
ABSTRACT: Due to in depth tunnel excavation, tensions in the soil are eased, causing elastic and plastic 
deformations in the area of tunnel and leading to surface settlement at the ground level. Currently, along with 
the use of numerical methods in analysis and design of engineering projects, it is known that this method has 
used extensively in the analysis of problems related to geotechnical engineering and tunneling. Selection of the 
appropriate parameters and soil model can have a significant impact on the results of numerical analysis. The 
Mohr-Coulomb elastic-plastic model (MC) is one of the most widely used models, used in cases evaluating the 
hardness of materials, independent of the surface tension. If the Mohr-Coulomb used for numerical modeling 
of tunnel where in-depth tunneling excavation is involved and where an increase in maximum ground surface 
settlement and decrease in the reliability of stability of tunnels can be seen, which may not be appropriate in some 
conditions. The more appropriate model should be used to solve this problem, one that can model the hardness of 
materials based on changes in the level of stress. In this study, the maximum ground surface settlement due to tunnel 
excavation, obtained from Mohr- Coulomb model was compared with those of Hardening Soil (HS) Model results. 
Therefore, the ground surface settlement because of an assumption tunnel in different depths was analyzed with 
Mohr-Coulomb and Hardening Soil models by using PLAXIS 2D. As a result of the analyzes, it is observed that as 
the depth of the tunnel increases, the settlements on the ground surface decrease according to Mohr-Coulomb and 
approach the real values.

Keywords: Finite element method, material models, plaxis, surface settlement, tunneling

ÖZET: Zemin içinde yapılan tünel kazısı nedeniyle, zemindeki gerilmeler boşalarak kazı alanında elastik ve plastik 
deformasyonlara yol açmakta ve zemin yüzeyinde oturmalar meydana gelmektedir. Günümüzde, mühendislik 
projelerinin tasarım ve analizinde sayısal yöntemlerin kullanımı ile birlikte, Geoteknik mühendisliği ve tünel ile ilgili 
problemlerin çözümünde bu yöntemin yaygın bir şekilde kullanıldığına tanıklık etmekteyiz. Uygun parametrelerin 
ve zemin modelinin seçilmesi, nümerik analiz sonuçlarını üzerinde önemli etkiye sahiptir. Mohr-Coulomb (MC) 
elasto-plastik model malzemelerin sertliğinin yüzey gerilmelerden bağımsız olarak tanımlandığı durumlarda 
kullanılan en yaygın zemin davranış modellerinden biridir. Tünel modellemelerinde Mohr-Coulomb kullanılması 
halinde, kazı derinliği arttıkça zemin yüzeyindeki oturmaların gerçek değerlerden fazla çıktığı ve güvenilirliğin 
azaldığı görülmektedir. Bu problemin çözümü için, gerilme düzeyindeki değişikliklere bağlı olarak malzemelerin 
sertliğini modelleyebilen daha uygun bir davranış modeli kullanılmalıdır. Bu çalışmada, tünel kazısından dolayı 
Mohr-Coulomb modelinden elde edilen maksimum zemin yüzey oturmaları Pekleşen Zemin modeli (HS) ile 
karşılaştırılmıştır. Bu nedenle, varsayılan farklı derinliklerdeki bir tünelden dolayı zemin yüzeyinde oluşacak 
oturmalar PLAXIS kullanılarak Mohr-Coulomb ve Pekleşen Zemin malzeme modelleriyle analiz edilmiştir. 
Yapılan analizler sonucunda, Pekleşen Zemin modelinde tünelin derinliği arttıkça zemin yüzeyindeki oturmaların 
Mohr-Coulomb’a göre azaldığı ve gerçek değerlere daha yaklaştığı görülmektedir.

