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ABSTRACT 

In this study, by using ambient vibration, a new approach based 
on improvement and correction of system characteristic matrix in 
modal vibration is provided. The result is that actual system 
characteristic matrices are accurately made such that the error is 
minimized at great extent. This clearly shows how the system 
parameters can be updated in a more reliable way. Firstly, by 
approximation, the actual system characteristic matrices are 
determined using the singular value decomposition of block 
Hankel matrix that is built from response correlation matrix. 
Secondly, by black-box modeling approximation, the input-output 
relation of the system through Kalman theory is made in order to 
make the system characteristic matrices optimal definite. 
Furthermore, by expressing Hankel matrix’s multiplicities from 
Eigen solution of the system state matrix obtained in previous 
iteration, it is possible to determine both the covariance of non-
measurable process noise and measurement noise matrixes which 
are present in the Riccati equation. This means that both 
measurement and process covariance noises’ matrixes are 
indirectly built only from measured out-put data. The repetition of 
iterations is done until the error is sufficiently minimized. And 
then system modal parameters are extracted from these obtained 
system characteristic matrices. This system is used for modal 
update of the system in which modal parameters are applied 
directly and iterative methods. The code supporting this algorithm 
can be interfaced with the codes of the finite elements. 

Keywords: Dynamic Parameters, Ambient Vibration, System 
Identification 

 

ÖZET 

Bu çalışmada, ortam titreşimi kullanılarak, modal titreşimde 
sistem karakteristik matrisinin geliştirilmesi ve düzeltilmesine 
dayanan yeni bir yaklaşım önerilmiştir. Sonuç, gerçek sistem 
karakteristik matrislerinin hatanın büyük ölüde asgariye 
indirilebileceği şekilde doğru bir şekilde oluşturulmasıdır. Bu, 
sistem parametrelerinin daha güvenilir bir şekilde 
güncellenebileceğini açıkça gösterir. Öncelikle, yaklaşık sistem 
karakteristik matrisleri, tepki korelasyon matrisinden inşa edilen 
blok Hankel matrisinin tekil değer ayrışımı kullanılarak belirlenir. 
İkinci olarak, kara kutu modelleme yaklaşımı ile sistem 
karakteristik matrislerini iyileştirmek için Kalman teorisiyle 
sistemin giriş-çıkış ilişkisi oluşturulur. Ayrıca, Hankel matrisinin 
çarpanlarını önceki iterasyonda elde edilen sistem durum 
matrisinin özdeğer çözümünden ifade ederek ölçülebilir olmayan 
işlem gürültüsünün kovaryansını ve Riccati denkleminde bulunan 
ölçüm gürültü matrislerini belirlemek mümkündür. Bu, ölçüm ve 
süreç kovaryans gürültülerinin matrislerinin yalnızca ölçülen çıktı 
verisinden dolaylı olarak oluşturulduğu anlamına gelir. Bu 
iterasyonlar, tahmini hatayı minimuma indirene kadar tekrarlanır. 
İterasyonların tekrarı, hata yeterince küçültülene kadar yapılır. 
Elde edilen sistem karakteristik matrislerinden sistem modal 
parametreleri çıkarılır. Bu sistem modal parametreleri, doğrudan 
ve iteratif yöntemlerin uygulandığı sistem modal güncellemesi için 
kullanılır. Bu algoritmayı destekleyen kod sonlu elemanlar 
kodlarıyla ara yüz haline getirilebilir. 

