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ABSTRACT 

Meniscal tears are a disease that occurs in the knee joint and negatively affects people's mobility. In this study, the 

performance of the state-of-the-art (SOTA) YOLO (You Only Look Once) models, in particular YOLOv8l, 

YOLOv8x, YOLOv9c, YOLOv9e, YOLOv10l, and YOLOv10x, for the detection of meniscal tears was investigated. 

The algorithms were trained and tested with data from magnetic resonance imaging (MRI). In our study, the 

YOLOv9e model showed the highest performance and achieved the best results in the training phase with a mAP50 

of 0.91807, a precision of 0.87684, a recall of 0.93871 and an F1 score of 0.90672. This study makes a unique 

contribution to the field with its advanced algorithms and comprehensive performance analysis. The findings show 

that deep learning algorithms are suitable for clinical use in the automatic detection and localization of meniscal tears. 

In this way, the possibility of early diagnosis increases, and patients can be directed to the right treatment, preventing 

joint problems that may occur in the future. In future studies, it is aimed to increase the generalization capabilities of 

the models with larger data sets and different anatomical structures.  

Keywords: Osteoarthritis, meniscus tear, magnetic resonance imaging, deep learning, YOLO series,  

ÖZET 

Menüsküs yırtıkları diz ekleminde meydana gelen ve insanların hareket kabiliyetlerini olumsuz etkileyen bir 

hastalıktır. Bu çalışmada, menisküs yırtıklarının tespiti amacıyla YOLOv8l, YOLOv8x, YOLOv9c, YOLOv9e, 

YOLOv10l ve YOLOv10x gibi son teknoloji YOLO (You Only Look Once) modellerinin performansı incelenmiştir. 

Algoritmalar, manyetik rezonans görüntüleme (MRG) görüntülerinden elde edilen veriler üzerinde eğitilmiş ve test 

edilmiştir. Çalışmamızda kullanılan YOLOv9e modeli, eğitim sürecinde elde edilen en iyi sonuçlarda 0,91807 

mAP50, 0.87684 Precision, 0.93871 Recall ve 0.90672 F1 Score değerleriyle en yüksek başarıyı göstermiştir. Bu 

çalışma, kullanılan ileri seviye algoritmalar ve kapsamlı performans analizi ile alanda özgün bir katkı sağlamaktadır. 

Elde edilen bulgular, derin öğrenme algoritmalarının menisküs yırtıklarının otomatik tespiti ve lokalizasyonunda 

klinik kullanıma uygun olduğunu göstermektedir. Bu sayede erken teşhis olasılığı artmakta ve hastaların doğru 

tedaviye yönlendirilmesi sağlanarak ilerleyen dönemde oluşabilecek eklem sorunlarının önüne geçilebilmektedir. 

İlerleyen çalışmalarda daha geniş veri setleri ve farklı anatomik yapılarla yapılacak araştırmalarla modellerin 

genelleme yeteneklerinin artırılması hedeflenmektedir.  

Anahtar Kelimeler: Osteoartrit, menüsküs yırtığı, manyetik rezonans görüntüleme, derin öğrenme, YOLO serileri.  
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INTRODUCTION 

Osteoarthritis (OA) is a degenerative joint disease caused by damage to the articular cartilage and underlying bone, 

particularly in weight-bearing joints. OA of the knee is the most common type of recurrent arthritis affecting older 

people. This disease is characterized by the wear and deterioration of the cartilage in the knee joint over time, resulting 

in significant disability and limitations in the activities of older people(Almajalid et al., 2019; Bilge et al., 2018; Gaj 

et al., 2020a).  

The meniscus is an important component of the human body. Each knee has two fiber-reinforced menisci, one on the 

inside and one on the outside. The menisci are crescent-shaped, convex, and triangular on the outside, tapering from 

the outside inwards and covering two thirds of the surface of the tibial plateau. The menisci are flexible and consist 

of dense and tightly woven collagen fibers to withstand compressive forces. The shock-absorbing properties of the 

menisci nourish the articular cartilage and stabilize the knee by protecting it from high pressure and distributing 

weight evenly (Bryceland et al. 2017; Makris et al., 2011; Ölmez et al., 2020). Degeneration or tearing of the meniscal 

tissue is an important factor in the development of OA. Since the meniscus contributes to the stability and shock 

absorption of the knee joint, damage to this tissue can lead to wear and degeneration of the articular cartilage, which 

can trigger or accelerate the OA process. Meniscus tears are common knee injuries and can occur in people of all 

ages. Meniscus tears can occur as a result of sporting activities, aging, or trauma. Figure 1 shows examples of healthy 

and tear meniscus. These images visually illustrate the textural differences that our model attempts to recognize and 

concretize the structural differences between a torn meniscus and a healthy meniscus. 

 
Figure 1. Examples of Healthy and Tear Meniscus. (a) and (b) Show Images of a Healthy Meniscus, While (c) and 

(d) Show Images of a Tear Meniscus (The Red Arrows Indicate the Tear). 

Modern imaging techniques such as MRI, which are widely used in clinical practice, make it possible to examine 

joint structures. However, the manual measurement of these structures is time-consuming (Almajalid et al., 2019). 

