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Coe�cient bounds for certain subclasses of
analytic functions of complex order

Serap Bulut∗

Abstract

In this paper, we introduce and investigate two subclasses of analytic
functions of complex order, which are introduced here by means of
a certain nonhomogeneous Cauchy�Euler-type di�erential equation of
order m. Several corollaries and consequences of the main results are
also considered.
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1. Introduction, de�nitions and preliminaries

Let R = (−∞,∞) be the set of real numbers, C be the set of complex numbers,

N := {1, 2, 3, . . .} = N0\ {0}

be the set of positive integers and

N∗ := N\ {1} = {2, 3, 4, . . .} .

Let A denote the class of functions of the form

(1.1) f(z) = z +

∞∑
i=2

aiz
i

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} .
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Recently, Faisal and Darus [8] de�ned the following di�erential operator:

D0f (z) = f (z) ,

D1
λ (α, β, µ) f (z) =

(
α− µ+ β − λ

α+ β

)
f (z) +

(
µ+ λ

α+ β

)
zf ′ (z) ,

D2
λ (α, β, µ) f (z) = D

(
D1
λ (α, β, µ) f (z)

)
...

Dn
λ (α, β, µ) f (z) = D

(
Dn−1
λ (α, β, µ) f (z)

)
.(1.2)

If f is given by (1.1), then it is easily seen from (1.2) that

(1.3) Dn
λ (α, β, µ) f (z) = z +

∞∑
i=2

(
α+ (µ+ λ) (i− 1) + β

α+ β

)n
aiz

i

(f ∈ A; α, β, µ, λ ≥ 0; α+ β 6= 0; n ∈ N0) .

By using the operator Dn
λ (α, β, µ) , Faisal and Darus [8] de�ned a function class

Ψ (n, α, β, µ, λ, ζ, γ, ξ) by

<

{
1 +

1

ξ

(
z
[
ζDn+1

λ (α, β, µ) f (z) + (1− ζ)Dn
λ (α, β, µ) f (z)

]′
ζDn+1

λ (α, β, µ) f (z) + (1− ζ)Dn
λ (α, β, µ) f (z)

− 1

)}
> γ,

(z ∈ U; 0 ≤ γ < 1; 0 ≤ ζ ≤ 1; ξ ∈ C\ {0})
and also investigated the subclass Φ (n, α, β, µ, λ, ζ, γ, ξ, τ) of the analytic function class
A, which consists of functions f ∈ A satisfying the following nonhomogenous Cauchy-
Euler di�erential equation:

z2
d2w

dz2
+ 2 (1 + τ) z

dw

dz
+ τ (1 + τ)w = (1 + τ) (2 + τ) q(z)

(w = f(z) ∈ A; q ∈ Ψ (n, α, β, µ, λ, ζ, γ, ξ) ; τ ∈ (−1,∞)) .

In the same paper [8], coe�cient bounds for the subclasses Ψ (n, α, β, µ, λ, ζ, γ, ξ) and
Φ (n, α, β, µ, λ, ζ, γ, ξ, τ) of analytic functions of complex order were obtained.

Making use of the di�erential operator Dn
λ (α, β, µ) , we now introduce each of the

following subclasses of analytic functions.

1. De�nition. Let g : U→ C be a convex function such that

g(0) = 1 and <{g (z)} > 0 (z ∈ U) .

We denote by Mg (n, α, β, µ, λ, ζ, ξ) the class of functions f ∈ A satisfying

1 +
1

ξ

(
z
[
ζDn+1

λ (α, β, µ) f (z) + (1− ζ)Dn
λ (α, β, µ) f (z)

]′
ζDn+1

λ (α, β, µ) f (z) + (1− ζ)Dn
λ (α, β, µ) f (z)

− 1

)
∈ g (U) ,

where z ∈ U; 0 ≤ ζ ≤ 1; ξ ∈ C\ {0} .

2. De�nition. A function f ∈ A is said to be in the class Mg (n, α, β, µ, λ, ζ, ξ;m, τ) if
it satis�es the following nonhomogenous Cauchy-Euler di�erential equation:

zm
dmw

dzm
+

(
m

1

)
(τ +m− 1) zm−1 d

m−1w

dzm−1
+· · ·+

(
m

m

)
w

m−1∏
j=0

(τ + j) = q(z)

m−1∏
j=0

(τ + j + 1)

(1.4) (w = f(z) ∈ A; q ∈Mg (n, α, β, µ, λ, ζ, ξ) ; m ∈ N∗; τ ∈ (−1,∞)) .
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Remark 1. There are many choices of the function g which would provide interesting
subclasses of analytic functions of complex order. In particular,
(i) if we choose the function g as

g (z) =
1 +Az

1 +Bz
(−1 ≤ B < A ≤ 1; z ∈ U) ,

it is easy to verify that g is a convex function in U and satis�es the hypotheses of De�nition
1. If f ∈Mg (n, α, β, µ, λ, ζ, ξ), then we have

1 +
1

ξ

(
z
[
ζDn+1

λ (α, β, µ) f (z) + (1− ζ)Dn
λ (α, β, µ) f (z)

]′
ζDn+1

λ (α, β, µ) f (z) + (1− ζ)Dn
λ (α, β, µ) f (z)

− 1

)
≺ 1 +Az

1 +Bz
(z ∈ U) .