Anahtar Kelimeler: Dinamik Parametreler, Çevresel Titreşim, 
Sistem Tanımlama 

 
1. INTRODUCTION 

In the condition where forced excitation tests are hard to be performed or when only response data can be measured 
without knowing actual loading conditions, the only technique to determine system identification of structure is to use 
operation modal analysis (output-only modal identification techniques). In this method, there is no need for an extra excitation 
to determine the dynamic parameters of the structure.(Tuhta, 2010; Ge and Lui, 2005; Wei, 1990; Raol and Madhuranath, 
1996) and this is taken as its main advantage. In addition, in case with structures of high period and modes, it may be difficult 
to excite it with artificial shaking, whereas for drop weight or ambient sources, generally there is no problem. Despite this, 
ambient excitation cannot be used in case the mass-normalized mode shapes are needed. To develop reliable finite models of 
structures, Output-only modal identification technique efficiently used with model updating tools needs to be done. Output – 
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Only Model Identification studies of systems and results performed in past years are appropriately shown in references of 
structural vibration solutions, partly in (Cunha et al. 2005). Concerning modal updating of the structure it is needed to estimate 
sensitivity of reaction of examined system to the change of parameters of a building as shown in (Kasimzade, Tuhta 2007, 
Kasimzade 2006). The definition of system identification as explained by researchers (Bendat, 1998; Ibrahim, 1977; Juang, 
1994; Peeters, 2000; Roeck 2003; Balmes 1997; ARTeMIS, 2003; Ljung, 1999; Van Overschee and De Moor, 1996), it is a 
process that develops the mathematical expression of a physical system using experimental data. There are usually three types 
of definitions in engineering structures. These define modal parameter definition, structural-modal parameter setting and 
control model. (Andersen et al., 2007; Brownjohn and Carden, 2007; Gawronski, 2004; Johansson, 1993).In the frequency 
domain, the singular value decomposition of the spectral density matrix is  e singular value frequency domain is denoted as 
frequency domain decomposition (FDD), which is further improved version enhanced frequency domain decomposition 
(EFDD). On the other hand, when the time domain is used, three different types of stochastic subspace identification (SSI) 
techniques are used. These species include the Unweighted Principal Component (UPC); Principal component (PC); And 
Canonical Variety Analysis (CVA). A new approach based on improvement and correction of system characteristic matrix in 
modal vibration from ambient vibration is shown below. In the first approximation of the algorithm, system characteristic 
matrices are determined by data-driven stochastic subspace identification method. In second approximation for estimating 
optimal state vector, applying steady-state Kalman filter to the stochastic steady space model equation makes the system 
characteristic matrices optimal definite (Labarre et al., 2003; Kalman, 1960; Kasimzade, 2006). Then all calculations are 
repeated until estimation error condition is satisfied. 

2. DETERMINATION OF APPROXIMATE VALUES OF SYSTEM MATRICES 

The purpose of the operational modal analysis is to determine modal parameters of a real system, which is assumed to be 
linear time invariant, by measuring only its response at specific locations, the exciting load is unknown. In the vibration 
analysis identification of actual system (black-box model) supported by experimental measurements, instead of determining 
the values of system characteristic matrices ˆ ˆˆ, ,A B C         , appropriate unknown real matrices values appear first. The 

sequences for the analysis with the aim of this evaluation method are described below. The equations of motion of the 
continuous system are expressed as 

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ } [ ] ( ){ }m u t c u t k u t F t d f t+ + = = 

        
(1) 

These equations are then transformed to the state-space former of first order equations-i.e., a continuous-time state-space 
model of the system and are evaluated as shown in (Kowalczuk and Kozlowski, 2000). 

( ){ } [ ] ( ){ } [ ] ( ){ }c cz t A z t B f t= +                        (2a) 

[ ] [ ] [ ]
[ ] [ ] [ ] [ ]1 1

0
c

I
A

m k m c− −

 
 =
 − − 

                                                              (2b) 

[ ] [ ]
[ ] [ ]

( ){ } ( )
( )1

0
;c

u t
B z t

u tm d−

   
 = =  
    



                                                              (2c) 

With the condition that dynamic system is measured by the 1m  output quantities in the output vector ( ){ }y t  using 

sensors, for a system model expressed by equations (2), the appropriate measurement-output equation becomes 

( ){ } [ ]{ } [ ]{ } [ ]{ }
[ ] ( ){ } [ ] ( ){ }

a v dy t C u C u C u

C z t D f t

= + +

= +

 