The difficulty in diagnosing meniscus tears can lead to incorrect treatment or late diagnosis of the condition, which 

can have a negative impact on the treatment process and even cause permanent damage to the knee joint if left 

untreated. 
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Recent advances in deep learning (DL) algorithms have led to significant improvements in the diagnosis of meniscal 

tears, which present a clinical challenge. These tears are usually detected by MRI. However, they can be difficult to 

diagnose due to structural defects in the image. DL algorithms, in particular convolutional neural networks (CNN), 

have shown remarkable performance in accurately detecting these injuries (Botnari et al., 2024; Ozeki et al., 2021).  

The success of DL methods, especially in analyzing image data, is quite high. Neural networks and in particular CNN 

architecture make it possible to detect lesions and anomalies in medical images. Some studies have successfully 

detected meniscus tears using machine learning (ML) and DL methods (Couteaux et al., 2019; Gaj et al., 2020b; 

Harman et al., 2023; Hung et al., 2023; Ma et al., 2023; Roblot et al., 2019; Saygili & Albayrak, 2017a, 2020; Saygılı 

& Albayrak, 2017b; Ying et al., 2024). Further integration of these DL-based technologies into clinical workflows 

will streamline diagnostic processes and contribute significantly to the reliable detection of meniscal pathologies, 

improving patient outcomes (Ma et al., 2023). 

One of the latest DL methods is YOLO, an object detection algorithm proposed by Redmon et al. in 2016. This 

algorithm divides an input image into 𝑆 𝑥 𝑆 grid cells and estimates 𝐵 bounding boxes and the corresponding class 

probabilities for each cell. YOLO aims at fast and accurate object detection by converting the object detection 

problem into a regression problem(Redmon et al., 2016; Su et al., 2023). The latest version of YOLO-based 

algorithms is the YOLOv11 algorithm. In this study, we used the current YOLO algorithms and investigated the 

performance of these algorithms on meniscal tears.  

The use of YOLO series and YOLO-based hybrid architectures in MRI imaging of knees has shown promising 

results. For example, one study investigated the effectiveness of advanced deep learning models such as YOLOv8 

and EfficientNetV2 on sagittal and coronal MRI images of meniscus tears. In this study, the YOLOv8 version was 

used to localise the meniscus and then the EfficientNetV2 model was used to detect meniscus tears (Güngör et al., 

2024). In another study using EfficientNet and YOLO series, the Scaled-YOLOv4 model detects the location of the 

meniscus and the EfficientNet-B7 model classifies meniscal tears (Chou et al., 2023).  

In addition, the SE-YOLOv5 model based on squeeze-and-excitation (SE) inception attention was developed in a 

study on the automatic detection of cystic lesions in the knee using deep learning methods based on MRI images 

(Xiongfeng et al., 2022). In another study, a recurrent neural network (RNN) model was proposed for the 

classification and localization of knee ligament injuries on MRI images. This model was shown to provide better 

classification and localization compared to YOLOv3 (Zhu et al., 2022).  

In a study on the automatic diagnosis of discoid lateral meniscus, it was reported that the YOLOv3 algorithm can 

diagnose this condition (Li et al., 2021a). In another study, a lesion detection network was trained using the 

YOLOv5S architecture for the detection of meniscal tears (Li et al., 2021b). In another study, a lesion detection 

network was trained using the YOLOv5S architecture for the detection of meniscus tears (Zhao et al., 2021). In 

another study, Darknet-53 proposed a new model that can be integrated into the YOLOv4 algorithm to analyze 

coronal and sagittal MRI images (Hung et al., 2023).  

Although there are already several studies analysing MRI images of the knee using YOLO series, there is still 

potential for development in this area. Few studies are comparing the performance of the different versions of the 

YOLO algorithm in detecting meniscal tears. In particular, a comprehensive evaluation of the accuracy, precision, 

and overall efficiency of the latest versions in detecting meniscal pathologies has not yet been performed. In this 

study, we focus on the diagnosis of meniscal tears with the current YOLO series (YOLOv8, YOLOv9, YOLOv10) 

using the MRNet dataset. 

The clinical contributions of our work focus on the accurate and rapid diagnosis of meniscal tears. The developed 

DL-based methods will relieve radiologists and help them to diagnose faster. In particular, early diagnosis of a 

meniscus tear will ensure that the appropriate treatment plan is implemented in a timely manner and prevent meniscus 

tears from progressing and causing more serious joint problems. This can improve the patient's general condition, 

reduce the need for surgery, and speed up the rehabilitation process. 

MATERIALS AND METHODS 

Selection of the Dataset and Labeling of the Data 
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The MRNet dataset consists of 1,370 knee MRI examinations performed at Stanford University Medical Centre. The 

dataset contains 1,104 (80.6%) abnormal exams with 319 (23.3%) ACL tears and 508 (37.1%) meniscal tears; the 

labels were manually extracted from the clinical reports (Bien et al., 2018). For this study, 250 examinations were 

randomly selected from the MRNet dataset and 203 examination images were used based on the exclusion criteria. 

Of these examinations, 97 (47.78%) were examinations without meniscal tears and 106 (52.22%) were examinations 

with meniscal tears. Figure 2 shows the dataset selection process and exclusion criteria.  

 
Figure 2. Process of Dataset Creation. 

