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ÖZET 

Güneş enerjisi sistemleri arasında fotovoltaik piller aracılığıyla elektrik enerjisi üretimi, dünya genelinde yaygın bir 

eğilim haline gelmiştir. Güneş enerjisinin sınırsız bir kaynak olarak değerlendirilmesi ve geleneksel enerji 

santrallerinin yüksek sera gazı emisyonlarının fotovoltaik pillerle elektrik üretiminde bir engel teşkil etmemesi, 

küresel ısınmanın tehdit oluşturduğu günümüzde bu yöntemi oldukça cazip kılmaktadır. Bu çalışmada, Türkiye'nin 

önde gelen üç metropolü olan İstanbul, Ankara ve İzmir'deki dağıtık fotovoltaik sistemler, hava görüntüleri 

aracılığıyla incelenmiştir. İnceleme süreci, derin öğrenme teknikleri kullanılarak gerçekleştirilmiştir. Bilgilerimize 

göre, Türkiye'de bu alanda gerçekleştirilen ilk araştırmadır. Ülkede fotovoltaik sistemlere dair hava görüntülerini 

içeren bir veri seti bulunmadığı için, test veri setinin oluşturulmasında Google Earth platformu kullanılmıştır. 

Çalışmanın amacı, dünya genelinde ilgi gören hava fotoğraflarını kullanarak Türkiye'de güneş enerjisi sistemleri 

pazarının büyüme potansiyelini araştırmaktır. Elde edilen sınıflandırma ve segmentasyon sonuçları başarılı olup, 

dünya genelindeki benzer hava görüntüleri ile Türkiye için güneş enerjisi sistemleri pazar analizi yapılabileceğini 

ortaya koymaktadır. Sınıflandırma skorları: AlexNet AUC skoru 0.9, GoogLeNet 0.87 ve Inception için 0.83 

Anahtar Kelimeler: Fotovoltaik, hava görüntüleri, derin öğrenme, görüntü segmentasyonu 

ABSTRACT 

Among solar energy systems, the generation of electrical energy through photovoltaic cells has become a widespread 

trend worldwide. The fact that solar energy is considered as an unlimited resource and the high greenhouse gas 

emissions of conventional power plants do not constitute an obstacle in electricity generation with photovoltaic cells 

makes this method very attractive today, when global warming is a threat. In this study, distributed photovoltaic 

systems in three leading metropolises of Turkey, Istanbul, Ankara, and Izmir, are analysed through aerial imagery. 

The investigation process was carried out using deep learning techniques. To the best of our knowledge, this is the 

first research in this field in Turkey. Since there is no dataset containing aerial images of photovoltaic systems in the 

country, Google Earth platform was used to create the test dataset. The aim of the study is to investigate the growth 

potential of the solar energy systems market in Turkey by using aerial photographs, which have attracted worldwide 

attention. The classification and segmentation results obtained are successful and reveal that solar energy systems 

market analysis can be made for Turkey with similar aerial images around the world. Classification scores: AUC 

value is 0.9 for AlexNet, 0.87 for GoogLeNet, and 0.83 for Inception.  

Keywords: Photovoltaic, Aerial imagery, Deep learning, Image segmentation 
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INTRODUCTION 

Human society is progressively harnessing solar radiation for energy production. In 2020, global electricity 

consumption for building heating reached 260,300 TWh, representing approximately 50% of total final energy usage; 

of this, solar thermal (ST) applications contributed 407 TWh (Weiss & Spörk, 2021). Notably, the global photovoltaic 

(PV) market is currently expanding at a rate that surpasses that of the ST market (IEA PVPS task 1 et al., 2021) and 

has consistently outperformed expectations over the past decade (Jaxa-Rozen & Trutnevyte, 2021; Victoria et al., 

2021; Creutzig et al., 2017). In 2020, photovoltaic power generation reached approximately 997 TWh, which 

constituted around 4% of the global electricity demand (IEA PVPS task 1 et al., 2021). 

Solar power system (SPS) technology is characterized by its scalability, simplicity, and modularity, which contribute 

to lowering overall unit costs and mitigating investment risks (Wilson et al., 2020). This accessibility allows a diverse 

array of stakeholders globally to acquire, install, and utilize photovoltaic or solar thermal (ST) technologies. Notably, 

small-scale ST systems designed for the direct heating of buildings or facilities represent approximately 60% of total 

installations (Weiss & Spörk, 2021). In a similar vein, the photovoltaic market constitutes about 40% of distributed 

energy systems (IEA PVPS task 1 et al., 2021). 