Anahtar kelimeler: Sonlu elemanlar metodu, malzeme modelleri, plaxıs,  yüzey oturması, tünel

Comparison of Mohr-Coulomb and Hardening Soil Models’ 
Numerical Estimation of Ground Surface Settlement Caused  
by Tunneling

Tünel Kazısından Dolayı Zemin Yüzeyindeki Oturmaların Mohr-
Coulomb ve Pekleşen Zemin Modelleriyle Nümerik Tahminlerinin 
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INTRODUCTION

Due to urbanization and population growth in 
recent decades, the topic of efficient use of urban spaces, 
including underground space, has been frequently 
discussed (Chakeri et al., 2013). Underground 
space applications include development of urban 
infrastructure, transportation, water supply lines, and 
so on (Salimi et al., 2013). Ground surface settlement 
caused by tunnel excavation, especially in urban 
areas, has special significance. The process of these 
settlements differs according to the depth of excavation 
in different areas, increasing or decreasing depending 
on the depth of excavating (Melis et al., 2002; Chakeri 
et al., 2013; Papastamos et al., 2015). Notably, when 
excavation exceeds a certain depth, ground surface 
settlement will decrease (Boscardin and Cording, 1989; 
Guglielmetti et al., 2008). In order to prevent damage to 
surface structures and existing buildings due to tunnel 
excavation, a correct and reliable estimate of ground 
surface settlement is necessary (Fasihnikoutalab et al., 
2012). A variety of different methods are provided to 
estimate ground surface settlement due to tunneling. 

These methods have been categorized into three groups: 
experimental, analytical and numerical methods. The 
experimental and analytical methods are only useable 
in specific geological conditions, for in some geological 
conditions they are not reliable (Franzius, 2002). 
Thanks to advancements in computer science and, 
accordingly, the development of advanced models for 
introduction of materials, numerical methods command 
a high acceptance rate among designers.

According to measurements in place, analytical and 
empirical relations, the geometry of circles settlement, 
and the general pattern of movement of the ground 
surface due to tunneling is such that, after the increase 
in excavation depth, the settlement of the ground 
surface is low and the trough forms a wider depression. 
That is, by reducing the depth of tunnel excavation, 
the settlement of the ground surface increases, and the 
shape of the trough grows narrower (Chou and Bobet, 
2002). Most empirically functional relationships are 
based on studies by Peck (Peck, 1969), which are 
expressed in the equation 1.  
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In equation (1), “Sv” is the amount of ground surface 
settlement at a point of “x” distance from the axis of the 
tunnel; “Smax” is the maximum ground surface settlement 
at “x = 0”; and “i” is the horizontal distance from the 

tunnel centerline to the point of inflection on the ground 
surface settlement, estimated according to the depth 
of the tunnel and the soil type. The value of “Smax” is 
calculated from equation (2) (O’Reilly and New, 1982).  
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O’Reilly and New, 1982).

The general form of relationship “i” is set as “i = 
kZ0”. According to this relationship, with increasing 
insertion depth of the tunnel, when the value of “i” 
increases, according to equation (1), the amount of 
ground surface settlement is reduced and, thus, the 
width of the trough settlement increases. Therefore, 
it is necessary to determine the optimal depth of 
tunnel excavation based on the amount of settlement 
in the preliminary design of the track and the depth 
of the tunnel insertion. 

Numerical modeling of the tunneling with 
simple models has proven inaccurate due to the 
lack of ability to properly simulate the phenomenon 
of unloading and the lack of distinction between 
the hardships of initial loading and unloading/
reloading; thus, the pattern of movement of the 
ground and settlement values have been incorrectly 
and illogically expressed (Schanz et al., 1999; Boháč 
et al., 2002). The process of excavating a tunnel in 
the ground is such that, along with the excavating, 
the fulcrum portion of the soil will be removed. In 
other words, the weight of excavated soil is like a 
body force downward, which disappears after the 
tunnel is created. Consequently, when excavating 
and removing a body force downward on the floor 
of the tunnel is equivalent to adding a body force 

upwards, which leads to the creation of high-
scurry on the floor of the tunnel (Corp, 2002). This 
conclusion is justified according to Newton›s Third 
Law and the principle of action and interaction. Of 
course, on the run, high-scurry on the floor of the 
tunnels, especially at shallow depths, due to low side 
pressure results in only a small amount of pressure. 
In numerical modeling, especially with simple linear 
models, such as linear elastic and the Mohr-Coulomb 
models, the rate of high-scurry is expected to be 
higher than that found in reality. Thus, using simple 
models causes a change in the expected pattern of 
movement and the subsequent change of ground 
surface settlement (Leca et al., 2007). In this paper the 
performance of numerical modeling in the estimation 
of ground movement patterns caused by excavating 
a hypothetical tunnel at various depths was modeled 
with Mohr-Coulomb and advanced Hardening Soil 
models using PLAXIS 2D, and a comparison was 
made between the general trend of ground surface 
settlement and high-scurry on the floor of the tunnel.