Since the sagittal section provides the most information about meniscal tears (Ma et al., 2023) only sagittal section 

images were used in this study. Images showing both the anterior and posterior horn in the sagittal plane were 

selected. From the images of 203 examinations, a total of 669 images were extracted in PNG (Portable Network 

Graphic) file format. Of these images, 338 (50.52%) were images with meniscal tears and 331 (49.48%) were healthy 

images without meniscal tears. The dataset was split to 70:25:5 for train, validation, and testing. Table 1 shows the 

distribution of the dataset. 

Table 1. Number of Images in the Train, Validation, and Test Dataset. 

 Healthy Tear Total 

Train 237 232 469 

Validation 84 83 167 

Test 17 16 33 

 

The meniscus area in images with a meniscus tear is labeled “tear” and the meniscus area in images without a 

meniscus tear is labeled “no tear”. The anterior horn and posterior horn were labeled separately in images without a 

meniscal tear, while only the tear area was labeled in images with a meniscal tear. The number of labels in the images 

of the train, validation, and test sets can be found in Table 2. The online tool RoboFlow was used for labeling the 

images, sizing, and partitioning the dataset. 

Table 2. Number of Tags in the Train, Validation, and Test Dataset. 

 Train Valid Test 

no_tear 417 140 32 

tear 333 117 24 
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Preprocessing of Images 

Since the obtained MRI images have different resolutions, they were preprocessed and converted to the input sizes 

(640x640 pixels) of the YOLO algorithm. This process was performed with RoboFlow. 

Experimental Setup and Hyperparameters 

All experiments in this study were conducted using the Google Colab platform, where computationally intensive 

operations are performed by Google servers. The required libraries were provided by this platform. The analysis of 

the dataset was performed on an NVIDIA A100-SXM4-40GB GPU with the Python-3.10.12 programming language 

using torch-2.4.1+cu121 with the latest YOLOv8, YOLOv9 and YOLOv10 libraries from Ultralytics. The 

hyperparameters used in these experiments were kept constant throughout the study and are listed in Table 3. 

Table 3. Experimental Hyperparameters. 

Hyperparameter Value 

workers 2 

batch 12 

device 0 

epochs 100 

lr0 0.01 

lrf 0.01 

momentum 0.95 

weight_decay 0.0001 

warmup_epochs 10 

warmup_momentum 0.5 

warmup_bias_lr 0.1 

optimizer SGD 

The hyperparameters used in this study were carefully selected to efficiently train the model and optimize its overall 

performance. The batch size was set to 12 to compensate for memory usage during training, while the value of epochs 

was set to 100 to ensure that the model processes the data appropriately. The learning rate (lr0) was set to 0.01 and 

the momentum to 0.95 to achieve rapid convergence of the model. The weight decay was set to 0.0001 to increase 

the generalization ability of the model. At the beginning of the training process, a low momentum (0.5) and learning 

rate (0.1) were used for 10 epochs in the warm-up phase so that the model learns more stably. Finally, the SGD 

optimization algorithm was used to update the model parameters. The balanced use of these hyperparameters 

contributed to the high performance of the model in detecting meniscus tears. 

YOLO Series 

YOLO is an object recognition algorithm proposed by Redmon et al. in 2015. YOLO aims at fast and accurate object 

recognition by converting the object recognition problem into a regression problem (Redmon et al., 2015; Su et al., 

2023). The latest version of YOLO-based algorithms is YOLOv11. Over the years, numerous versions of YOLO 

have been released with innovative techniques to improve performance. Figure 3 shows the timeline of YOLO 

versions. 

The three current versions of the YOLO algorithms and the models with the highest number of parameters (YOLOv8l, 

YOLOv8x, YOLOv9c, YOLOv9e, YOLOv10l, and YOLOv10x) were used in this study. The reason for choosing 

these models is that they have the potential to learn more complex structures and provide more accurate results due 

to their high number of parameters. Especially when detecting subtle structural changes such as meniscus tears, the 

deeper learning capacity of larger models can improve accuracy and allow better generalization to complex images. 

YOLOv8(Jocher et al., 2023; Sohan et al., 2024; Terven et al., 2023), 2023 is an object detection model released by 

Ultralytics in 2023 that offers significant improvements over previous versions. This model offers flexibility through 

multiple scaled versions for different application domains, including YOLOv8n (nano), YOLOv8s (small), 

YOLOv8m (medium), YOLOv8l (large) and YOLOv8x (extra-large). YOLOv8 introduces the C2f module, which 

significantly improves its architecture and extends the CSP (Cross-Stage Partial) layer. This module enables the 

combination of high-level features with contextual information, improving the accuracy of the model. YOLOv8 also 
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improves the overall accuracy of the model by moving to a decoupled header structure that independently handles 

object presence, classification, and regression tasks(Alif & Hussain, 2024; Sapkota et al., 2024; Wang & Liao, 2024). 

 
Figure 3. Timeline of the YOLO Versions: YOLOv1 Through YOLOv10. 

