𝑑𝑜 
4:𝑑𝑜𝑛𝑜𝑟 = 𝑆𝑢𝑝𝑒𝑟𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑛𝑑𝑜𝑚𝑆ℎ𝑢𝑓𝑓𝑙𝑖𝑛𝑔(𝑖)

 

5:𝑆𝑐𝑎𝑙𝑒 = 𝑟𝑎𝑛𝑑𝑔[2×𝑟𝑎𝑛𝑑1]×(𝑟𝑎𝑛𝑑2 − 𝑟𝑎𝑛𝑑3) 
6:𝑆𝑡𝑜𝑝𝑜𝑣𝑒𝑟𝑆𝑖𝑡𝑒 = 𝑆𝑢𝑝𝑒𝑟𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚 + 𝑆𝑐𝑎𝑙𝑒×(𝑑𝑜𝑛𝑜𝑟 − 𝑆𝑢𝑝𝑒𝑟𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚) 
7:𝑝1 = 0.3×𝑟𝑎𝑛𝑑4, 𝑝2 = 0.3×𝑟𝑎𝑛𝑑5 
8:𝑖𝑓𝑟𝑎𝑛𝑑6 < 𝑟𝑎𝑛𝑑7𝑡ℎ𝑒𝑛 
9:𝑖𝑓𝑟𝑎𝑛𝑑8 < 𝑝1𝑡ℎ𝑒𝑛 
10:𝑟 = 𝑟𝑎𝑛𝑑(𝑁, 𝐷) 
11:𝑓𝑜𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟1 = 1:𝑁𝑑𝑜 
12:𝑟(𝐶𝑜𝑢𝑛𝑡𝑒𝑟1, : ) = 𝑟(𝐶𝑜𝑢𝑛𝑡𝑒𝑟1, : ) < 𝑟𝑎𝑛𝑑9 
13:𝑒𝑛𝑑𝑓𝑜𝑟 
14:𝑒𝑙𝑠𝑒 
15:𝑟 = 𝑜𝑛𝑒𝑠(𝑁, 𝐷) 
16:𝑓𝑜𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟2 = 1:𝑁𝑑𝑜 

17:𝑟(𝐶𝑜𝑢𝑛𝑡𝑒𝑟2, 𝑟𝑎𝑛𝑑𝑖(𝐷)) = 𝑟(𝐶𝑜𝑢𝑛𝑡𝑒𝑟2, 𝑟𝑎𝑛𝑑𝑖(𝐷)) < 𝑟𝑎𝑛𝑑10 

18:𝑒𝑛𝑑𝑓𝑜𝑟 
19:𝑒𝑛𝑑𝑖𝑓 
20:𝑒𝑙𝑠𝑒 
21:𝑟 = 𝑜𝑛𝑒𝑠(𝑁, 𝐷) 
22:𝑓𝑜𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟3 = 1:𝑁𝑑𝑜 
23:𝑑 = 𝑟𝑎𝑛𝑑𝑖(𝐷, 1, [𝑝2×𝑟𝑎𝑛𝑑×𝐷]) 
24:𝑓𝑜𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟4 = 1: 𝑠𝑖𝑧𝑒(𝑑) 

25:𝑟(𝐶𝑜𝑢𝑛𝑡𝑒𝑟3, 𝑑(𝐶𝑜𝑢𝑛𝑡𝑒𝑟4)) = 0 

26:𝑒𝑛𝑑𝑓𝑜𝑟 
27:𝑒𝑛𝑑𝑓𝑜𝑟 
28:𝑒𝑛𝑑𝑖𝑓 
29:𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝐼,𝐽 ← 𝑟𝐼,𝐽 > 0|𝐼 ∈ 𝑖, 𝐽 ∈ [1𝐷] 

30:𝑆𝑡𝑜𝑝𝑜𝑣𝑒𝑟𝑆𝑖𝑡𝑒(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝐼,𝐽) ≔ 𝑆𝑢𝑝𝑒𝑟𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝐼,𝐽) 

31:𝑖𝑓𝑆𝑡𝑜𝑝𝑜𝑣𝑒𝑟𝑆𝑖𝑡𝑒𝑖,𝑗 < 𝑙𝑜𝑤𝑖,𝑗 𝑜𝑟𝑆𝑡𝑜𝑝𝑜𝑣𝑒𝑟𝑆𝑖𝑡𝑒𝑖,𝑗 > 𝑢𝑝𝑖,𝑗 𝑡ℎ𝑒𝑛 

32:𝑆𝑡𝑜𝑝𝑜𝑣𝑒𝑟𝑆𝑖𝑡𝑒𝑖,𝑗 ≔ 𝑟𝑎𝑛𝑑×(𝑢𝑝𝑗−𝑙𝑜𝑤𝑗) + 𝑙𝑜𝑤𝑗 

33:𝑒𝑛𝑑𝑖𝑓 
34:𝑦𝑆𝑡𝑜𝑝𝑜𝑣𝑒𝑟𝑆𝑖𝑡𝑒;𝑖 = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑆𝑡𝑜𝑝𝑜𝑣𝑒𝑟𝑆𝑖𝑡𝑒𝑖) 

