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Abstract  

In this present paper, we will take three affine Cayley-Klein planes into consideration: ,  A P
ò ò

 and 


P
ò

. 

The plane 


P
ò

 is a fixed plane relative to two other moving affine Cayley-Klein (CK)-planes. We will 

describe one-parameter motions / ,  /A A


ò ò ò ò
P P  and /



ò ò
P P  and discuss the relationship between the 

motions / ,  /A A


ò ò ò ò
P P  and /



ò ò
P P  by evaluating their derivative formulae, velocity vectors and pole 

points. Also, we will observe moving coordinate system and after that, we will examine the canonical 
relative system for one-parameter planar motions in the affine CK-planes by using the notions of 
moving coordinate system. Moreover, Euler-Savary formula, which gives the relationship between the 
curvatures of trajectory curves, will be obtained with the help of canonical relative system for one-
parameter motions in affine CK-planes planes by using the method given by H. R. Müller in 1956 [1]. 

Keywords: Cayley-Klein planes, one-parameter planar motion, moving coordinate system, kinematics, Euler-Savary Formula. 

Öz 

Bu çalışmada ,  A P
ò ò

 ve 


P
ò

 üç afin Cayley-Klein düzlemi gözönüne alınmıştır. 


P
ò

 düzlemi diğer iki 

hareketli afin Cayley-Klein (CK)-düzlemine göre sabittir. Çalışmada bir parametreli / ,  /A A


ò ò ò ò
P P  ve 

/


ò ò
P P  hareketleri tarif edilecek; türev formülleri, hız vektörleri ve pol noktaları elde edilerek 

/ ,  /A A


ò ò ò ò
P P  ve /



ò ò
P P  hareketleri arasındaki ilişki tartışılacaktır. Ayrıca afin (CK)-düzlemlerinde 

hareketli koordinat sistemi araştırılarak bu hareketli koordinat sisteminin kavramları ile kavramları 
bir parametreli hareketler için kanonik izafe sistemi incelenecektir. Bu ifadelere ek olarak, kanonik 
izafe sistemi yardımıyla afin (CK)-düzlemlerinde bir parametreli hareketler için yörünge eğrilerinin 
eğrilikleri arasındaki ilişkiyi veren Euler Savary formülü H. R. Müller tarafında 1956 yılında verilen 
metodla elde edilecektir [1]. 

Anahtar Kelimeler: Cayley-Klein düzlemleri, bir parametreli düzlemsel hareket, hareketli koordinat sistemi, kinematik, 
Euler-Savary formülü  
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1. Introduction 

Cayley-Klein (CK) geometries, were originated in 
the 19th century, are number of geometries 
including Euclidean, Galilean, Minkowskian and 
Bolyai-Lobachevsikan, [2,3]. Following Cayley 
and Klein, Yaglom distinguished these 
geometries by choosing one of three ways of 
measuring length (parabolic, elliptic, or 
hyperbolic) between two points on a line and 
one of the three ways of measuring angles 
between two lines (parabolic, elliptic, or 
hyperbolic). This gives nine ways of measuring 
lengths and angles, [4]. 

Much recent research is conducted in CK-planes, 
[4-19]. There is a known (but not well-known) 
relationship between the plane geometries 
which have parabolic measure of distance: 
Euclidean, Galilean and Minkowskian (Lorentz) 
geometries. They are called affine CK-plane 
geometries, [4]. 

To observe one-parameter motion in plane 
geometries has a significant role in kinematics.  
In this aspect, many researchers have received 
considerable attention in the kinematic 
literature, [20-24]. In 1956, H. R. Müller defined 
one-parameter planar motion in the Euclidean 

plane 
2

E  and studied the relationship between 
absolute, relative and sliding velocities 
(accelerations) [1]. Then, one-parameter planar 
motions and the above same notions are 
investigated in Lorentzian (Minkowskian) plane 

2
L  and Galilean plane 

2
G  by [22] and [23], 

respectively. Besides, in [24] the one-parameter 

motions in the affine CK-planes P
ò

 are 

introduced by generalizing the concepts 
introduced by above scientists. 