YOLOv9 is the next generation object recognition model, launched in 2024, and builds on the benefits of previous 

versions. It aims to preserve data integrity in deep learning processes by introducing Programmable Gradient 

Information (PGI) and the Generalized Efficient Layer Aggregation Network (GELAN) architecture, an innovative 

approach to reduce information loss. YOLOv9 is designed to prevent data corruption - a common problem with deep 

neural networks - while ensuring a better flow of information and improving object recognition capabilities in 

complex and dynamic environments (Alif & Hussain, 2024; A. Wang et al., 2024; Wang & Liao, 2024).  

YOLOv10(A. Wang et al., 2024; Wang & Liao, 2024) is the latest object recognition model released in 2024. It offers 

significant innovations and combines all the advantages of the previous versions. It significantly reduces recognition 

time by eliminating the need for traditional NMS (Non-Maximum Suppression). YOLOv10 manages to increase 

detection accuracy without compromising speed by optimizing the training protocol with a double label assignment 

strategy. The architecture of the model includes innovative components such as lightweight classifier heads and 

discrete subsampling with spatial channels that minimize information loss (Alif & Hussain, 2024; Sapkota et al., 

2024; A. Wang et al., 2024; Wang & Liao, 2024). 

YOLOv8, YOLOv9, and YOLOv10 can be seen as successive advances in the field of object recognition in the 

context of deep learning. Each model improves the functions of the previous versions and offers greater speed, 

accuracy, and efficiency. While YOLOv8 provides flexibility with architectural improvements and multiscale 

versions, YOLOv9 improves performance with innovative approaches to reduce information loss. YOLOv10 

combines all the advantages of the previous versions and offers innovative features that reduce recognition time and 

increase accuracy. These three models play an important role in the development of object recognition technology 

and pave the way for future applications. 

Metrics of Success 

The metrics Recall (R), Precision (P), Average Precision (AP), Mean Average Precision (mAP) and F1 score were 

used to evaluate the performance of the model. These metrics are the most used metrics for evaluating object 

recognition models and their expressions are given in Equations 1-5.  

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                                       (1) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                                        (2) 

𝐴𝑃 = ∫ 𝑃(𝑟)𝑑𝑟
1

0
                                                                                                                                (3) 
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𝑚𝐴𝑃 =
∑ 𝐴𝑃İ

𝑁
i=1

𝑁
                                                                                                                               (4) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2
𝑃 𝑥 𝑅

𝑃 +𝑅
                                                                                                                               (5) 

True Positive (TP) refers to the number of instances in the dataset that the model correctly predicts as positive, while 

False Negative (FN) describes cases where the model incorrectly classifies an instance that should be positive as 

negative. False Positive (FP) is when the model incorrectly predicts a sample as positive when it should be negative. 

Recall indicates how many instances the model correctly predicts as positive and evaluates the ratio between TP and 

FN. Precision indicates how many of the instances that the model predicts as positive are correct and measures the 

trade-off between TP and FP. Ideally, a model should have high precision and recall values, but it can often be 

difficult to achieve a balance between these two metrics. The mean average precision (mAP) represents the average 

of the average precision (AP) values calculated for each class. AP is a metric that is calculated considering the 

precision and recall of the model at a given threshold and is usually presented as an average of the performance 

obtained for different classes. 

F1 score is a metric that evaluates the trade-off between precision and recall. This metric is calculated as the harmonic 

mean of precision and recall and measures the model's performance on false-positive and false-negative predictions 

in a balanced way. The F1 score is an important indicator, especially for unbalanced datasets, as it more accurately 

reflects the overall performance of the model. 

RESULTS 

This study evaluates the performance of the YOLOv8, YOLOv9 and YOLOv10 series for the detection of meniscal 

tears based on the results from the training, validation, and testing phases. The performance measures such as mAP, 

precision, recall, and F1 score of each of the models in the training process were examined and qualitative and 

quantitative analyses were performed based on the classification results obtained in the test set. 

A total of 6 experiments were carried out with the two versions of the YOLOv8, YOLOv9, and YOLOv10 series 

with the most parameters. Table 4 shows the comparison of the number of parameters, GFLOPs, and processing time 

for these trainings. The YOLOv8x model has the highest value with 68.1 million parameters, while the YOLOv9c 

and YOLO10l models have the lowest values with around 25 million parameters. In terms of FLOPs, the YOLOv8x 

model has the highest value with 257.4 GFLOPs. This indicates that the model is more computationally intensive, 

while the YOLOv9c model requires the least computing power with 102.3 GFLOPs. In terms of processing time, the 

Yolov8l model requires the shortest time (13 min 8 sec), while the YOLOv9e model requires the longest time (27 

min 40 sec). In particular, the YOLOv9c model stands out as a computationally efficient model with its small number 

of parameters and FLOPs, while models such as YOLOv8x and YOLOv9e, as complex structures that require more 

calculations, have longer processing times. 

Table 4 Comparison of the Number of Parameters, FLOP and Processing Time of the Train. 

  Parameters/M  FLOPs/G Time/min 

YOLOv8l 43,6 164.8 13 min 08 sec 

YOLOv8x 68,1 257.4 16 min 56 sec 

YOLOv9c 25,3 102.3 15 min 42 sec 

YOLOv9e 57,4 189.1 27 min 40 sec 

YOLOv10l 25,7 126.3 16 min 56 sec 

YOLOv10x 31,6 169.8 18 min 44 sec 

Table 5 shows the values of the performance indicators Last and Best achieved by the models during the training 

process. In comparison between the models, the YOLOv9e model achieved the highest performance metrics overall. 

