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Öz  

 

Yakın tarihli araştırmalar kesirli aritmetiğin gerçek sistemlerin daha doğru modellemesini sağladığı rapor etmiştir. Bu nedenle, 

kesir dereceli sistem modelleri simülasyon ve nümerik analizlerde yaygın olarak faydalanılmaya başlandı. Ancak, ayrık zaman 

gerçeklemelerinin yüksek işlem karmaşıklığından dolayı mühendislik uygulamalarının çalışma aralıkları içinde kesir dereceli 

eleman ve transfer fonksiyonlarının yeterli doğrulukta sayısal olarak gerçeklenmesine ihtiyaç duyulmaktadır. Bu çalışma 

uygulama bakış açısı ile iki analitik ayrık yakınsama yaklaşımının frekans cevabı eşleşme özelliklerini incelemektedir: Bunlardan 

biri Tustin özyinelemeli yakınsaması yöntemi olarak bilinen doğrudan ayrıklaştırma yöntemidir ve diğeri kesir dereceli türev 

operatörünün sürekli kesir açılımından (CFE) faydalanan dolaylı bir ayrıklaştırma yaklaşımıdır. Bu iki yöntemin sonuçları 

karşılaştırılmakta ve yöntemlerin uygulanabilirlikleri, kontrol sistemleri ve filtre gerçekleme uygulamalarının çalışma frekans 

aralıkları gereksinimleri temelinde tartışılmaktadır. 

 

Anahtar kelimeler: Kesir dereceli sistemler, kesir dereceli transfer fonksiyonu, analitik ayrıklaştırma yöntemleri, Tustin 

özyineleme 
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Abstract  

 

Recent researches reported that fractional calculus provides more accurate modeling of real systems. For this reason, fractional 

order system models begun to utilized widely in numerical analysis and system simulations. However, due to high computational 

complexity of discrete time domain realization, there is need for accurate digital implementation of fractional order elements and 

transfer functions in operating ranges of applications. This study investigates frequency response matching properties of two 

analytical discrete approximation approaches for the application point of view: One is a direct discretization method, which is 

known as Tustin recursive approximation, and the other is an indirect disretization method, which benefits from continued 

fraction expansion (CFE) of fractional order derivative operator. Results of these two methods are compared and applicability 

of the methods are discussed on the bases of operating range requirements of control and filter realization applications. 
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1. INTRODUCTION 

 

Recently, there is a growing interest for utilization of 

fractional order system models in science and engineering 

problems [1-3]. Fractional order elements allow better 

representations of real word systems in frequency domain 

because the amplitude and phase response of fractional order 

derivative element 
rs , Rr  can provide a slope of a 

fraction of 20 dB ( r20  dB) in amplitude response 

characteristics and a fraction of 90o ( r90 decrees) in phase 

response characteristics [4,5].  

 

Main concern in digital realization of fractional order models 

is the requirement of high computational power because 

fractional order derivative is not local operator in time 

domain because the current value of fractional order 

derivative of a function is dependent of the past values of this 

function, which was also referred as to long-memory effect 

[1-2]. In other words, computation of fractional order 

derivative is not localized to current values of a function and 

it spreads to previous values.  

 

Therefore, realization of ideal fractional order elements in 

time domain solutions needs an increasing computation 

resource as time progresses so that the number of memory 

elements to hold past values increases. To deal with this 

problem, integer order approximate models are used to 

implement fractional order models.  

 

Such approximate models provide an opportunity for digital 

realization with a low complexity and adequate accuracy 

within operating ranges of engineering applications. Since 

digital realization of ideal fractional order elements is not 

practical for real digital hardware, Finite Impulse Response 

(FIR) or Infinite Impulse response (IIR) filter 

approximations of fractional order models are commonly 

utilized for discrete implementation of fractional order 

elements or fractional order system models.  

 

During the last decade, several analytical discretization 

methods have been proposed for digital realization of 

fractional order systems [6-9]. These methods are mainly 

classified in two groups: One is direct methods that can allow 

directly discretization of original fractional order functions 

in the form of a discrete filter. The other is indirect methods 

that are carried out in more steps. A continuous integer order 

approximation of original fractional order transfer functions 

is first obtained, and then those integer order approximations 

are discretized by using one of well known direct 

discretization methods. 

 

In this study, direct Tustin recursive discretization and 

indirect CFE approximation methods are compared, and 

performances of these methods are evaluated for 

applicability in control and signal processing applications. 