 

The considerable diversity in system sizes and applications presents challenges for stakeholders attempting to 

monitor historical deployments of solar thermal (ST) and photovoltaic (PV) systems, thereby complicating the 

assessment of global trends. The International Energy Agency Photovoltaic Power Systems Program (IEA PVPS) 

gathers data on the methods employed by various countries for the registration of stationary PV systems and 

advocates for the establishment of a compulsory database for PV systems in these nations (IEA PVPS et al., 2020). 

Nevertheless, in certain countries that have adopted registration databases, smaller systems may be legally connected 

to the grid without being officially registered, resulting in a lack of formal documentation regarding their presence 

(IEA PVPS et al., 2020; Stowell et al., 2020; Kasmi et al., 2022; Kausika et al., 2021). It is unrealistic to anticipate 

that all countries will be able to implement and maintain such a database in accordance with IEA PVPS 

recommendations in the foreseeable future. 

 

A viable method for the manual documentation of fixed photovoltaic (PV) systems involves the assessment and 

estimation of PV system sizes through remote sensing aerial imagery obtained from satellites or aircraft, coupled 

with advanced deep machine learning techniques. This approach has garnered significant interest in the academic 

community (Ren et al., 2022). Utilizing this methodology, researchers have successfully developed databases that 

accurately pinpoint the locations of PV systems and categorize the types of buildings or land utilized for these 

installations (Kruitwagen et al., 2021; Xia et al., 2021). Furthermore, these databases can be integrated with 

socioeconomic data to facilitate population studies. This technique also holds promise for identifying off-grid and 

behind-the-meter PV systems that may be unregistered or inadequately represented to distribution system operators 

(DSOs) (Kausika et al., 2021). However, for effective documentation using this method, the PV systems must be 

observable from aerial perspectives and exhibit distinct characteristics from conventional components, which limits 

the detection of vertical or high-tilt systems, as well as building-integrated photovoltaics (BIPV). To date, the 

majority of research in this area has concentrated on the creation of training images (Bradbury et al., 2016; Kasmi et 

al., 2022) or the development and validation of methodologies, rather than on the generation of comprehensive 

statistics. Nonetheless, three notable projects have employed this approach to compile inventories of PV systems. 

The DeepSolar project (Wang et al., 2022) successfully identified 1.47 million PV systems across the United States 

using remote sensing imagery from June 2016 to September 2018, producing maps of industrial and utility-scale 

photovoltaic installations and generation in three global regions. The Dutch Cadastral Office reported the 

identification of 156,637 buildings. Additionally, Rausch et al. (2020) and Mayer et al. (2022) utilized neural network 

classification in conjunction with aerial imagery and 3D building data to ascertain the location, capacity, tilt, and 

azimuth of existing PV systems, comparing their findings with a database of 1 million buildings in the PV register. 

This research seeks to advance the scientific understanding of the identification of small decentralized photovoltaic 

(PV) systems by employing a convolutional neural network (CNN) for aerial image classification. The study utilizes 

aerial imagery from a combined area across three major cities in Turkey. While similar assessments have been 

extensively conducted in the United States (Malof et al., 2019), the Netherlands (Kausika et al., 2021), and Germany 

(Rausch et al., 2020), this investigation aims to illustrate the practical application of the algorithm as both an 

inventory tool and a statistical method, thereby contributing to the enhancement of solar market development 

analyses specific to Turkey. 

 

The Turkish photovoltaic (PV) market has traditionally been characterized by a predominantly small yet stable off-

grid sector, primarily catering to holiday residences, rural homes, marine applications, and caravans. Although 
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Turkey lacks large-scale PV installations, the cumulative capacity of installed systems reached 8,479 MW by June 

2022, accounting for 8.35% of the nation's total installed capacity (ENERJİ, 2023). 

 

Significant advancements in agronomy, biology, informatics, agricultural robotics (Agri-robots), and artificial 

intelligence are driving a transformation in modern agriculture from a labor-intensive framework to a data-centric 

approach. Among the innovative Agri-robots, unmanned aerial vehicles (UAVs) equipped with high-resolution 

sensors and specialized application systems are increasingly essential for gathering multi-scale agricultural data and 

executing site-specific interventions. The integration of UAVs and DL is crucial for the acquisition, processing, 

analysis, decision-making, and implementation of agricultural information. This work begins by outlining the 

fundamental components of PA, UAVs, and DL, while summarizing their significant research advancements (Wang 

et al., 2025). 