In both the last training results and the best results, this model had the highest values in terms of mAP50 (Last: 

0.90308, Best: 0.91807) and recall (Last: 0.90522, Best: 0.93871), showing significant success in recognizing 

complex objects. The high mAP50 metric indicates that the intersection between the recognized area and the labeled 

area is high. On the other hand, the YOLOv8l and YOLOv8x models stand out as lower cost models that offer a 

balanced performance in terms of precision and F1 score values. The YOLOv10x model, on the other hand, generally 

has lower accuracy values. Considering the high number of parameters and FLOPs, it can be said that the YOLOv9e 

model is preferable for complex and challenging object detection problems in terms of accuracy and efficiency. 
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The YOLOv9e model showed the highest overall performance among the models tested and achieved the best values. 

In particular, it achieved a peak mAP50 of 0.91807, a precision of 0.87684, a recall of 0.93871, and an F1 score of 

0.90672 during training. These metrics show that the YOLOv9e model is particularly effective at recognizing 

complex objects and has high accuracy in matching detected regions to labeled regions in the dataset. This 

performance makes it particularly suitable for demanding applications, such as the automatic detection and 

localization of meniscus tears. 

Table 5. Comparison of the Last and Best Performance Metrics Achieved by the Models During the Training 

Process. 

 LAST BEST 

  mAP50 Precision Recall F1 Score mAP50 Precision Recall F1 Score 

YOLOv8l 0.88859 0.83977 0.86968 0.85446 0.89789 0.87019 0.91230 0.89075 

YOLOv8x 0.89370 0.83390 0.87592 0.85439 0.89896 0.85991 0.92659 0.89201 

YOLOv9c 0.88149 0.83096 0.85610 0.84334 0.90505 0.85839 0.93654 0.89576 

YOLOv9e 0.90308 0.82948 0.90522 0.86570 0.91807 0.87684 0.93871 0.90672 

YOLOv10l 0.89527 0.83659 0.85668 0.84652 0.89527 0.86764 0.89942 0.88324 

YOLOv10x 0.86525 0.83454 0.85458 0.84444 0.88694 0.86887 0.90943 0.88869 

 

During training, performance analysis was performed using graphs showing the mAP50, precision, recall, and F1 

score values of the models during each epoch. Figure 4 shows the mAP50 metric values of the models during training. 

In the beginning, all models increase their performance at a certain rate, but this increase slows down over time. After 

the 40th epoch, the learning rate slows down for all models. After 80 epochs, the models show that the increase in 

performance slows down and eventually reaches a constant level. This saturation point indicates that the model will 

no longer achieve a significant improvement in performance with further training. Although the YOLOv10l model 

achieves higher mAP50 values with fewer epochs, the YOLOv9e model achieves the best mAP50 value at the end 

of training.  

 
Figure 4. Variation of the mAP50 Metric Over 100 Epochs. 

Figure 5 shows the precision metric values of the models during training. It can be seen that the precision values of 

all models increase at the beginning of the training process, but after 80 epochs the increase slows down or even 

stops. The YOLOv9c and YOLOv9e models showed good overall performance among their peers and achieved 

higher accuracy values without overfitting. Although YOLOv8l has the highest value at the end of training, 

YOLOv9e has the highest value throughout training. Eliminating the drop of the YOLOv9e model at the end of 

training indicates that this model will be the optimal choice for solving the meniscus tear recognition problem.  
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Figure 5. Variation of the Precision Metric Over 100 Epochs. 

Figure 6 shows the recall metric values of the models during training. Although the models YOLOv8l and YOLOv8x 

achieve higher recall values in a shorter time than the other models, YOLOv9e provides the best recall value. 

Although all models show high performance in the first epochs, it can be observed that the performance decreases 

after the trial.   

 
Figure 6. Variation of the Recall Metric Over 100 Epochs. 

Figure 7 shows the F1 score of each model during training. This metric is used to balance precision and recall and is 

suitable for models with an unbalanced class distribution. It may improve rapidly at a certain point during training. 

This indicates that the learning process of the model is efficient. It shows that the learning process is high in the first 
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epochs of training. The fact that the F1 score of the YOLOV9e model increases faster compared to other models may 

indicate that this model has a high learning capacity and is trained more effectively. 

 
Figure 7. Variation of the F1 Score Metric Over 100 Epochs. 

The YOLOv8, YOLOv9 and YOLOv10 series provide reliable and very accurate results for the detection of meniscal 

tears. In particular, the high values achieved for critical metrics such as mAP50 and recall speak for the use of these 

models for real-time applications in the medical field.  

Table 6 shows the precision, recall and AP50 values of the models used in the train set for the classes no_tear and 

tear. The YOLOv9c and YOLOv9e models are characterized by their strong performance, especially in the 

recognition of complex objects. The YOLOv9c model achieved the best results in the “no_tear” class with an AP50 

value of 0.909. The same model also showed a balanced performance in the precision and recognition values and 

achieved successful recognition in both classes. The YOLOv9e model also has a high recall value of 0.950 in the 

“no_tear” class and a high performance in the “tear” class with a precision of 0.888 and an AP50 of 0.895. The 

YOLOv10l model achieved the highest AP50 value (0.906), especially in the recognition of healthy images and 

proved to be an ideal model for this class. 