 

2. PROBLEM FORMULATON AND THEORETICAL 

BACKGROUND 

 

2.1. Fundamentals of Fractional Calculus and Fractional 

Order System Modeling 

 

Fractional calculus is an extension of integer order 

integration and differentiation operations to non-integer 

order operators, which was denoted by 
ta D [6].  
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For fractional order derivative and integration operation, a  

and t  are the lower and upper bounds of the operation, and 

R  is the fractional order (non-integer order). This 

general description of 
ta D  implements classical integer 

order differentiation and integration operations for integer 

values of  . The Caputo definition gains significance in 

system analysis and design problems. The Caputo definition 

of fractional order differentiation was given based on Euler’s 

gamma function (.) , as follows [2,3], 
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where nn  1 . Laplace transform of )(0 tfDt
  was 

written as )())(( sFstfDL    for zero initial conditions 

[2,3,6]. By using this property, time domain fractional order 

system models was written by fractional order differential 

equations in a general form as [1-3,6], 
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By applying Laplace transform, it is expressed in s-domain 

as [1-3,6] 
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This is a general form of transfer function modeling of 

fractional order systems, and it facilitates design and analysis 

of fractional order control systems in frequency domain by 

using ))
2

sin()
2

(cos()( 





  jjs   [1-3,6]. The 

denominator polynomial coefficients, ia  and coefficients, 
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ib  are positive real numbers, and fractional orders are 

Ri  ,  and Ri  . For the constant terms of denominator 

polynomial and numerator polynomial orders, one can set 

00  ,  and 00  . 

 

2.2. Direct Discretization by Recursive Tustin 

Transformation 

 

Direct discretization by recursive Tustin transformation 

differentiator was explained in Ref [6,7]. This method is 

based on Muir-recursion scheme, which was originally used 

in geophysical data processing with applications to 

petroleum prospecting [7,10]. This scheme was used in 

recursive discretization of fractional-order differentiator 

according to Tustin generating function. The Tustin 

generating function for discretization of integer order 

derivative element was given for a data sampling period of 

T as, 
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One of the promising property of Tustin transformation, 

which is also called Bilinear transformation, is the stability 

preservation. It maps left half plane of continuous complex 

domain to unit circle of discrete complex domain and it 

preserves stability of model in this transformation.  Tustin 

generating function takes a fractional order and 

discretization of fractional order derivative was expressed as 

[7], 
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Due to finite memory recourses of digital hardware, for a 

given fractional order r , discrete approximation of 
rs was 

written for nth order of discrete IIR filter implementation as 

follows [7]. 
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where,  rznA ,
1  terms are calculated recursively [7]. 
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Table 1 lists the expressions of  rznA ,
1  up to 9th order 

IIR filter approximation. A fractional order transfer function 

is discretized by substituting each fractional order elements 
rs  terms in transfer function with discrete IIR filter 

approximations.  

Table 1. List of formula for different orders [6,7] 
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2.3. Indirect Discrete Approximations by Using CFE 

Method 
 

Series expansion methods are frequently used to obtain 

approximate expressions of functions. The CFE is a series 

expansion and finite truncation of a continuous function by 

the CFE method is a rational function [5,11,12,13]. The CFE 

method provides approximation to   a fractional order 

element in limited frequency ranges. 

 

CFE of fractional order elements is based on continuous 

fraction expansion of the term 
)1( x  [5,8,14,15].   
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The terms of this expansion are 
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It has been reported in several works that integer order 

approximate model of fractional order derivatives by using 

CFE provides satisfactory accuracy for control application 

[14]. In this study, we used 3th order continuous CFE 

approximation of fractional order derivative, which was 

written for 10   as [14]: 
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Steps of indirect discrete approximations of fractional order 

derivative are as follows [16]: 

Step 1: Obtain integer order approximate model of fractional 

order derivative term 
s  by using equation (10). 

 

Step 2: Then, these integer order CFE approximations are 

discretized according to Tustin transformation by using 

c2d(.) function in Matlab.  

 

3.ILLUSTRATIVE DISCRETIZATION EXAMPLE 
 

In this section, we give an illustrative example to 

demonstrate application of direct Tustin recursive 

discretization and indirect CFE approximation methods for 

fractional order transfer function discretization. The 

amplitude and phase response approximation performances 

of these methods and stability of resulting IIR filter 

approximations are compared to discuss their feasibility in 

applications. 