 

The integration of computer vision with machine learning offers a promising solution to these challenges by 

combining real-time observations of cloud cover with surface data collected from diverse sources. This review 

highlights recent advancements in solar forecasting utilizing multisensor Earth observations, emphasizing the role of 

deep learning, which provides a robust theoretical framework for developing architectures that can extract pertinent 

information from data obtained from ground-based sky cameras, satellites, weather stations, and sensor networks. In 

summary, while machine learning holds significant promise for enhancing the accuracy and reliability of solar energy 

meteorology, further research is essential to fully harness its capabilities and to address existing limitations. 

Ultimately, this survey aims to attract greater interest in the innovative applications of UAVs and DL in PA among 

multidisciplinary researchers globally, fostering further impactful and practical investigations (Paletta et al., 2023). 

 

The innovations brought by the study to the literature: 

1. Creation of a data set for aerial imagery in Turkey with software. 

2. This study includes both classification and automatic segmentation of aerial images in Turkey. 

3. Automatic segmentation of photovoltaic areas in aerial images with U-Net. 

 

Figure 1 shows a block diagram summarizing the study. It can be seen from the block diagram that the study is a 

multi-faceted and deep study. In the first phase of the study, the dataset named OpenNRW_train_16 (Mayer et al., 

2020) is used for model training. The test dataset was created by us through a long process on Google Earth. After 

examining the classification success of the trained models on the test dataset, we wanted to perform automatic 

segmentation of the test images. As can be seen in the block diagram, the images were first labeled manually with a 

lot of effort. Then the labeled images were automatically segmented using the U-Net model, and the success of this 

process was examined. 

 

MATERIAL 

For training and validation, we used the OpenNRW_train_16 open access dataset (Mayer et al., 2020), which is an 

upsampled dataset with a resolution of 0.05 m/pixel and contains 1,814 positive and 36,790 negative image frames 

from North Rhine-Westphalia, Germany.  

 

To identify Photovoltaic Energy System installations in 3 metropolitan cities in Turkey, which is the core of our 

study, a test dataset was created using Google Earth (Google Earth, 2023). It took around 6 months to create the 

dataset from scratch. Since there are few building roof applications in city centers, the test dataset images consist of 

aerial images applied to rural areas and factory roofs. In the test dataset, 160 "positive" and 30,000 "negative" images 

were collected from the metropolitan areas of Istanbul, Ankara, and Izmir in Turkey. The images in the test dataset 

are scaled to 299 × 299 pixels as in the training dataset. 

 

Figure 2 shows an example from the training dataset. It shows photovoltaic cells installed on the roof of a house. 

Figure 3 shows an image from the test dataset. This image was taken from Istanbul/Turkey, using Google Earth. 
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Figure 1. Processes Of The Study 
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Figure 2. Example From The Training Dataset 

 

 

Figure 3. An Example From The Test Dataset 

 

In the second phase of the study, images containing photovoltaic cells in the "positive" class were segmented to show 

the area covered by the batteries. In this phase, aerial images of photovoltaic cells in Turkey were used for training 

and testing. The 160 images in the "positive" class were carefully segmented manually. Figure 4 shows some 

examples of segmentation. 

METHOD 

Since there is no ready data for aerial images of photovoltaic batteries in Turkey, in the first part of the study, 

classification was made on image sections taken from Google Earth. The aim here is to collect aerial image sections 

containing photovoltaic batteries with the help of a computer by taking patches from a huge image map. Manual 

segmentation was performed by checking the accuracy of these images collected through computer software. 

 

In the study, the ready dataset was trained using AlexNet, InceptionNet, and GoogLeNet models from Convolutional 

Neural Network (CNN) models. The classification success of these 3 trained models in the test dataset was examined 

(Hajabdollahi et al., 2020). 
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Figure 4. Segmented Image 

 

Convolutional Neural Network 

Convolutional neural networks (CNNs), often referred to as ConvNets, represent a specific category of neural 

networks designed for the analysis of data characterized by a grid-like structure, particularly images. Digital images 

serve as binary representations of visual information, comprising an array of pixels organized in a grid format. The 

values assigned to these pixels reflect their respective brightness and color (Garaj et al., 2021; Balcı and Alkan, 

2025). 

 

The human brain rapidly interprets a significant volume of information upon viewing an image. Each neuron operates 

within a specific receptive field and forms connections with other neurons to encompass the entire visual spectrum. 