It is known that the moving coordinate systems 
are important because, no material body is at 
absolute rest. As we know, even galaxies are not 
stationary. In reality, we have the moving 
frames, major example being Earth itself. In the 
light of this truth; the researchers argued this 
notion by considering different plane 
geometries: Lorentzian and Galilean planes, 
[25,26]. 

Furthermore, the canonical relative system for 
one-parameter planar motions were studied in 

[1], [27] and [28] in the planes 
2

E , 
2

L  and 
2

G  
by using the notions of moving coordinate 
system, respectively. Three Lorentzian planes 

moving with respect to one another and pole 
points are studied in [29]. 

Euler-Savary formula which gives the 
relationship between the curvature of trajectory 
curves, during one-parameter planar motions, 
was studied by [1].  This formula was studied in 
Lorentzian plane for the one-parameter 
Lorentzian motions by using two different ways: 
In 2002, I. Aytun studied the this formula for the 
one-parameter Lorentzian motions with using 
the Müller's Method [30]. In 2003, T. Ikawa gave 
this formula on Minkowski plane by taking a new 
aspect without using the Müller's Method [31]. 
Ikawa gave the relationship between the 
curvature of roulette and curvatures of these 
base curve and rolling curve, [31]. Euler-Savary 
formula is a well documented and an admitted 
formula in the literature and many scientists 
have contributed to the development of 
fundamental knowledge of Euler-Savary 
formula, [32-39]. 

In 1983, the kinematics in the isotropic plane 
was studied by O. Röschel. In [40], the 
fundamental properties of the point-paths are 
investigated, a formula analog to the well-known 
formula of Euler-Savary was developed and 
special motions: an isotropic elliptic motion and 
an isotropic four-bar-motion are studied. 

Besides, in 1985,  the motions 
0

/  in the 

isotropic plane was studied in [41]. Given 
2

C -

curve k  in the moving frame ,  Röschel found 

the enveloped curve 
0

k  in the fixed frame 
0


and considered the correspondence between the 

isotropic curvatures A  and 0A  of k  and 
0

k . 

Then third-order properties of the point-paths 
are investigated. 

In this present paper, we will consider three 

affine CK-planes into consideration: ,A P
ò ò

and 


P
ò

. 


P
ò

is a fixed plane relative to two other 

moving affine CK-planes. We will aim to examine 
the relationship between the motions 

/ , /A A


P P
ò ò ò ò

 and /


P P
ò ò

 by evaluating their 

derivative formulae, velocity vectors and pole 
points. We will introduce canonical relative 
system for one-parameter planar motions in the 
affine CK-planes by using the notions of moving 
coordinate system. Moreover, Euler-Savary 
formula is obtained with the help of canonical 
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relative system for one-parameter motions in 
affine CK-planes by using the Müller's Method. 
We will establish a simple but effective method 
by unifying moving coordinate system and 
Euler-Savary formula in Euclidean, Lorentzian 
and Galilean planes.  

2. Preliminaries 

In this section, we will investigate the basic 
notations of affine CK-planes and one-parameter 
planar motions in affine CK-planes, [24].  

2.1. Basic notations 

In this subsection, we examine the basic 
notations of affine CK-planes [4,8,24] which are 

denoted by P
ò

. 

Let us consider 
2

 with the bilinear form 

1 1 2 2
, ,x y x y   x y

ò
ò  

where ò  may be 1, 0 or -1 and 

1 2 1 2
( , ), ( , )x x y y x y . The matrix of this 

bilinear form can be given as below: 

 

1 0
.

0
B 

 
 
 ò

 

For all x  and y  in P
ò

 we can write 

, .
T
B  x y x y  For ò==1 we have Euclidean 

plane 
2

E , for ò==0 we have Galilean plane 
2

G  

and for ò==-1 we have Lorentzian plane 
2

L . If 

, 0  x y
ò

, then the vectors x  and y  in P
ò

 are 

orthogonal. Self-orthogonal vectors are called 

isotropic. The norm of the vector 
1 2

( , )x xx  in 

P
ò

 is defined by 

2 2

1 2
, .x x  x x x

ò ò
ò  

The distance between two points  
1 2
,A x x  

and  
1 2
,B y y  is given by 

   
2 2

1 1 2 2
, .