                      (3a) 

[ ] 1 1[[ ] [ ][ ] [ ] [ ] [ ][ ] [ ]]d a v aC C C m k C C m c− −= − −                      (3b) 

[ ] 1[ ][ ] [ ]aD C m d−=                           (3c) 



KSÜ Mühendislik Bilimleri Dergisi, 21(1), 2018                     57 KSU J Eng Sci, 21(1), 2018 
Araştırma Makalesi  Research Article 

S. Tuhta 
 

Where [ ] [ ] [ ], ,m c k  mass, damping, stiffness matrices of the structure are constructed by finite element method 

(Kasimzade, 2005); { }u  is the displacement vector; [ ]cA , is an 1 2 2( 2 ) ;n n n=  is the number of independent coordinates) by 

1n  state matrix ; [ ]d  is an 2n  by 1r  input influence matrix, characterizing the locations and type of known inputs 

( ){ } [ ] [ ] [ ]; , ,a v df t C C C  are output influence matrices for acceleration, velocity, displacement respectively by using sensors; 

[ ]C  is an 1 1m x n   output influence matrix for the state vector { }z  and displacement only; [ ]D  is an 1 1m x r  direct transmission 

matrix; 1r  is the number of inputs; 1m  is the  number of outputs. In the output-only modal analysis environment, the main 

assumption is that input force ( ){ } [ ] ( ){ }F t d f t=  comes from white noise or time impulse excitation. Under this hypothesis it 

may be possible to write a discrete-time stochastic state-space model as: 

{ } [ ]{ } [ ]{ } { }1k k k kz A z B f w+ = + +                                (4) 

{ } [ ]{ } [ ]{ } { }k k k ky C z D f v= + +            (5) 

Where, 
{ } ( ){ }kz z k t= ∆ is the discrete-time state vector; 

{ }kw is the process noise due to disturbance and modeling imperfections; 
{ }kv is the measurement noise due to sensors’ inaccuracies; 

{ } { },k kw v  are non-measurable vectors, where they are assumed to be zero-averaged white noise. If this white noise 

acceptance is neglected; That is, if the input contains some dominant frequency components in addition to the white noise, 
these frequency components cannot be separated from the system's eigen frequencies and are determined as the poles of the 
system matrix. [ ]A . 

As shown from measurement-output equation (3) it indirectly depends on system model (2) and contains appropriate 
system mass, damping, rigidity matrices [ ] [ ] [ ], ,m c k respectively. For this reason, to carry out measurement by the relation 

(5), it will be required to know system model (2) with matrices [ ] [ ] [ ], ,m c k previously for zero approximation. For zero 

approximation these known matrices are denoted as [ ] [ ] [ ], ,m c k  and they include [ ] [ ] [ ] [ ] [ ] [ ], , , , ,c cA B A B C D respectively.  

In the real structures, exited by ambient vibration, the input ( ){ } { }, kf t f  remains unmeasured and hence it disappears 

from the equation (2, 3, 4, 5) respectively. Then to take into consideration this fact, the input is implicitly modeled by the noise 
terms{ } { },k kw v and mentioned relation becomes as: 

{ } [ ]{ } { }1k k kz A z w+ = +                         (6a) 

{ } [ ]{ } { }k k ky C z v= +                         (7a) 
 

As said in above paragraphs, the main purpose of the operational modal analysis is the identification of modal parameters 
of the system from the output vector{ }ky , measured by the sensors located on the structure, whose dimensions are

sensors samplesn x n . Where sensorsn  and samplesn  are the number of sensors and samples respectively. In the practical engineering of 

stochastic methods, the signal { }ky (it may be displacement, velocity or acceleration) given by sensors can be sampled at 
discrete time intervals depending on the characteristic of the computer processing. 