Analogous to the functioning of neurons in a biological visual system, which respond to stimuli within a confined 

area known as the receptive field, neurons in a Convolutional Neural Network (CNN) similarly process data within 

their designated receptive fields. The architecture of these layers is structured such that basic patterns, such as lines 

and curves, are identified initially, while more intricate patterns, including surfaces and objects, are discerned at 

deeper layers. This framework enables computers to acquire visual perception capabilities. 

 

In the forward pass, the kernel traverses the height and width of the image, generating a representation of the receptive 

field. This process results in a two-dimensional depiction of the image, referred to as an activation map, which 

illustrates the responses of the kernels at every spatial position within the image. The movement of the kernel is 

characterized by a parameter known as the pitch (Liu et al., 2024). 

 

If we have an input of size W x W x D and several kernels Dout with spatial dimension F and fill amount P with S 

steps, the size of the output volume can be determined by the formula in Equation 1. This will give an output volume 

of size Wout x Wout x Dout. Figure 5 shows how the activation map is generated. 

 

𝑊𝑜𝑢𝑡 =
𝑊 − 𝐹 + 2𝑃

𝑆
+ 1                                                                                                                                           (1) 

The success of the automatic classification process is visualized using the confusion matrix and ROC curve (Deng et 

al., 2016). Figure 6 shows how the confusion matrix is calculated. 

 

Here; TP: Number of true positives, TN: Number of true, FP: Number of false positives, FN: False negatives.  

 

In fact, different measures of classification success, such as accuracy, recall, and precision, are calculated from this 

matrix. 
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Figure 5. Convolution Process (Deep Learning, Ian Goodfellow, Yoshua Bengio, and Aaron Courville, MIT Press, 

2016) 

 

Figure 6. Confusion Matrix  

 

Figure 7 simply shows how the ROC curve is plotted. Here, the X-axis is labeled FPR: False positive rate, and the 

Y-axis is TPR: True positive rate. The area under the curve gives us a numerical value between 0-1 to interpret the 
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result. This area is called the Area of Under Curve (AUC). TPR can also be called Recall or Sensitivity and is 

calculated according to Equation 2. Here; TP: Number of true positives, FN: Number of false negatives. 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                                                                          (2) 

FPR, which forms the x-axis, is calculated according to Equation 3. Here; FP: Number of false positives, TN: Number 

of true negatives. 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
                                                                                                                                                          (3) 

 

 
Figure 7. ROC Curve  

 

U-Net 

U-Net was initially developed for biomedical image segmentation. Its structure can be broadly categorized into a 

series of encoders succeeded by a series of decoders. In contrast to classification tasks, where the ultimate output of 

a deep learning model is of primary importance, semantic segmentation necessitates not only the ability to 

differentiate at the pixel level but also a method to map the distinctive features acquired at various stages of the 

encoder into the pixel domain. Typically, this involves utilizing a pre-trained classification network, such as VGG or 

ResNet, which employs convolutional layers to transform the input image into a multi-level feature representation, 

followed by max-pooling for subsampling. The decoder represents the latter portion of the architecture, aiming to 

semantically translate the features extracted by the encoder (which are of lower resolution) into the pixel space (which 

is of higher resolution) to facilitate dense classification. The decoder is composed of upsampling and feature fusion, 

followed by regularized convolution (Almalki et al., 2023; Yuan et al., 2023). 

 

The success of image segmentation is calculated using Intersection over Union (IoU), also known as the Jaccard 

index. Figure 8 visualizes how the IoU score is calculated. It would be more accurate to examine Figure 8 and 

Equation 4 together to understand the score. 

 

𝐼𝑜𝑈(𝐴, 𝐵) =
(𝐴 ∩ 𝐵)

(𝐴 ∪ 𝐵)
                                                                                                                                                  (4) 

  

In image segmentation, the ratio of the number of correctly predicted pixels to the number of Groundtruth pixels and 

the number of predicted pixels will give us the success of the segmentation with the IoU/Jaccard index. 
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Figure 8. IoU  

 

 

RESULTS 

We employed the Convolutional Neural Network (CNN) deep learning approach to train our model. To enhance the 

performance of the CNN, we experimented with varying the number of layers within the architecture. Notable state-

of-the-art CNN models include AlexNet, InceptionNet, and GoogLeNet. In the initial phase of our research, which 

focused on image classification, we utilized these three advanced CNN models to identify the most suitable one for 

our dataset. Each of the models was trained on the OpenNRW_train_16 open access dataset, comprising 1,814 

positive and 36,790 negative image frames. Subsequently, the trained models were evaluated on a separate set of 160 

"positive" images and 30,000 "negative" images, which had not been included in the training process and were 

manually sourced from Google Earth. 