AB
d y x y x     AB AB AB

ò
ò  

For ò==1 only the zero vector is isotropic, for 

0ò=  zero vector and vertical vectors are 

isotropic and for ò==-1 zero vector and vectors 

parallel to ( 1,1)  are isotropic, [8]. A circle is a 

locus of points equidistant from a given fixed 
point, namely the center of the circle. The unit 

circle in P
ò

 is the set of points with 1P , for 

all .P P
ò

 The equation of the unit circle in P
ò

 

is 
2 2

1.  x yò  The linear transformation 

:J P P
ò ò

 with matrix, also denoted by J  and 

can be seen as below: 

0
.

1 0
J



 
 
 

ò
 

This linear transformation converts any vector 

x  to an orthogonal vector Jx . If x  is a 

nonisotropic vector and y  is orthogonal to x , 

then we can write kJy x  for some real number 

k , [8].  

It is not difficult to verify directly from the 
definition of the matrix exponential as  

0

( )

!n

J

n
J

e

n






   

 that 

cos sin
cos sin

sin c
 

os

J
e J


 

 
 


  

 
 
 

ò ò

ò ò

ò ò

ò
 

where 

2 2 1

0 0

( ) ( )
cos    ,   sin .

(2 )! (2 1)!

n n n n

n nn n

 
 

 

 

 
 


 ò ò

ò ò  

For ò==1 these are usual cosine and sine 

functions, for ò==-1 they are hyperbolic cosine 

and sine functions, and for  ò==0 they are just 

0
cos 1   and 

0
sin    for all  . In all cases, 

we obtain 

2 2
cos sin 1  

ò ò
ò  

and 

cos sin ,     sin cos .
 

       ò ò ò òò  
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By writing corresponding entries of the matrix 

equation 
( )

,
J J J

e e e
   

  we can find the sum 

formulae [4] as follows: 

cos ( ) cos cos sin sin       
òò ò ò òò    

sin ( ) sin cos cos sin       ò ò ò ò ò
. 

 
2.2. One-parameter planar motions in affine 

CK-planes 

The main purpose of this subsection is to argue 
the one-parameter planar motions in affine CK-
planes, [24].  

Let P
ò

 and 


P
ò

 be moving and fixed affine CK-

planes and { ; , }O
1 2

c c  and { ; , }O
  

1 2
c c  be their 

orthonormal coordinate systems, respectively. 
Let us take the vector 

1 2 1 2
for , .u u u u


   

1 2
OO u c c  (1) 

Let us define a transformation as given below: 

,

 x x u  (2) 

where ,


x x  are coordinate vectors with respect 

to the moving and fixed rectangular coordinate 

system of a point  
1 2

( , )X x x  P
ò

, 

respectively. By the equation (2), one-parameter 
planar motions in affine CK-planes are defined. 

These motions denoted by /


P P
ò ò

, [24]. 

Moreover, ,  the angle between the vectors 
1

c  

and ,


1
c  is the rotation angle of the motions 

/


P P
ò ò

 and , ,


x x u  are continuously 

differentiable functions of the time parameter 

.t I   For  0t  , the coordinate systems 

are coincident. By taking ( ),t   we can write 

cos sin

sin cos

 

 

 

 

 

  





1 1 2

2 1 2

c c c

c c c

ò ò

ò ò
ò

 (3) 

We assume that   / 0t d dt   . In this case 

 t  is called the angular velocity of the 

motions /


P P
ò ò

. By differentiating the equations 

(1) and (3) with respect to the parameter t , the 

derivative formulae of the motions /


P P
ò ò

 are 

obtained as follows: 

2 21 1
 ( )

,

.)