35:𝑦𝑆𝑢𝑝𝑒𝑟𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚;𝑖 ≔ {
𝑦𝑆𝑡𝑜𝑝𝑜𝑣𝑒𝑟𝑆𝑖𝑡𝑒;𝑖 𝑖𝑓𝑦𝑆𝑡𝑜𝑝𝑜𝑣𝑒𝑟𝑆𝑖𝑡𝑒;𝑖 < 𝑦𝑆𝑢𝑝𝑒𝑟𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚;𝑖

𝑦𝑆𝑢𝑝𝑒𝑟𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚;𝑖 𝑒𝑙𝑠𝑒
} 

36:𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑖 ≔ {
𝑆𝑡𝑜𝑝𝑜𝑣𝑒𝑟𝑆𝑖𝑡𝑒𝑖 𝑖𝑓𝑦𝑆𝑡𝑜𝑝𝑜𝑣𝑒𝑟𝑆𝑖𝑡𝑒;𝑖 < 𝑦𝑆𝑢𝑝𝑒𝑟𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚;𝑖

𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑖 𝑒𝑙𝑠𝑒
} 

37:𝑒𝑛𝑑𝑓𝑜𝑟 

Figure 4: Pseudo-code of DS algorithm 

 

3.1. DSA Implementation 

DSA is similar to those other population based heuristic methods which use randomly generated possible solution sets of pre-

determined dimensions (D) in upper and lower constraints. In DSA, N number of artificial organisms composed of D components 

determined initially forms a super organism. The super organism represents the candidate solution sets consist of PV cell 

parameters such as IL, I0, a, Rs, Rsh. The fitness values of each solution set are calculated and determined by applying the objective 

function given by Eq. (8). 

 

Stopover site, which contributes the migration motion of artificial organisms, is generated among an artificial organism and a 

randomly selected donor based on Brownian-like random walk model during the DSA process. It is worthwhile to note that stopover 

site is generated by using a scale factor which can be a pre-determined fixed value as well as a randomly generated number. This 

scale factor lets the current artificial organism move and change direction in its constrained D dimensional space based on the size 

and direction of donor. The stopover site is chosen and replaces the direction of current artificial organism with the condition of 
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having a better fitness and also necessitated being in the upper and lower constraints aforementioned. Thus, a new migration motion 

in D dimensional space is formed spontaneously in each iteration by determining the best solution set which leads the super 

organism to the global optimal solution.  

For the purpose of using the proposed DSA method for parameter estimation problem can be summarized as; 

1. Load the system data and constraints. 

2. Specify the DSA parameters such as number of individuals and maximum cycle. 

3. Initialize a superorganism consisting a number of solution sets (individuals) for the first  iteration. 

5. Evaluate the fitness of the results, determine the best individual within the superorganism. 

6. Generate new individuals depending on the best individual of the previous iteration 

7. Increase cycle number by 1. 

8. Evaluate the fitness value of newly produced superorganism. 

9. Memorize the best global solution found so far. 

10. Check if the maximum cycle met; stop the iteration process or jump to step 5. 

 

4. Solar Power and Embedded Systems 

 

In order to achieve both simulation and realization of MPPT problem, the solar panel and embedded systems are designed by using 

2.4 GHz wireless transceiver modules (nRF24L01+) on embedded board which is chosen as Arduino Uno R3. The light dependent 

resistors (LDR) placed on each corner of solar panel, which has dimensions of 29x19 inches, and the light intensity is measured 

through analog outputs of LDR modules. 

The solar power system can be divided in 2 sub-systems; The field system, which is namely transmitter system, contains solar 

panel, LDR modules, embedded development board and 2.4 GHz transceiver module. The diagram of first system is shown in 

Figure 5.  

 

Embedded System
Transmitter

Solar Panel

Light Dependent
Resistor

Wireless Module

 

Figure 5: Transmitter field module of the MPPT system 

 

The second system is designed as a receiver computer system, containing a 2.4 GHz transceiver module, embedded development 

board which is connected to a computer via USB protocol and MATLAB software. Receiver system diagram is shown in Figure 

6. 

Embedded System
Receiver

Receiver Computer

Wireless Module

 

Figure 6: Receiver and computation module of the MPPT system 



International Journal of Research and Development, Vol.9, No.3, December 2017, Special Issue 

169 

The embedded transmitter system code is shown if Figure 7. It is seen that the sensor values of LDRs are measured and sent through 

the 2.4 GHz wireless transmitter module. 