We denote this new class by H (n, α, β, µ, λ, ζ, ξ, A,B). Also we denote by
B (n, α, β, µ, λ, ζ, ξ, A,B;m, τ) for corresponding class to Mg (n, α, β, µ, λ, ζ, ξ;m, τ);
(ii) if we choose the function g as

g (z) =
1 + (1− 2γ) z

1− z (0 ≤ γ < 1; z ∈ U) ,

it is easy to verify that g is a convex function in U and satis�es the hypotheses of De�nition
1. If f ∈Mg (n, α, β, µ, λ, ζ, ξ), then we have

<

{
1 +

1

ξ

(
z
[
ζDn+1

λ (α, β, µ) f (z) + (1− ζ)Dn
λ (α, β, µ) f (z)

]′
ζDn+1

λ (α, β, µ) f (z) + (1− ζ)Dn
λ (α, β, µ) f (z)

− 1

)}
> γ (z ∈ U) ,

that is

f ∈ Ψ (n, α, β, µ, λ, ζ, γ, ξ) .

Remark 2. In view of Remark 1(ii), by taking

g (z) =
1 + (1− 2γ) z

1− z (0 ≤ γ < 1; z ∈ U)

in De�nitions 1 and 2, we easily observe that the function classes

Mg (n, α, β, µ, λ, ζ, ξ) and Mg (n, α, β, µ, λ, ζ, ξ; 2, τ)

become the aforementioned function classes

Ψ (n, α, β, µ, λ, ζ, γ, ξ) and Φ (n, α, β, µ, λ, ζ, γ, ξ, τ) ,

respectively.
In this work, by using the principle of subordination, we obtain coe�cient bounds for

functions in the subclasses

Mg (n, α, β, µ, λ, ζ, ξ) and Mg (n, α, β, µ, λ, ζ, ξ;m, τ)

of analytic functions of complex order, which we have introduced here. Our results would
unify and extend the corresponding results obtained earlier by Robertson [13], Nasr and
Aouf [12], Alt�nta³ et al. [1], Faisal and Darus [8], Srivastava et al. [16], and others.

In our investigation, we shall make use of the principle of subordination between
analytic functions, which is explained in De�nition 3 below (see [11]).

3. De�nition. For two functions f and g, analytic in U, we say that the function f (z)
is subordinate to g (z) in U, and write

f (z) ≺ g (z) (z ∈ U) ,

if there exists a Schwarz function w (z), analytic in U, with

w (0) = 0 and |w (z)| < 1 (z ∈ U) ,
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such that

f (z) = g (w (z)) (z ∈ U) .

In particular, if the function g is univalent in U, the above subordination is equivalent to

f (0) = g (0) and f (U) ⊂ g (U) .

2. Main results and their demonstration

In order to prove our main results (Theorems 1 and 2 below), we �rst recall the
following lemma due to Rogosinski [14].

1. Lemma. Let the function g given by

g (z) =

∞∑
k=1

bkz
k (z ∈ U)

be convex in U. Also let the function f given by

f(z) =

∞∑
k=1

akz
k (z ∈ U)

be holomorphic in U. If

f (z) ≺ g (z) (z ∈ U) ,

then

|ak| ≤ |b1| (k ∈ N) .

We now state and prove each of our main results given by Theorems 1 and 2 below.

1. Theorem. Let the function f ∈ A be de�ned by (1.1). If the function f is in the
class Mg (n, α, β, µ, λ, ζ, ξ) , then

(2.1) |ai| ≤
(α+ β)n+1

i−2∏
j=0

[j + |ξ| |g′(0)|]

(i− 1)! [α+ ζ (µ+ λ) (i− 1) + β] [α+ (µ+ λ) (i− 1) + β]n
(i ∈ N∗) .

Proof. Let the function f ∈ A be given by (1.1). Suppose that the function F (z) is
de�ned, in terms of the di�erential operator Dn

λ (α, β, µ), by

(2.2) F (z) = ζDn+1
λ (α, β, µ) f (z) + (1− ζ)Dn

λ (α, β, µ) f (z) (z ∈ U) .

Then, clearly, F is an analytic function in U, and a simple computation shows that F has
the following power series expansion:

(2.3) F (z) = z +

∞∑
i=2

Aiz
i (z ∈ U) ,

where, for convenience,

(2.4) Ai =
[α+ ζ (µ+ λ) (i− 1) + β] [α+ (µ+ λ) (i− 1) + β]n

(α+ β)n+1 ai (i ∈ N∗) .

From De�nition 1 and (2.2), we thus have

1 +
1

ξ

(
zF′ (z)

F (z)
− 1

)
∈ g (U) (z ∈ U).

Let us de�ne the function p(z) by

(2.5) p(z) = 1 +
1

ξ

(
zF′ (z)

F (z)
− 1

)
(z ∈ U).
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Hence we deduce that

p(0) = g(0) = 1 and p(z) ∈ g (U) (z ∈ U).