,

(u u u u





 



 

   







1 2

2 1

1 2

c c

c c

u c c

ò

ò

 (4) 

By using these derivative formulae, we will 
determine velocities of a point

1 2
)  ( ,X x x  P

ò
  where  

1 2
.X x x  

1 2
x c c   

The velocity of the point X  with respect to P
ò

 

is called the relative velocity vector denoted by 

r

d

dt


x
V x  and it is described by 

 1 2 .
r

x x 
1 2

V c c  (5) 

Besides, the absolute velocity of the X  with 

respect to P
ò

 is obtained by differentiating the 

equation (2) with respect to t  and using 

derivative formulae. It is denoted by 
a

d

dt




x

V  

and obtained as follows: 

2 2

2 1 1

1

    

{ ( )}

{ )} ( .

a

r

u u x

u u x





   

     

1

2

V c

c V

ò
 (6) 

By using equation (6), we get the sliding velocity 
vector as described below: 

2

2 1 1

1 2

   

{ ( )}

{ ( )} .   

f
u u x

u u x





   

    

1

2

V c

c

ò
 (7) 

From equations (5), (6) and (7) the following 
theorem can be given. 

 

Theorem 2.1. 

Let X  be a moving point on the plane P
ò

 and 

,
r a

V V  and 
f

V  be the relative, absolute and 

sliding velocity vectors of X  under the one-

parameter planar CK-motions /


P P
ò ò

, 
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respectively. Then, the relationship between the 
velocities as indicated below: 

.
a f r
 V V V  

Now, we will investigate the points that do not 

move during the motions /


P P
ò ò

. At this point, 

the sliding velocity vector 
f

V  is equal to zero for 

every 
0 1

[ , ].t t t  These points are called the pole 

points or the instantaneous rotation pole centers. 
If we use the equation (7) for a pole point 

 
1 2
,P p p  P

ò
 of the motions /


P P
ò ò

, we 

have 

2 1 1

21 2

( ) 0

( ) 0.

u u x

u u x





    

   



 ò

 (8) 

So, we obtain the pole point from the solution of 
the system (8) as follows: 

2

1

1 1 1

2 2 2

( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )
.

u t
p t x t u t

t

u t
p t x t u t

t





  

  






ò ò ò

 (9) 

Therefore, the point P  is fixed in the plane P
ò

. 

Let us rearrange the sliding velocity vector (7) by 
using the equation (9): 

2 2 1 1
{ ( ) ( ) } .

f
x p x p     

1 2
V c cò  (10) 

With reference to the above equation, we can 
give the following corollaries: 

Corollary 2.1. 

During the one-parameter planar motions 

/


P P
ò ò

 in affine CK-planes, the pole ray PX  and 

the sliding velocity vector 
f

V  are perpendicular 

vectors in the sense of affine CK-geometry, i.e, 

, 0
f

  PX V
ò

. Then, the focus of the point X  

of the motions /


P P
ò ò

 is an orbit that its normal 

pass through the rotation pole P . 

 

 

 

Corollary 2.2.  

Under the motions /


P P
ò ò

,  the affine CK-norm of 

the sliding velocity vector 
f

V  is written below: 

.
f

V PX
òò

 

 

3. Moving Coordinate System and Pole Points 
in Affine CK-Planes 

In this first original section, we will introduce the 

one-parameter motions /A P
ò ò

 and /A


P
ò ò

 in 

affine CK-planes. Let A
ò

 and P
ò

 be moving and 


P
ò

 be fixed affine CK-planes and 

   
1 2

; , , ; ,B O
1 2

a a c c  and  1 2
; ,O
  

c c  be 

their coordinate systems, respectively. 

Let us take the vectors BO  and BO  as 

follows: 

1 2

1 2
.

b b

b b
   

  

 





1 2

1 2

BO b a a

BO b a a
 

We assume that   , the angle between the 

vectors 
1

a  and ,
1

c  is the rotation angle of one-

parameter planar motions /A P
ò ò

. Similarly, 


, the angle between the vectors 
1

a  and ,


1
c  is the 

rotation angle of one-parameter planar motions 

/A


P
ò ò

. 