Then by using the formulas (6a, 7a), measurements are realized and the system matrices ˆ ˆ,A C   
    are defined by the next 

sequences. Measuring the output vector { }ky and { }s refy  (which is a subset of the output vector{ }k sy + ) by the sensors located 

on the * *1 ( )s k s k+ = ÷ +  characteristic and *1s s= ÷  reference points appropriately of the building structure, with the 
expected value operator denoted as (...)E , the correlation function is calculated as: 
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[ ] { }{ }
* 1

0*

1({ }{ } )
s k

TT
k k s s ref k s s ref

s
R E y y y y

s k

− −

+ +
=

= =
− ∑                                     (8) 

 
From which the following block Hankel matrix build as: 
 

[ ] [ ]
[ ] [ ]

1 2

2 3 1

,

1 1

q

q

p q

p p p q

R R R

R R R
H

R R R

+

+ + −

    
      =   
 
            





   



                        (9) 

The factorization of the block Hankel data matrix is then realized by using singular value decomposition,  
 

[ ] [ ][ ][ ](0) TH U V= ∑                         (10) 

Removing the Eigen values nearly zero from matrix [ ]∑ , consequently the defined matrices [ ] [ ] [ ], ,n n nU V∑ in 

accordance with its rank ( )n are evaluated respectively.  

The first approximation of the system matrices ˆ ˆˆ, ,A B C          are calculated as: 

 
[ ] [ ] ( ) [ ][ ]1/2 1/2ˆ 1T

n n n nA U H V− −  = ∑ ∑                           (11) 

 
[ ] [ ] [ ]1/2ˆ T

n n rB V E  = ∑                                      (12) 

 
[ ] [ ][ ]1/2ˆ T

m n nC E U  = ∑                           (13) 

 

[ ] ( )1 1 1
0 0T

r r r rE I     =      
, ( )1 1 1 1

0 0
T

m m m mE I       =         

Where [ (1)]H is a shifted- block Hankel matrix;  1r  and 1m  are the number of inputs and outputs respectively; [ ]iI   is an 

identity matrix of order i ; [ ]0i  is a null matrix of order i . 
 
3. THE SYSTEM CHARACTERISTIC MATRICES’ OPTIMAL DEFINITE 

In this section, it is required to reach theoretical target that is to find the best estimate { }ˆkz  in the sense that the estimation 

error { } { } { }ˆk k ke z z= −  is as small as possible, achievement to make definite first approximate values of the building system 

characteristics ˆ ˆ,A C   
     to the stochastic black–box models’ is applied by Kalman filter theory. Theoretically, this type of 

filtering is very attractive, because it has a closed-form solution for its gain matrix. However, the Kalman filter requires 
information, including of covariance ({ }{ } ) [ ( )] [ ]T

k kE w w q k j Qδ= − =  of the non-measurable process noise { ( )}w k  and 

covariance ({ }{ } ) [ ( )] [ ]T
k kE v v r k j Rδ= − =  of the non-measurable measurement noise{ ( )}v k  (Nelson, 2000). Due to this 

reason, it is necessary to estimate these matrices [ ] [ ]( ),Q R  indirectly from measured output data { }ky and{ } { }s k srefy y += .  

One of the crucial points (Kasimzade, 2006) in the presented method, is the determination of these matrices at least 
approximately [ ] [ ]Q Q≅ , [ ] [ ] [ ]nR R U≅ =  by expressing Hankel matrix’s multiplicities from Eigen solution of the system 

state matrix Â 
   as shown below  (In references (Juang, 1994) by Observer/Kalman Filter Identification method in order to 

avoid  this problem. To make an effort to obtain estimate more approximately, Kalman filter gain is directly found from 
experimental data (Markov parameters) without estimating the covariance ( )P  of the process and measurement noises and 
solving Riccati equation). 
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Briefly, in this procedure, make optimal definition stage of matrices ˆ ˆ,A C   
     for the first approximation, then the 

system model represented by the relation (6a, 7a) become as 
 
{ } { } { }1

ˆ
k k kz A z w+

 = +                          (6b) 