Let us obtain discrete IIR filter implementation of  a 

fractional order transfer function, give by 
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For this purpose, one first obtains IIR filter approximation of 
8.0s  and then substitutes it in the function )(sF

c .  

 

(i) For application of the direct Tustin recursive method, 

 8.0,1
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zA   and  8.0,1
3

zA  can be written by using Table 

1 as follows, 
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  1 + 1-z  0.8  2-z  0.2133 + 3-z 0.26678.0,1
3

zA   (13) 

Then, the term of 
8.0s  is discretized  for a sampling period (

T ) of 0.01 by using equation (7) as, 
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For the third order IIR filter implementation of )(sF
c

, the 

equation (14) is used in equation (11) and one obtains, 
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(ii) For application of the indirect CFE approximation 

method, the third order CFE approximation of 8.0s  can be 

obtained in continuous frequency domain by using equation 

(10) as, 
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Then, we used CFE approximation of 
8.0s  (equation (16)) in 

equation (11) and obtained integer order approximation of 

)(sF
c

 as, 
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After using c2d() function of Matlab, which use basic Tustin 

generating function (Equation (5)), a third order IIR filter 

implementation of )(sF
c

 by indirect CFE method  can be 

obtained as, 

5.343.10410527.35

5655.0121.2555.2
)(
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Figure 1 illustrates the amplitude responses of original 

continuous FOTF ( )(sF
c

), indirect CFE method and direct 

Tustin recursive method. Figure 2 illustrates the phase 

response results of those methods.  
 
We observed that the indirect CFE approximation method 

can better converges to original fractional order transfer 

function in the low frequency region, however the direct 

Tustin recursive discretization method can provide an 
approximation to the original fractional order transfer 

function at high frequency region.  

 

Consequently, indirect CFE approximation method can be 

effective for applications with low frequency operating 

ranges such as control system applications. It is useful to 

check stability of discrete filter approximations of )(sF
c  

function. For signal processing applications, filters should be 

designed stable. Otherwise, the filter is useless for practical 

application.  

 

However, stability of controlled system models is not crucial 

for control applications because controllers are designed to 

stabilize the control system. Here, the model accuracy is 

more substantial for control application so that design of 

effective controllers depends on plant model accuracy. 
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Figure 1. Comparison of amplitude responses of original 

continuous FOTF,  the IIR filter implementation by indirect 

CFE method (tfcfe3) and the IIR filter implementation by 

direct Tustin recursive method (tftustin3). 

Figure 2. Comparison of phase responses of original 

continuous FOTF, the IIR filter implementation by indirect 

CFE method (tfcfe3) and the IIR filter implementation by 

direct Tustin recursive method (tftustin3). 

Figure 3 and 4 show pole placement in complex Z plane to 

check stability of resulting IIR filters. Since all poles of 

)(zF
tustin  is in unit circle, )(zF

tustin is stable and provides 

stable IIR filter approximation to  )(sF
c  function. 

In this example, some poles of )(zF
cfe

 place out of the unit 

circle as shown in Figure 4, and this indicates that )(zF
cfe

 is 

not a stable filter solution. So, unstable )(zF
cfe

 function is 

not useful for signal processing applications. Figure 5 shows 

step responses of approximate filters and confirms stability 

status of )(zF
tustin  and )(zF

cfe
 filter functions. Since )(zF

cfe
 

provides satisfactory frequency response approximation at 

the low frequency region, it can be useful for control 

applications.  

Figure 3. Poles of )(zF
tustin

 function 

 

Figure 4. Poles of )(zF
cfe

 function 

Figure 5. Step responses of )(zF
tustin  and )(zF

cfe
 functions 

4. CONCLUSIONS

Comparisons of these two approaches indicate that indirect 

CFE approximation method can be used for low-frequency 

applications such as control system applications. However, 
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direct Tustin recursive discretization can more effective for 

high frequency applications such as filter realization 

applications. These results show that, depending on 

operating frequency ranges of applications, more convenient 

analytical discretization method should be preferred based 

on consideration of frequency response matching and 

stability status. Otherwise, practical performance of 

fractional order system deteriorates because its approximate 

implementation purely represents the behavior of original 

fractional order function in operating ranges. Therefore, 

investigation of approximation performances of 

discretization methods should be carried out, and effective 

methods regarding to application requirements should be 

chosen. Otherwise, one may not adequately benefit from 

advantages of fractional order systems in engineering 

applications.  
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