By taking ( )t   and ( )t 
 
  into account 

to avoid the cases of pure translation, we can 
define the derivative formulae and velocities of 
these motions. For  

( ) / 0t d dt    

and  

( ) / 0t d dt 
 

  ,  

we can write the above equations by using the 
equation (3): 

cos sin

si

 

n

  

cos ,

 

 







 





1 1 2

2 1 2

a c c

a c c

ò ò

ò ò
ò

 (11) 
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and 

cos sin  

sin

 

cos ,

 

 

   

   



 









1 1 2

2 1 2

a c c

a c c

ò ò

ò ò
ò

 (12) 

 for /A P
ò ò

 and /A


P
ò ò

, respectively. 

Additionally,  t  and  t 
 are called the 

angular velocities of the motions /A P
ò ò

 and 

/A


P
ò ò

, respectively. Assume that " ..."d  denotes 

the differential with respect to P
ò

 and " ..."d

denotes the differential with respect to 


P
ò

. The 

derivative formulae of the motions /A P
ò ò

 and 

/A


P
ò ò

 (taking d b d b
  

 ) can be calculated 

from the equation (11) and (12) as follows: 

1 2 2 1
 ( ) ( )

d d

d d

d db d b db d b





 



  













1 2

2 1

1 2

a a

a a

b a a

ò

ò

 (13) 

and 

1 2 2 1
. ( ) ( )

d d

d d

d db d b db d b





 

 

 

      



 





 







1 2

2 1

1 2

a a

a a

b a a

ò

ò

    (14) 

For the sake of shortness, we use the following 
equalities: 

1 2 1 1 2 1

2 1 2
2 1 2

                            

,  

    

dd

db d b db d b

db d b db d b

  

   

   

 

 

   

     


 
 
 
 

ò ò .  (15) 

 

Definition 3.1. 

1 2
, ,    and 

1 2
, ,  
  

 are called CK-Pfaffian 

forms of the one-parameter CK-motions /A P
ò ò

 

and /A


P
ò ò

 with respect to t , respectively. 

With reference to the above definition, the 

derivative formulae of the motions /A P
ò ò

 and 

/A


P
ò ò

 can be rearranged as follows: 

1 2 1 2

  .

,

dd

d d

d d



 

   

 

 

  

 

 














 
 
 

1 21 2

2 1 2 1

1 2 1 2

a aa a

a a a a

b a a b a a

ò ò  (16) 

Let us consider a point X  with the coordinates 

of  
1 2
,x x  in moving plane A

ò
. Since 

1 2
x x 

1 2
BX a a  is a vector on the moving 

system of A
ò
, we have 

1 2

1 2
,

x x

x x
   

      

     





1 2

1 2

x OX OB BX b a a

x O X O B BX b a a

 

where x  and 


x  are coordinate vectors of the 

point X  with respect to P
ò

 and 


P
ò

, respectively. 

The differential of X  with respect to P
ò

  is 

 

 

1 1 2

2 2 1
.     

d dx x

dx x

 

 

  

  

1

2

x a

a

ò
 (17) 

Hence, the relative velocity vector of X  with 

respect to P
ò

 is as follows: 

.
r

d

dt


x
V  

Similarly,  differential of X   with respect to 


P
ò

 

is 

 

 

1 1 2

2 2 1
                .

d d dx x

dx x

 

 

    

 

   

  

1

2

x x a

a

ò
 (18) 

Thus, the absolute velocity vector of X  with 

respect to 


P
ò

 is 

.
a

d

dt




x

V  
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If 0
r
V  and 0

a
V  then the point X  is fixed 

in the planes P
ò

 and  


P
ò

, respectively. So, the 

conditions become 

1 1 2 2 2 1
  ,  dx x dx x      ò  (19) 

and 

1 1 2 2 2 1
, ,dx x dx x   

   
   ò      (20)  

respectively. By using the equations (19) and 
(20) and considering that the sliding velocity 

vector of the point X  is ,
f

f

d

dt


x
V  we have 

1 1 2

2 2 1
       

[( ) ( ) ]

[( ) ( ) ] .

f
d x

x

   

   

 

 

   

   

1

2

x a

a

ò  (21) 

In this manner, from (17), (18) and (21) we can 
give the following theorem. 