 
{ } { } { }ˆ

k k ky C z v = +                          (7b) 

 
By assuming and representing the system model as shown above, if the error covariance [ ] ({ }{ } )T

k kP E e e=  satisfies 
discrete algebraic Riccati equation, then a solution of this problem may be reached. The Sequences for solution of the 
formulated problem are given below. 
Solving Eigen problem of the matrix Â 

  , consequently 

   

[ ] [ ]( ) ( )ˆ, eig A Λ Ψ =                                        (14) 

 
And expressing it in the form ˆ[ ] [ ][ ][ ]TA = Ψ Λ Ψ , then the Hankel matrix’s multiplicities are express as: 
  
[ ] [ ][ ] [ ] [ ] [ ] [ ]1/2 1 1/2

0
T

n n n nH U V P Q−      = ∑ Ψ Ψ ∑ ≈       
                     (15) 

 
Where, [ ][ ] [ ] [ ] [ ] [ ]1/2 1 1/2[ ] [ ], , T

n n n n nR U P U Q V−     = = ∑ Ψ = Ψ ∑      
 

 
Supporting this result is evaluation of Riccati equation: 
 

[ ] [ ] [ ] [ ] [ ]
1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆT T T T
P A P A A P C R C P C C P A Q

−
                   = − + +                    

                   (16) 

There are some conditions for the solution of the Riccati equation. The solution is only possible if the correlation function 
is positive. Therefore, there are several suggestions in the literature to guarantee the solution. If a solution of the Riccati 
equation exists, after defining it as [ ] ˆP P =   , one can obtain Kalman gain of the building structure model: 

 
1

ˆ ˆ ˆ ˆˆ ˆ ˆ[ ]
T T

K A P C R C P C
−

             = +              
                      (17) 

 
Kalman filter equation is then evaluated as 
 

{ } { } [ ] { } { }1
ˆ ˆˆ ˆ ˆ ˆˆ ˆk k k kz A K C z B K D f K y+

             = − + − +                                         (18) 

 
With the output measurement { }ky satisfying 
 
{ } { } { }ˆ ˆk k ky C z ε = +                          (19) 

 
The output residual { }kε  satisfies{ } { } { }ˆ[ ]k k kC e vε = + . 
Making a comparison of building system modeling by the Kalman filter equations (18, 19) with the first step system modeling 
equations,  
 
{ } { } { } { } { } { }1

ˆ ˆ;k k k k k kz A z w y C z v+
   = + = +     

 
The error is evaluated as: 
-the state estimation error 
 
{ } { } { } ( ){ } { }ˆ ; 0k k k ke z z E e= − =                        (20) 
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-error dynamics  
 

{ } { } { } { }1
ˆ ˆˆ ˆ

k k k ke A K C e K v w+
       = − − +                             (21) 

 
-output residual 
 
{ } { } { } ( ){ } { }ˆ[ ] ; 0k k k kC e v Eε ε= + =                       (22) 
 

If the condition (22) is not satisfied, all calculations are repeated until satisfaction is obtained. For example, if the 
condition (22) is not satisfied, in second approximation the case relation (6a, 7a) becomes 

 
{ } { } { } { } { } { }1

ˆ ˆ;k k k k k kz A z w y C z v+
   = + = +                                      (23) 

 
Measurements in second approximation case are realized by these formulas and then system characteristic matrices
,A C      

 

, are defined by the operations (8-13). 

To make an optimal definition of the system’s matrices ,A C      
 

, the relation in (6b, 7b) becomes as 
 

{ } { } { } { } { } { }1 ;k k k k k kz A z w y C z v+    = + = +   
 

                                               (24) 
 

For this-second approximation case, in all of the relations (14-22), matrices ,A C      
 

will take place instead of matrices

ˆ ˆ,A C   
    , respectively. And a result from these iterations (when condition (22)satisfied) are definite real building system 

parameters, in another words, system is identified completely and obtained system matrices will be marked as ,A C        for 
the illustrating of operations in next section (Tuhta, 2010; Phan and Longman, 2004). 