Table 6. Performance Comparison of the Models Used in the Train Set for the Classes. 

Model Class Precision Recall AP50 

YOLOv8l 
no_tear 0.819 0.893 0.887 

tear 0.828 0.855 0.898 

YOLOv8x 
no_tear 0.803 0.903 0.888 

tear 0.804 0.841 0.884 

YOLOv9c 
no_tear  0.810 0.943 0.909 

tear 0.906 0.786 0.899 

YOLOv9e 
no_tear 0.805  0.95 0.894 

tear 0.888  0.88 0.895 

YOLOv10l 
no_tear 0.841 0.893 0.886 

tear 0.833 0.821 0.906 

YOLOv10x 
no_tear 0.839   0.900 0.876 

tear 0.847 0.786 0.865 

 

Table 7 shows the precision, recall and AP50 values of the models used in the validation set for the classes no tear, 

and tear. The YOLOv9e and YOLOv9c models perform well on the data without meniscus tears, while the 
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performance of these models is lower on the data with meniscus tears. If we evaluate Table 6 and Table 7 together, 

we see that a good balance is achieved between the train and validation sets of the YOLOv9e and YOLOv9c models. 

Table 7. Performance Comparison of the Models Used in the Validation Set for the Classes. 

Model Class Precision Recall AP50 

YOLOv8l 
no_tear  0.820 0.893 0.887 

tear 0.837 0.863 0.906 

YOLOv8x 
no_tear 0.797 0.896  0.88 

tear 0.803 0.838 0.885 

YOLOv9c 
no_tear 0.807 0.943 0.909 

tear 0.906 0.786 0.899 

YOLOv9e 
no_tear 0.805  0.95 0.894 

tear 0.888 0.879 0.895 

YOLOv10l 
no_tear  0.840 0.893 0.885 

tear 0.833 0.821 0.906 

YOLOv10x 
no_tear 0.839 0.892 0.875 

tear 0.847 0.786 0.865 
 

 
Ground Truth YOLOv8l YOLOv8x YOLOv9c YOLOv9e YOLOv10l YOLOv10x 

a        

b        

c        

d        

e        

f        
Figure 8. Comparison of the Prediction Results of the Models Used with Ground Truth. 

Examples of the prediction results of the architectures YOLOv8, YOLOv9, and YOLOv10 are shown in Figure 8. 

From the MRI images in the sagittal plane of the test dataset, 3 healthy images and 3 images with meniscal tears were 

selected. Although the meniscus in the image in Figure 8a is healthy in both the anterior and posterior horns, this 

region could not be correctly predicted in the YOLOv8l, YOLOv10l, and YOLOv10x models. In the architectures 

YOLOv8x and YOLOv9e, only the anterior horn could be predicted correctly. In the image in Figure 8c, both horns 
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of the meniscus are healthy, but only the posterior horn was incorrectly predicted in the YOLOv10l model. In the 

image in Figure 8e, there is a vertical meniscal tear in the posterior horn. This tear was not correctly predicted by the 

YOLOv8l and YOLOv10x models. Finally, the image in Figure 8f shows a horizontal meniscus tear in the posterior 

horn that was not predicted by the YOLOv8x model but correctly identified the anterior horn as healthy. The same 

tear was not correctly predicted in the YOLOv10x model. Looking at the accuracy of the predictions for the test 

dataset shown in Table 8 by class, it can be seen that the YOLO models provide results with high accuracy in most 

cases and the number of correct predictions is high. However, in this section, the cases with incorrect predictions are 

highlighted. 

The test dataset consists of 33 images. Table 8 shows the number of correct and incorrect detections of the YOLO 

algorithms according to the classes tear and no tear in the test set. In general, all models achieved a high number of 

correct detections in both classes. YOLOv9c performed the best with 0 false detections in the classes tear and no tear, 

while YOLOv8x performed the worst with 5 false detections. All models appear to be successful in detecting 

meniscus tears.  

Table 8. Number of Correct and Incorrect Recognitions of YOLO Models According to the Classes "Tear" and 

"No_Tear" in the Test Set. 

YOLOv8x YOLOv8l 

  Correct Incorrect   Correct Incorrect  

tear 24 0 tear 22 2 

no_tear 31 1 no tear 29 3 

YOLOv9c YOLOv9e 

  Correct Incorrect   Correct Incorrect 

tear 24 0 tear 24 0 

no_tear 32 0 no tear 31 1 

YOLOv10l YOLOv10x 

  Correct Incorrect   Correct Incorrect  

tear 24 0 tear 23 1 

no_tear 29 3 no tear 29 3 

 

DISCUSSION 

In this study, the most parameterized (YOLOv8x, YOLOv8l, YOLOv9c, YOLOv9c, YOLOv9e, YOLOv10l, 

YOLOv10x) models of the current YOLO algorithms YOLOv8, YOLOv9, and YOLOv10 are examined for their 

success in detecting meniscal tears. 