Theorem 3.1. 

Let X  be a fixed point on the plane P
ò

  under 

the one-parameter planar CK-motions /


P P
ò ò

. 

Then, there is a relation between the 
differentials as noted below: 

.
f

d d d

 x x x   (22) 

The above equation enables us to write the 
relationship between the velocities: 

.
a f r
 V V V Hence, the above theorem is 

implemented. 

Now, by considering the planes P
ò

 and 


P
ò

 are 

fixed, we give the following theorem: 

Theorem 3.2. 

Let ,
a f

V V  and 
r

V  be absolute, relative and 

sliding velocity vectors of the motions /A P
ò ò

, 

respectively. Similarly, let ,
a f

 
V V  and 

r


V  be 

absolute, relative and sliding velocity vectors of 

the motions /A


P
ò ò

, respectively. Then, the 

sliding velocity vector of the motions /


P P
ò ò

 can 

be given as below:  

1 1 2

2 2 1

[( ) ( ) ]

[( ) ( ) ] .

    

      

f f f

x

x

   

   



 

 

 

   

   

1

2

V V V

a

a

ò
 (23) 

Proof 3.1. 

By taking into consideration the conditions (19) 
and (20), we have the sliding velocity vectors of 

the motions /A P
ò ò

 and  /


P P
ò ò

, respectively: 

1 2 2 1

1 2 2 1

( ) ( )

( ) ( )

f

f

x x

x x

   

   
    

     

    





1 2

1 2

V a a

V a a

ò

ò

 

Accordingly, the sliding velocity vector of the 

motions /


P P
ò ò

 can be calculated as follows: 

1 1 2

2 2 1

    [( ) ( ) ]

      [( ) ( ) ] .

f f f

x

x

   

   



 

 

 

   

   

1

2

V V V

a

a

ò
 

  

Finally, It is quite obvious that we get the 
equation (21) again. 

Corollary 3.1. 

 

The motions /


P P
ò ò

 is characterized by the 

composition of the inverse motions / A
ò ò

P  and 

the motions /A


P
ò ò

 as follows: 

/ ( / ) ( / ).A A P P P P
ò ò ò òò ò

  (24) 

 

 

4. Moving Planes with Respect to the Another 
and Rotation Poles 

In this original section, we will aim to find out the 

rotation poles during the motions /A P
ò ò

, 

/A


P
ò ò

 and /


P P
ò ò

 with the different 

perspective to be a moving or fixed plane. It is 
indicated that in the one-parameter planar 
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motions in affine CK-planes, the rotation pole is 
characterized by vanishing sliding velocity. In 
the consideration of this statement, the rotation 
poles can be found as follows: 

The pole point 
1 2

( , )Q q q  of the motions 

/A P
ò ò

 is calculated with 0
f
V  as below: 

2

1

1

2

,

.

q

q











 






ò

 (25) 

The pole point 
1 2

( , )Q q q
  
  of the motions 

/A


P
ò ò

 is computed with 0f

 V   and given as 

follows: 

2

1

1

2

,

.

q

q























 






ò

 (26) 

The pole point 
1 2

( , )P p p  of the motions 

/


P P
ò ò

 characterised by 0.
f

d x  So, the pole 

point P  of the one-parameter planar motions 

/


P P
ò ò

 is obtained as follows: 

2 2

1

1 1

2
,

p

p

 

 

 

 















 








ò

 (27) 

where 
1 2

.p p 
1 2

BP a a  

 

Theorem 4.1. 

If three affine CK-planes generate one-
parameter planar CK-motions pairwise, there 
exist three relative rotation poles at every 
moment  t . 

Theorem 4.2. 

Let ,P Q  and Q


 be the pole points of the affine 

CK-motions /A P
ò ò

, /A


P
ò ò

and /


P P
ò ò

, 

respectively.  Then ,P Q  and Q


 are collinear. 

Proof 4.1. 

The slopes of [ ],[ ]PQ PQ


 and [ ]QQ


 are all 

equal to: 

1 1

2 2

.
   