Obtained modal parameters-damping, period (which contain the eigen value matrix), mode shape used as a reference 
modal “experimental” data (meaning that they are defined to support experimental result) the analytical (finite element model) 
(Chen, 2001) stiffness, damping and mass matrices are corrected by the known direct (Caesar, 1986) and iterative updating 
methods (Link, 1993) using convergence criteria (Dascotte and Vanhonacker, 1989). to speed up updating procedure, the 
marked updating parameters previously are fuzzyfied in the user definable intervals of these parameters using full factorial and 
orthogonal array testing on the base finite element method (Kasimzade, 2002). 
 
4. NUMERICAL EXAMPLE 

Three DOF systems with mass ( )m , classical damping ( )c  and stiffness ( )k  under unit step excitation (Fig.1) applied at 
DOF 3 and velocity measurement from third mass is recorded. In the case (1) the system is examined without noise and some 
modal result are represented in Table 1. In the case (2) the output data is polluted with Gaussian zero-mean white noise 1% of 
the unpolluted time histories and result are presented in the same table. In the case (3) after improving system characteristic 
matrices (for the case 2) by the above-mentioned algorithm obtained by modal parameters presented in the same table. It can 
be seen in Table 1 that the identified samples are very close to the exact values. System periods are acceptable, and as seen 
damping ratios are more sensitive to the noise. 
 

2

181.37 0 0
0 181.37 0 sec /
0 0 181.37

m kN m
 
 =  
    

 
615.48 224.33 0
224.33 615.48 224.33 sec/

0 224.33 391.15
c kN m

− 
 = − − 
 −   
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213646.40 106823.20 0
106823.20 213646.40 106823.20 /

0 106823.20 106823.20
k kN m

− 
 = − − 
 − 

 
 
 
 
 

 

 

 

 

 

Figure 1. Three DOF System Under Unit Step Excitation 
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Figure 2. (a) Input Excitation-Time, (b) Response (y) Without Noise-Time, (c) Response (y) Without Noise-Time Graphics 
and (d) Hankel Singular Values 

 

Table 1. Identified Samples Results 

Mode No Case (1) Case (2) Case (3) 
T ξ  T ξ  T ξ  

1 0.58 0.05 0.57 0.05 0.59 0.05 
2 0.21 0.06 0.20 0.05 0.22 0.06 
3 0.14 0.05 0.13 0.05 0.15 0.05 
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5. CONCLUSION 

The correction of the system characteristic matrices in modal identification through ambient vibration is presented. In this 
algorithm, in the first approximation, determined are the actual system characteristic matrices by the data-driven stochastic 
subspace identification method. In second approximation, an optimal estimation state vector, that is to make the system 
characteristic matrices optimal definite, is obtained by applying the steady-state Kalman filter to the stochastic state-space 
model equation. All calculations are repeated until the estimation error condition is satisfied (Table 1). 

Another word process and measurement noises covariance matrixes indirectly are constructed only from measured output 
data. These iterations are repeated until satisfying estimated error. As a result of these iterations, actual system characteristic 
matrices are determined more accurately with minimum error. Then from the determined system, characteristic matrices are 
extracted system modal parameters (case 3). As a result of this approach, it has been shown that the actual system 
characteristic matrices are more accurately determined by the minimum error. These values are considered to be more reliable 
in updating the system parameters. 

To speed up updating process, marked updating parameters are previously fuzzified in the user definable intervals of these 
parameters by using full factorial and orthogonal array testing on the base finite element method. And finally, a prepared code 
by finite element method can be interfaced in order to support the above algorithm (Appendices). Similar results with the 
generated algorithm are obtained and presented for multi degree of freedom systems (4 DOF steel structures and 11 DOF 
concrete structures), (Tuhta, 2010). 
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7. APPENDICES 

Algorithm of Optimal Determination of Structural Dynamical Parameters Using Ambient Vibration 
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