Features of the Mohr-Coulomb model

In the discussion of numerical modeling, it will 
be determined that the model and corresponding 
input parameters have critical effects on the results 
of analysis. In fact, models suggest a mathematical 
description of the mechanical behavior of materials, 
which affect important aspects of material behavior. 
The Mohr-Coulomb model is a perfect linear elastic-
plastic model requiring five input parameters to 
express the stress-strain behavior. Among models, 
this model, because of the simplicity of formulation 
as well as the lesser data input determined by simple 
tests, has more applications than other models. With 
this model, problems such as the bearing capacity of 
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soil or slope stability can easily have designed. In 
contrast, this model has fundamental flaw with respect 
to analyzing deformation problems such as tunneling 
and excavation (Obrzud, 2010). One of the weaknesses 
of this model on issues related to excavating has to do 
with the constant of stiffness and lack of distinction 
between initial loading and unloading/loading of 

materials, especially in soil. The difference between 
prediction of the stiffness in this model and that of 
actual tests such as triaxial and consolidation on a 
sample of soil is shown in Figure (2). In this figure, it 
is seen that there is a considerable difference between 
the actual behavior of material and that predicted by the 
Mohr-Coulomb model.  
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in 1999 by (Schanz et al., 1999) in the framework of 
the theory of elasticity. In this model, the strains (elastic 

and plastic) are calculated based on the hardness of the 
surface tension and this hardness is different for the 
initial loading and unloading/loading (Obrzud, 2010). In 
this model, the behavior of material is nonlinear before 
the break, and after defeating, behavior is determined 
based on Mohr-Coulomb strength parameters (cohesion 
and angle of internal friction). The overall behavior 
of the stress-strain, along with a variety of stiffness 
parameters is shown in Figure 3.  
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Three types of stiffness have been defined in this 
model: loading stiffness , based on the results of triaxial 
pressure test; unloading stiffness  , based on the results 
of triaxial unloading pressure test; and stiffness loading , 
based on the results of a one-dimensional consolidation 
test. The approximate relationship between the hardness 
parameters is suggested by  and  for most soil materials 
(Obrzud, 2010; Brinkgreve and Al-Khoury, 2016). In 
this paper, the performance of this model compared to 
the Mohr-Coulomb model in tunneling projects and 
ground motion pattern prediction is investigated.

MATERIALS AND METHOD

Plane Strain Soil Model

To evaluate the performance of the Mohr-
Coulomb and Hardening Soil models to estimate the 

ground surface settlement caused by tunnel excavating 
at various depths and to investigate the pattern of 
movement in the area around the tunnel, the geometry 
of the tunnel with a diameter of 7 meters for different 
depths was modeled, as shown in Figure 4. The intent 
was to investigate the effect of depth factors (h/d) for 
different values ​​1, 2, 3 and 4. Simulations for different 
depths for both types of models, Mohr-Coulomb and 
Hardening Soil, was done. The distance between 
the boundary of the floor of the model and the lower 
boundary of the tunnel plays an important role in the 
pattern of displacement, particularly with high-scurry 
on the floor of the tunnels in the simulation (Schweiger, 
2008). To eliminate the effect of this factor, the bottom 
line intended at a fixed distance (2d) for all models and 
the only variable is the depth of tunnel placement in 
each model.  
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In Table 1, the physical and mechanical parameters 
of a medium dense sand sample used for both models 

is shown (Das and Sobhan, 2016; Brinkgreve and Al-
Khoury, 2016).  

Table 1. Properties of dense sand for MC and HS models

Material Type
γwet γsat υ cref φ Ψ m

kN m-3 kN m-3 kN m-2 kN m-2 kN m-2 - kN m-2 [˚] [˚] -

Medium 
dense Sand

HS 16.5 18 34e3 34e3 102e3 0.35 0.2 32 0 0.5

MC 16.5 18 34e3 - - 0.35 0.2 32 0 -

One of the reasons for using the Hardening Soil 
model is its association with the parameters of the 
Mohr-Coulomb model. As with the Mohr-Coulomb 

model, parameters such as cohesive strength, friction 
angle, and angle of dilation control failure area. As 
mentioned before, the major difference between these 
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two models is the definition of soil stiffness during 
loading/unloading and behavior of stress-strain before 
nonlinear failure. 