   

 

 




 

This completes the proof. 

Definition 4.1. 

The straight line, indicated the above theorem, is 
called the affine CK-pole line of the one-

parameter affine CK-motions /A P
ò ò

, /A


P
ò ò

and /


P P
ò ò

. 

Corollary 4.1. 

Generally, if there are n  affine CK-planes 

which form one-parameter planar affine CK-
motions pairwisely, then we mention about n 

member kinematic chain. If the each motions are 
connected time parameter t  (real) , then there 

exist 
2

n 
 
 

 relative rotation poles at every 

moment .t  

 

5. Euler-Savary Formula in Affine CK-Planes 

In this original section, we will study Euler-
Savary formula in affine CK-planes. We choose 

the relative system { ; , }B
1 2

a a  satisfying the 

following conditions: 

 

i) The initial point B  of the system is the 

instantaneous rotation pole P  (i.e. B P ) 

ii) The axis { , }B
1

a coincides with the common 

tangent of the pole curves ( )P  and ( ).P


 

 

By considering the condition i), we have 

1 2
0,p p  because of the fact that P  is an 
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initial point. Hence, from the equations (27), we 
obtain the following equalities: 

1 1 2 2
, .   

 
    (28) 

So, from the equations (16), we can give the pole 
tangent as follows: 

1 2
.       

1 2
db dp a a d p db  (29) 

The equation (29) means that, the relative and 
the absolute velocities are equal to each other 

(i.e. 0
f
V ). Thus, the scalar arc elements of the 

pole curves ( )P  and ( )P


 can be given as 

below: 

.ds dt dt ds   
a r

V V
òò

 (30) 

This means that the moving pole curve ( )P  and 

fixed pole curve ( )P


 roll on each other without 

sliding. By considering the condition ii) yields us 

that  
2 2

0. 


   If we take 
1 1

,  


   

then the derivative formulae of the canonical 

relative system { , , }P
1 2

a a  become 

,  

    

.

d d

d d

d d

 

 

 

 

  













 
 
 
 
 

1 2 1 2

2 1 2 1

1 1

a a a a

a a a a

p a p a

ò ò  (31) 

The differential forms ,     and 

 of the 

equations (31) have specific meanings: ds   

is the scalar arc element of the pole curves ( )P  

and ( )P


,   and 

 are the central cotangent 

angle, that is, two neighboring tangents angle of 

( )P  and ( )P


, respectively. Thus, the curvature 

of the moving pole curve ( )P  and ( )P


,  at the 

point P  are 
d

ds

 


  and ,

d

ds

 



 

  

respectively. Hence, the curvature radii of the 

pole curves ( )P  and  ( )P


 can be written as 

below: 

r



  and ,r










    (32) 

respectively. Moving plane P
ò

 rotates the 

infinitesimal instantaneous angle d  


   

around the rotation pole ( )P  within the time 

scale t  with respect to fixed plane 


P
ò

. Hence,   

is the angular velocity of moving plane P
ò

 with 

respect to the fixed plane 


P
ò

 is given below: 

.
d

dt dt

  
 




     (33) 

 

Also, we denote the angular acceleration of 

moving plane P
ò

 with respect to the fixed plane 


P
ò

 by ,  where   . From the equations 

(32) and (33), it is seen that 

1 1
.

d

dt dt r r

  





     (34) 

Let us assume that the direction of unit tangent 

vector is 
1

a  and / 0.ds dt   Due to the fact that, 

the curvature center of the moving pole curve 

( )P  stays in the same side of the directed pole 

curve  ; ,P
1

a  it is written that 0r  . Similarly 

0r  . 