Examinations were randomly selected from the examination images in the MRNet dataset and a suitable dataset for 

the study was created through the necessary pre-processing. As can be seen in Figure 2, the number of healthy images 

and images with meniscus tears are close to each other. Looking at Table 1 and Table 2, it can be said that the created 

dataset is balanced. Each class is evenly distributed in the train, validation, and test sets. This is to reduce the risk of 

overfitting the models, achieve better generalization ability, and obtain consistent metric values. This helps to obtain 

more reliable and accurate predictions when fitting the models to real data. 

During the training process, the models were evaluated using the metrics mAP50, precision, recall, and F1 score. The 

scores of the individual classes in both the train and validation process were calculated using the metrics precision, 

recall AP50. The comparison of the last and best performance metrics achieved by the models in the training process 

is shown in Table 5. The YOLOv9e model is one of the models with the most parameters, as can be seen in Table 4. 

Due to its large number of parameters and compact structure, YOLOv9e seems to be the most successful model. The 

YOLOv9e model seems to give the best results for both the last metric values and the best metric values. YOLOv9c 

has relatively few parameters, but the model is free of unnecessary parameters and its compact structure ensures that 

the model performs more optimally. Considering the performance of the metrics, the YOLOv9c model seems to be 

very balanced, and considering the number of parameters, FLOPs, and performance results, it can be said that it can 

be preferred in real-time applications. Compared to the other models, it has the least training time, and the training 

time is shorter than the other models (except YOLOv8l), indicating that it generalizes quickly. YOLOv9 shows better 

results in object recognition thanks to its more complex structures and attention mechanisms in the backbone and 

head networks. 
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Figure 9. Comparison of Prediction Results Between the YOLOv9e and YOLOv8l Models on MRI Images. 

Images (a), (b), and (c) Show the Predictions of YOLOv9e, While Images (d), (e), and (f) Show the Predictions of 

YOLOv8l. 

The performance of the models in the two classes tear and no tear was analyzed during training (Table 6) and 

validation (Table 7). The class predictions generally show high accuracy. However, it was found that some models 

made relatively many false detections in the no_tear class (e.g. the YOLOv8x model). The models show good results 

in detecting meniscus tears in both training and validation.  

Low false positive (FP) rates in medical image analysis, especially in the tear class, are of great clinical importance. 

It helps to ensure an accurate diagnosis. Failure to detect a meniscal tear (FN) may result in the patient not receiving 

treatment or delayed treatment. Incorrect detections in both classes can have a significant impact on medical 

decisions, so the models need to be evaluated in this respect. Table 8 shows the number of correct and incorrect 

detections of the YOLO models according to the tear and no_tear classes in the test set. YOLOv9c showed the best 

performance with 0 errors in the tear and no_tear classes, while YOLOv8x showed the worst performance with 5 

false detections. The analysis of Table 8 shows that the models are more successful in detecting meniscal tears than 

in detecting a healthy meniscus. The low contrast and ambiguity of the meniscus structure in some regions of the 

images lead to inaccurate predictions. In particular, the models did not capture enough discriminative features when 

localizing vertical and horizontal tears, which also led to incorrect predictions. In addition, the generalization 

performance decreased because the models failed to detect some small tears or focused on specific tear types during 

training. Although the dataset is balanced, the type of tears in the images with meniscal tears varies. 

Figure 8 compares example prediction results of the models used with real data. The image in Figure 8a was either 

not predicted or only the anterior horn was predicted in all models except YOLOv9c. The low resolution of the image 



KSÜ Mühendislik Bilimleri Dergisi, 28(1), 2025                     305 KSU J Eng Sci, 28(1), 2025 

Araştırma Makalesi  Research Article 

M. A. Şimşek, A. Sertbaş 

 
and the presence of artifacts mean that the models cannot make accurate predictions. Figure 9 displays the prediction 

results on the test dataset for YOLOv9e, which achieved the highest performance among the models tested, and 

YOLOv8l, which showed one of the lower performances. In these images, YOLOv9e (a, b, c) generally provides 

higher confidence levels and more accurate predictions compared to YOLOv8l (d, e, f). The YOLOv9e model makes 

correct predictions in Figures 9a and 9b, while in Figure 9c, it accurately detects the anterior horn but fails to identify 

the healthy meniscus in the posterior horn. On the other hand, the YOLOv8l model correctly identifies the anterior 

horn in Figure 9d but fails to detect the posterior horn and makes no predictions in Figures 9e and 9f. Analyzing these 

examples reveals that image quality, contrast, and the presence of artifacts play a significant role in prediction 

accuracy. Future improvements in image preprocessing and model fine-tuning could help mitigate these issues, 

enabling more reliable detection of meniscal tears. 

In the literature, there are CNN-based studies on the detection, localization, and characterization of meniscal tears 

(Couteaux et al., 2019; Hung et al., 2023; Ma et al., 2023). There are also studies using YOLO series, which also 

form the basis of this study, but they are not at a sufficient level. Some of these studies also propose YOLO-based 

hybrid architectures (Chou et al., 2023; Güngör et al., 2024; Zhao et al., 2021). Some studies propose architectures 

developed using YOLO series (Chou et al., 2023; Xiongfeng et al., 2022). In these studies, YOLO versions 

YOLOv3(Li et al., 2021b; Zhu et al., 2022), YOLOv4 (Chou et al., 2023), YOLOv5(Xiongfeng et al., 2022) and 

YOLOv8 (Güngör et al., 2024) have been used. Although there have been several studies analysing MRI images of 

the knee using YOLO series, both the developments in the YOLO series and the inadequacy of the existing literature 

suggest that there is still potential for development in this area. The application of the current YOLO series in this 

study will contribute to the literature. A summary and comparison of these studies can be found in Table 9, which 

highlights the models, architectures, and objectives of existing approaches to meniscal tear detection. 