 

Three distinct deep learning algorithms were employed in this research, all of which represent cutting-edge 

techniques commonly referenced in existing literature. The confusion matrix serves a crucial role in the 

comprehensive analysis of classification outcomes. Illustrated in Figure 9 are the confusion matrices derived from 

the AlexNet, GoogLeNet, and Inception methodologies. Aerial images devoid of photovoltaic (PV) elements are 

categorized as "negative." The misclassification counts for "negatives" are recorded as 3123 for AlexNet, 3246 for 

GoogLeNet, and 3842 for Inception. While the misclassification figures across the three approaches are relatively 

close, AlexNet demonstrates the lowest incidence of "negative" misclassifications. Conversely, aerial images that 

include PV are designated as "positive," and Figure 9 also presents the classification results for each method. The 

misclassifications for the "positive" class were 17 for AlexNet, 20 for GoogLeNet, and 27 for Inception. Notably, the 

misclassification rates for "positives" differed from those for "negatives," with AlexNet emerging as the most 

effective method for the "positive" classification. Based on the confusion matrices depicted in Figure 9, it can be 

concluded that AlexNet is the most appropriate deep learning technique for our dataset. 

 

Another method of interpreting the results of classification with classical and deep learning methods is the ROC 

curves. Figure 10 shows the ROC curves obtained with 3 different methods. In addition, AUC values showing the 

area under these curves were calculated and plotted. The area under the ROC curve takes a value between 0-1. The 

closer the classification is to 1, the more successful the classification is. However, calculating the AUC value as 1 is 

also undesirable due to the possibility of the method becoming rote. Figure 10 shows that the AUC value is 0.9 for 

AlexNet, 0.87 for GoogLeNet, and 0.83 for Inception. While AlexNet is the most successful method for classifying 

aerial images, Inception is the least successful of the three methods. In fact, the AUC value of 0.83 is an important 

classification success. 

 

Although there are differences between the 3 methods in terms of calculating the confusion matrix and plotting the 

ROC curves, all 3 methods were quite successful. From this point of view, it is possible to interpret that the training 

and test images are suitable for processing with deep learning. Especially, the test dataset we obtained from the 

Google Earth application showed that it can be used in the classification process. 
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Figure 9. Confusion Matrices Of Classifications 
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Figure 10. ROC Curves Of Classifications 

 

 

U-Net segmentation is used in different disciplines and can offer high success. In our study, 2D U-Net segmentation 

was applied. Although the success of the segmentation is based on different scores, such as IoU, it is very important 

to get visual results for the application of the study. In this sense, the visual results of the segmentation obtained in 

our study are shown in Figure 11. As can be seen, the success of photovoltaic segmentation is also visually evident. 

The boundaries of the photovoltaics on the roof are clearly determined automatically. When Figure 11 is carefully 

analysed, the boundary of each cell is almost clear. If the clarity of the raw image in the dataset is increased, each 

cell in the photovoltaic system can be automatically segmented. According to our knowledge, our study is the first 

of its kind in Turkey. In the following stages, our study will be deepened to perform automatic segmentation at the 

cell level. In this way, photovoltaic applications can be planned automatically with computer software from the 

beginning.  

 

Aerial images taken in different geographies may have different ambient illumination. Despite this, U-Net 

photovoltaic segmentation was performed at a high rate with an IoU score above 0.80, as can be seen in Figure 11. 

This also shows that automatic segmentation of photovoltaic areas from aerial images is possible. 
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Our study does not only include the classification of aerial images. Since PV detection using aerial images is the first 

in Turkey, to our knowledge, automatic segmentation was performed using the U-Net method at this stage of the 

study. We thought that visualizing the automatic segmentation would be more convenient in terms of interpreting the 

results, and Figure 11 shows the automatic segmentation results of some PV aerial images we randomly determined. 

 

As can be seen in Figure 11, the automatic classifications were successful. PV locations from aerial images are clearly 

automatically classified. A more detailed examination of the segmentation is possible with the area calculation made 

at the last stage of the study. Table 1 includes the area calculation information made with manual labeling and the 

area calculation made with automatic segmentation. The 160 aerial images in the test dataset were obtained from 

Google Earth. Since the number of PVs in the images will vary, images were taken by zooming in to include all the 

PVs, and the size was set to 299x299 for classification. At this stage, the distance per pixel problem we encountered 

was solved with the QGis application (QGis, 2023). The application can be used without requiring any license. Since 

all 160 aerial images contain different pixel distances, pixel distance calculations were made in a study that took 

approximately 3 months. 