 

#include  <SPI.h> 

#include "nRF24L01.h" 

#include "RF24.h" 

sensor_firstPin = A0; // select the input pin for LDR 1 

int sensor_secondPin = A1; // select the input pin for LDR 2 

int sensor_thirdPin = A2; // select the input pin for LDR 3 

int sensor_fourthPin = A3; // select the input pin for LDR 4 

int sensorValues(De Vrito, 2013) = {0, 0, 0, 0}; // sensor measurement variable  

 

void setup() { 

Serial.begin(9600); //serial port settings for Radio communication 

radio.begin(); // Start RF module 

radio.openWritingPipe(pipe); //Define the pipe to send data} 

 

void loop() { 

sensorValue[0] = analogRead(sensor_firstPin); // read the value from the sensors 

sensorValue(Abaci et al., 2016) = analogRead(sensor_secondPin); 

sensorValue(Belarbi et al., 2016) = analogRead(sensor_thirdPin); 

sensorValue(Siddiqui, 2013) = analogRead(sensor_fourthPin); 

 

radio.write(sensorValue[0]); //send the values coming from the sensors to receiver system 

radio.write(sensorValue(Abaci et al., 2016));  

radio.write(sensorValue(Belarbi et al., 2016)); 

radio.write(sensorValue(Siddiqui, 2013)); 

delay(100);} 

Figure 7: Embedded transmitter system code 

 

Embedded receiver system code is shown in Figure 8. The receiver system reads the data by using wireless module and sends the 

same data to computer by serial communication protocol in order to process and optimize the values. So the MPPT optimization 

can be achieved by using the modeled PV panel and the light intensity vector by which is obtained with 2.4 GHz embedded 

transceiver modules. 

 

#include  <SPI.h> 

#include "nRF24L01.h" 

#include "RF24.h" 

int sensorValues(De Vrito, 2013) = {0, 0, 0, 0}; // sensor measurement variable  

 

void setup() { 

Serial.begin(9600); //serial port settings for PC communication 

radio.begin(); // Start RF module 

radio.openReadingPipe(1,pipe); 

radio.startListening();//Define the pipe to read data} 

 

void loop() { 

s = 0; 

if (radio.available()){ 

bool done = false;     

while (!done){ 

done = radio.read(message, 1); //read the values coming from the transmitter 

sensorValues[s] = message; 

Serial.println(sensorValues[s]); //send sensor values to PC 

s = s+1; 

}}} 

Figure 8: Embedded receiver system code 
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Thus, the optimization process continues for defined time ranges while receiver system gets the LDR values to computer 

continuously. The flowchart of the complete system is given by Figure 9. In the figure below, it can be seen that the receiver 

component optimizes system parameters by using the light intensity values obtained by transmitter module in order to optimize the 

solar panel model assumed in Section 2. 
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Figure 9: System flowchart 

5. Results and Discussion 

 
In order to estimate the parameters and optimize the system, the assumed parameters given by Table 1 are searched in 5-

dimensional space consisting of these variables by using DS algorithm. The fitness values for each iteration are calculated and new 

super organisms are produced with the purpose of converging the global normalized error, given by Eq. (8), to zero. In addition, 

with measuring and sampling the light intensity vector obtained by embedded systems, the optimal position of the solar panel and 

the best light intensity vector for designed system is obtained when the maximum power point is achieved. 

In parameter estimation process, the upper and lower values of parameters are limited. Constraints and limit values of five 

parameter model are given by Table 2 below. If the parameter value violates the upper or lower limit, the upper or lower limit 

value is assigned as the new parameter value respectively. 

Table 2: Electrical characteristics of the PV model optimized to obtain maximum power point 

Parameter Value 

Short circuit current (Isc)     3.18 A 

 Open circuit voltage (Voc)      17.49 V 

MPP current (IMP)     2.87 A 

  MPP voltage (VMP)       12.53 V 

Number of cells in series (NCS)      32-cells   

 

The I-V and P-V curves for assumed and estimated parameter values of series connected PV cells are given by Figure 7 and Figure 

8, respectively. It can be stated that the calculated Voc value by using the estimated parameters is 17.49V while it is 19.29V in the 

assumed model. The power at maximum power point is 35.96W for estimated parameter while same variable is 35.57W in the 

assumed model. The I-V and P-V curves of the realized PV model are shown in Figures 10 and 11, respectively. 
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Figure 10: Figure 7: I-V curve of series PV cell for assumed and estimated parameters 

 

Figure 11: P-V curve of series PV cell for assumed and estimated parameters 

 

6. Conclusions 

 
In this paper a differential evolution based optimization method, DSA, is proposed and successfully applied to solve a multi 

objective function within the constraints regarding to solar cell modeling and maximum power point tracking problem. The results 

obtained by using the proposed DSA method, which are presented in detail, are compared with assumed model and maximum 

power point in paper and the efficiency of the DSA is demonstrated. Thus it is concluded that DSA provides a good solution 

performance, robustness and superiority and can effectively be used in large scaled, non-linear and non-convex problems in 

parameter estimation and maximum power point tracking area owing to its high solution quality and rapid convergence speed.  
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