Table 9. Comparison of Studies on Models for the Detection of Meniscus Tears. 

Study 
Model 

Used 
Architecture Objective Description 

(Couteaux et 

al., 2019; Hung 

et al., 2023; Ma 

et al., 2023) 

CNN-

based 

models 

Standard CNN 

architecture 

Meniscus tear 

detection, 

localization, and 

characterization 

CNN-based models were utilized for 

meniscus tear detection, but detailed 

localization and characterization were 

limited. 

(Chou et al., 

2023; Güngör 

et al., 2024; 

Zhao et al., 

2021) 

YOLO + 

Hybrid 

YOLO-based 

hybrid 

architectures 

Meniscus tear 

detection and 

localization 

Proposed YOLO-based hybrid architecture, 

but studies in this area are still developing 

within the literature. 

(Chou et al., 

2023; 

Xiongfeng et 

al., 2022) 

Enhanced 

YOLO 

Custom 

architectures using 

YOLO series 

Meniscus tear 

detection 

Custom YOLO-based architectures with 

modifications to various YOLO versions 

were proposed. 

(Li et al., 

2021b; Zhu et 

al., 2022) 

YOLOv3 YOLOv3 standard 
Meniscus tear 

detection 

YOLOv3 was employed as a foundational 

model for meniscus detection. 

(Chou et al., 

2023; 

Xiongfeng et 

al., 2022) 

YOLOv4 YOLOv4 standard 
Meniscus tear 

detection 

YOLOv4 was utilized but showed limited 

performance compared to newer models in 

the literature. 

(Xiongfeng et 

al., 2022) 
YOLOv5 YOLOv5 standard 

Meniscus tear 

detection 

YOLOv5 showed improved accuracy and 

was more effective for meniscus tear 

detection. 

(Güngör et al., 

2024) 
YOLOv8 YOLOv8 standard 

Meniscus tear 

detection 

YOLOv8 was employed, but its application 

in the literature remains relatively limited. 

Our Study 

YOLOv8 

YOLOv9 

YOLOv10 

YOLOv8 standard 

YOLOv9 standard 

YOLOv10 

standard 

Meniscus tear 

detection and 

localization 

Utilizing the YOLOv9e model for 

improved accuracy in meniscus tear 

detection, our study achieved high precision 

and recall values, indicating the model’s 

reliability for clinical applications. 
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The current study has some limitations. Firstly, the dataset used consists of 203 examinations and 669 images. 

Medical imaging often requires large datasets to effectively train deep learning models. In addition, the quality of 

images can vary significantly due to differences in imaging equipment, settings, and patient conditions. These 

differences can affect the performance of the model. Secondly, the MRNet dataset also contains low resolution 

images and the dataset consists of only sagittal slices. Although the models have shown great potential for analyzing 

meniscal tears, these limitations need to be addressed and the models need to be successfully integrated into clinical 

applications. 

CONCLUSION 

In this study, the YOLOv8, YOLOv9, and YOLOv10 algorithms were used to detect meniscus tears, and the results 

were compared. The results show that all three models can detect meniscal tears with high accuracy. In particular, 

the YOLOv9e model performed best in both the tear and no tear classes, making it the most successful model for 

clinical applications. The YOLOv9e model achieved the highest performance in the training phase with a mAP50 of 

0.91807, a precision of 0.87684, a recall of 0.93871, and an F1 score of 0.90672. 

This work makes several important contributions to the field of automated medical imaging analysis and meniscal 

tear detection. First, it provides a detailed evaluation of SOTA YOLO models for meniscal tear detection. The 

findings demonstrate that the YOLOv9e model, with its high accuracy metrics, can be a reliable tool for clinical 

diagnosis, potentially aiding radiologists by reducing time and improving diagnostic consistency. Additionally, this 

study introduces a robust methodology for high-quality data preparation and model optimization, which may serve 

as a reference for future applications in radiologic imaging. By addressing the challenges of meniscal tear localization 

and classification, this research sets a foundation for extending deep learning techniques to other joint pathologies, 

thus expanding the role of AI in radiologic diagnostics. 

In future studies, expanding the dataset by increasing the number and variety of samples and including images of 

different anatomical structures could improve the generalizability and robustness of the model. In addition, improving 

the quality and resolution of the MRI data could allow the model to capture finer structural details, which could 

increase detection accuracy. Future research could also focus on improving the interpretability of the model so that 

clinicians can better understand the basis of the predictions. Beyond just localization, research could also be 

conducted into categorizing different types of meniscal tears according to their severity and characteristics. Finally, 

the development of hybrid models that combine YOLO with other deep learning architectures could improve the 

model's ability to handle complex cases and expand its application to other areas of knee and joint pathology. 

In summary, the YOLO model series provides successful results in the automatic detection and localization of 

meniscal tears and is considered a powerful option to support radiologists in the clinical setting.  
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