Let us rearrange the equations (17) and (18) 

with respect to the planes P
ò

 and 


P
ò

 by taking a 

point  
1 2
,  X x x  in the plane A

ò
, 

respectively. These differentials can be 
calculated as below: 

1 2 2 1
( ) ( )d dx x dx x      

1 2
x a aò  

and 

1 2 2 1
( ) ( ) .d dx x dx x  

  
    

1 2
x a aò      

On the condition that  0d x , then the 

following conditions occur and X  is a fixed 

point  P
ò

: 

1 2

2 1
.

dx x

dx x

 



 

 





ò
 (35) 
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In a similar way, if 0d

x , then the following 

conditions exist and X  is a fixed point 


P
ò

: 

1 2

2 1
.

dx x

dx x

 







 

 





ò
 (36) 

Thus, the sliding velocity of the motion can be 
given as follows: 

2 1
( )( ).

f
d d d x x 

    
1 2

x x x a aò    

Now, we investigate the curvature centers of 
trajectory curves which are drawn in the fixed 
plane by the points of moving plane during the 

motion /


P P
ò ò

. Let 
1 2

( , )M m m
  
  represents 

the curvature center of trajectory curves which 

are drawn in 


P
ò

 by the point 
1 2

( , )X x x in P
ò

 

with respect to the canonical relative system at 

every time t . The points X  and M

 and the 

instantaneous rotation pole P  lay on an 

instantaneous trajectory normal related to X  at 
every time t . Therefore, the vectors 

1 2
x x 

1 2
PX a a  

and 

1 2
m m

  
 

1 2
PM a a  

have the same direction which passes the 

rotation pole P . Accordingly, we can write 

1 2 1 2
: :x x m m

 
   

or 

1 2 1 2
0.x m m x

 
      (37) 

If we differentiate the equation (37), we have 

1 2 1 2 1 2 1 2
0.dx m x dm dm x m dx

   
        (38) 

By using the new form of the equations (35) and 

(36) for the points X  and M

 in the equation 

(38), we obtain the following equation as below: 

2 2 1 1 2 2
( ) ( )( ).m x x m x m  

   
   ò  (39) 

If we substitute the polar coordinates 

1 1

2 2

cos cos
,     

sin sin

x a m a

x a m a

 

 

 

 

 

 


 
 

ò ò

ò ò

 

in the equation (39), we get 

sin ( ) ( ) 0,a a aa   
  
   ò

 

where a  and a


 are the distance between the 

points X  and M

 and rotation pole P , 

respectively. Besides,   is the angle between 

the pole ray ( PX  and 


PM ) and the common 
tangent of pole curves. Finally, by taking into 
account the equation (33), we obtain the last 
form of the above equation as follows: 

1 1 1 1
( ) sin .

d

a a r r ds




 
   

ò
  (40)  

Consequently, the equation (40) is called Euler-
Savary formula for one- parameter motions in 
affine CK-planes. Hence, the following theorem 
can be given: 

Theorem 5.1. 

Let P
ò

 and  


P
ò

 be moving and fixed affine CK-

planes, respectively. A point X  in moving CK-

plane P
ò

  draws a trajectory whose curvature 

center is at the point M

 in fixed plane 


P
ò

 

during the one- parameter planar CK-motion 

/


P P
ò ò

. In the reverse motion /
P P
ò ò

 a point 

M

 in 


P
ò

 whose curvature center is at the point 

X  in 


P
ò

. The relationship between the points 

X  and M


 is given by Euler-Savary formula by 
the equation (40). 

6. Discussions and Conclusions 

In this paper, the generalization of moving 
coordinate system and Euler-Savary formula 
have been successfully applied in affine Cayley-
Klein planes (CK-planes) by using one-
parameter planar motions [24]. We have 

considered three affine CK-planes: A
ò

, P
ò

 and 


P
ò

. The plane 


P
ò

 is a fixed plane relative to two 

other moving affine CK-planes. We have 
examined the relationship between the motions 

/A P
ò ò

, /A


P
ò ò

 and /


P P
ò ò

 by evaluating their 
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derivative formulae, velocity vectors and pole 
points. We have introduced canonical relative 
system for one-parameter planar motions in the 
affine CK-planes by using the notions of moving 
coordinate system. Furthermore, we have 
obtained Euler-Savary formula with the aid of 
canonical relative system by using the H. R. 
Müller's Method. We have established a simple 
but effective method by unifying moving 
coordinate system and Euler-Savary formula in 
Euclidean, Lorentzian and Galilean planes. 
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