RESULTS AND DISCUSSIONS

Results of the modeling are presented in Figure 
(5) and Figure (6). In Figure (5), maximum ground 
surface settlement and in Figure (6), the pattern of 

displacement for different values ​​of (h/d) are presented 
for both models. 

It can be observed from Figure (5a) that in 
simulations with the Mohr-Coulomb model the increase 
in settlement does not occur along with reduction in 
depth. In this way, the maximum amount of surface 
settlement is estimated for (h/d =1), but the process of 
settlement reduction is not be repeated along with the 
ratio of (h/d).  
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Figure 5. Surface settlement curves due to tunneling in different depths (a) MC model 201 

(b) HS model (c) Peck equation 202 

The pattern of deformation around the tunnel in Mohr-Coulomb model is shown in 203 

Figure (6a). According to the figure, it is observed that the high-scurry on the floor of 204 
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crown. Thus, in the Mohr-Coulomb model, the value of surface settlement is less than 209 

the Hardening Soil model. On the other hand, according to Figure (5b) by using the 210 
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The pattern of deformation around the tunnel 
in Mohr-Coulomb model is shown in Figure (6a). 
According to the figure, it is observed that the high-
scurry on the floor of the tunnels modeled with Mohr-
Coulomb occurs even for shallow depths of tunnel 
insertion, and this makes the paradigm shift in the 
movement of the crown of the tunnel and, as a result, 

the surface settlement of the ground. In this case, the 
upward force in the area of ​​the floor (uplift) has reduced 
deformation down the tunnel walls and the crown. 
Thus, in the Mohr-Coulomb model, the value of surface 
settlement is less than the Hardening Soil model. On 
the other hand, according to Figure (5b) by using the 
Hardening Soil model, with reducing the depth of the 
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tunnels, the settlement steadily increased and the trough 
shape became narrower and deeper, a position also 
demonstrated according to the empirical analysis of the 
settlement, as mentioned in the introduction and shown 
in Figure (5c). According to Figure (6b), it is observed 
that the movement concentration is on the crown of 
the tunnel, and with increasing excavation depth, part 

of the movement is seen in the range of the tunnel 
excavation (as the high-scurry on the floor). These 
values are more rationally obtained than those from 
the Mohr-Coulomb model. Compared with Hardening 
Soil model, the Mohr-Coulomb model shows a large 
amount of uplift, even at shallow depths, less often seen 
in the implementation of shallow tunnels.  
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ground movement, especially in urban areas, due to the impact of underground 226 

excavating, requires use of suitable models having the ability to simulate the behavior 227 

of the most important aspects of the soil. Stiffness of stress in the behavioral models and 228 

distinguishing of stiffness between initial loading and unloading/reloading are important 229 
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CONCLUSION

Materials behavior in numerical modeling of 
geotechnical engineering problems has an important role 
in predicting movement patterns. Overall, a reasonable 
estimate of the ground movement, especially in urban 
areas, due to the impact of underground excavating, 
requires use of suitable models having the ability to 
simulate the behavior of the most important aspects of 
the soil. Stiffness of stress in the behavioral models and 
distinguishing of stiffness between initial loading and 
unloading/reloading are important aspects of simulation 
in the discussion of excavation issues, all which play an 
important role in the prediction of ground movement. 
The overall pattern of movement due to high-scurry 

on the floor is the most important issue in numerical 
simulation of underground excavating. In this paper, it 
will be evident that the pattern of movement represented 
by the Hardening Soil model is a more accurate 
representation of reality than that rendered by the Mohr-
Coulomb model for a number of reasons having to do 
with factors such as: stiffness definition and difference 
in loading/unloading stiffness, high-scurry on the 
floor of the tunnel, and its focus of movement of the 
tunnel’s crest and walls. In the Hardening Soil model, 
increases in ground surface settlement have been well 
anticipated along with a decrease in depth. Therefore, it 
is recommended that analysts employ advanced models 
to simulate excavation issues.  
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