 

Table 1 includes the PV area information obtained by manual segmentation (using QGis) and the PV area calculated 

by automatic segmentation (using QGis). Area information is given in square meters (m2). The total area of 7 

different aerial images, manually labeled PV area, PV area calculated with automatic segmentation, and the ratio of 

PV areas to the whole area are given in Table 1. The ideal one for interpreting the results is the ratio of manual 

labeling to manual segmentation in the last row of Table 1. However, in making this interpretation, the limitation of 

calculating different regions as PV should not be ignored. The ratio calculation of around "1" for 7 different aerial 

images and the clear segmentation of PV areas in Figure 11 show that the process was successful. 

 

CONCLUSION 

The adverse consequences of fossil fuel consumption are now being experienced globally through various natural 

phenomena. In contemporary times, the longevity of fossil fuel resources has notably increased. In response, nations 

are entering into zero-emission agreements aimed at mitigating global warming and restoring the planet to its previous 

condition. The pervasive influence of electricity in our daily lives is indisputable, and it can be argued that the 

advancement of human civilization has accelerated significantly due to electricity. The advent of the internet and its 

electrically powered components has revolutionized access to information, allowing individuals of all ages to obtain 

diverse knowledge instantaneously, thereby eliminating the lengthy journeys that once characterized information 

retrieval. The generation of electricity, which is vital for human existence, has become increasingly critical, especially 

in light of the imminent threats posed by global warming. This urgency has prompted a shift towards clean energy 

sources for electricity production. Consequently, the concept of harnessing solar energy through photovoltaic cells 

has gained prominence. Initially, the first solar batteries exhibited low efficiency and incurred high installation costs. 

However, humanity has successfully addressed these challenges, enhancing battery efficiency and making 

installation more economically viable. 

 

Countries like Turkey, situated in the solar belt, possess significant advantages regarding the availability of solar 

energy. Historically, individuals who harnessed solar energy for heating water have transitioned to utilizing it for 

electricity generation, which is essential across various sectors from production to consumption. The conversion of 

solar energy into electrical power holds the potential to evolve into a substantial industry. It would be reasonable to 

assert that nations that accurately recognize this potential and develop their infrastructure accordingly could lead the 

sector. Understanding the market dynamics of the photovoltaic industry is crucial for achieving market leadership. 

The utilization of aerial imagery can facilitate the assessment of photovoltaic cell deployment, with European nations 

such as Germany and the Netherlands actively engaging in research and providing support to scientists dedicated to 

advancing the sector. Turkey is endowed with abundant solar energy resources and has been making significant 

investments in solar panel manufacturing in recent years. However, there remains a gap in the creation of 

comprehensive data sets that could aid scientists in contributing to the industry. This study aims to address this 

deficiency and will serve as a valuable resource for professionals in the field. 
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Figure 11. Automatic Segmentation Images 
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Table 1. PV Area Calculations 
PV aerial image 

number 

1 3 57 93 101 150 158 

PV aerial image 

total area (m2) 

2561 3012 1950 2103 2480 2961 3122 

Ratio of manually 

segmented PV area 

to total aerial image 

area 

0,351 0,291 0,398 0,255 0,312 0,401 0,398 

Calculated area of 

manually 

segmented PV area 

(m2) 

898,911 876,492 776,1 513,315 773,76 1187,361 1242,556 

Ratio of automatic 

segmented PV area 

to total aerial image 

area 

0,402 0,318 0,353 0,286 0,326 0,416 0,378 

Calculated area of 

automatic 

segmented PV area 

(m2) 

1029,522 957,816 688,35 601,458 808,48 1231,776 1180,116 

Ratios of manual 

and automatic 

segmentation PV 

by area calculation  

0,873 0,915 1,127 0,853 0,957 0,964 1,053 

 

 

Our study examined the subject in depth, and the test data set and manual labeling were carried out with a long study. 

It is a comprehensive study that tries to calculate the area of the PV-containing aerial image by automatically 

segmenting it from the automatic classification of the aerial image containing PV. The results obtained are quite high 

and reveal that more detailed studies can be carried out in the field for the Turkish example. 
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