Therefore, we have

p(z) ≺ g(z) (z ∈ U).

Thus, according to the Lemma 1, we obtain

(2.6)

∣∣∣∣p(l) (0)

l!

∣∣∣∣ ≤ ∣∣g′(0)
∣∣ (l ∈ N) .

Also from (2.5), we �nd

(2.7) zF′ (z) = [1 + ξ (p(z)− 1)]F (z) .

Next, we suppose that

(2.8) p(z) = 1 + c1z + c2z
2 + · · · (z ∈ U).

Since A1 = 1, in view of (2.3), (2.7) and (2.8), we obtain

(2.9) (i− 1)Ai = ξ {ci−1 + ci−2A2 + · · ·+ c1Ai−1} (i ∈ N∗) .

By combining (2.6) and (2.9), for i = 2, 3, 4, we obtain

|A2| ≤ |ξ|
∣∣g′(0)

∣∣ ,
|A3| ≤

|ξ| |g′(0)| (1 + |ξ| |g′(0)|)
2!

,

|A4| ≤
|ξ| |g′(0)| (1 + |ξ| |g′(0)|) (2 + |ξ| |g′(0)|)

3!
,

respectively. Also, by using the principle of mathematical induction, we obtain

|Ai| ≤

i−2∏
j=0

[j + |ξ| |g′(0)|]

(i− 1)!
(i ∈ N∗) .

Now from (2.4), it is clear that

|ai| ≤
(α+ β)n+1

i−2∏
j=0

[j + |ξ| |g′(0)|]

(i− 1)! [α+ ζ (µ+ λ) (i− 1) + β] [α+ (µ+ λ) (i− 1) + β]n
(i ∈ N∗) .

This evidently completes the proof of Theorem 1.

2. Theorem. Let the function f ∈ A be de�ned by (1.1). If the function f is in the
class Mg (n, α, β, µ, λ, ζ, ξ;m, τ) , then

|ai| ≤
(α+ β)n+1

i−2∏
j=0

[j + |ξ| |g′(0)|]
m−1∏
j=0

(τ + j + 1)

(i− 1)! [α+ ζ (µ+ λ) (i− 1) + β] [α+ (µ+ λ) (i− 1) + β]n
m−1∏
j=0

(τ + j + i)

(i ∈ N∗) .

Proof. Let the function f ∈ A be given by (1.1). Also let

h(z) = z +

∞∑
i=2

biz
i ∈Mg (n, α, β, µ, λ, ζ, ξ) .
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Hence, from (1.4), we deduce that

ai =

m−1∏
j=0

(τ + j + 1)

m−1∏
j=0

(τ + j + i)

bi (i ∈ N∗, τ ∈ (−1,∞)) .

Thus, by using Theorem 1, we obtain

|ai| ≤
(α+ β)n+1

i−2∏
j=0

[j + |ξ| |g′(0)|]

(i− 1)! [α+ ζ (µ+ λ) (i− 1) + β] [α+ (µ+ λ) (i− 1) + β]n

m−1∏
j=0

(τ + j + 1)

m−1∏
j=0

(τ + j + i)

.

This completes the proof of Theorem 2.

3. Corollaries and consequences

In this section, we apply our main results (Theorems 1 and 2 of Section 2) in order to
deduce each of the following corollaries and consequences.

1. Corollary. ([19]) Let the function f ∈ A be de�ned by (1.1). If the function f is in
the class Mg (0, α, β, µ, λ, ζ, ξ) ≡ Sg(ζ, ξ), then

|ai| ≤

i−2∏
j=0

[j + |ξ| |g′(0)|]

(i− 1)! (1 + ζ (i− 1))
(i ∈ N∗) .

2. Corollary. ([19]) Let the function f ∈ A be de�ned by (1.1). If the function f is in
the class Mg (0, α, β, µ, λ, ζ, ξ;m, τ) ≡ Kg(ζ, ξ,m; τ), then

|ai| ≤

i−2∏
j=0

[j + |ξ| |g′(0)|]

(i− 1)! (1 + ζ (i− 1))

m−1∏
j=0

(τ + j + 1)

m−1∏
j=0

(τ + j + i)

(i ∈ N∗) .

3. Corollary. ([17]) Let the function f ∈ A be de�ned by (1.1). If the function f is in
the class Mg (n, 1, 0, 0, 1, ζ, ξ) ≡Mg(n, ζ, ξ), then

|ai| ≤

i−2∏
j=0

[j + |ξ| |g′(0)|]

in (1 + ζ (i− 1)) (i− 1)!
(i ∈ N∗) .

4. Corollary. ([17]) Let the function f ∈ A be de�ned by (1.1). If the function f is in
the class Mg (n, 1, 0, 0, 1, ζ, ξ; 2, τ) ≡Mg(n, ζ, ξ; τ), then

|ai| ≤
(1 + τ) (2 + τ)

i−2∏
j=0

[j + |ξ| |g′(0)|]

in (1 + ζ (i− 1)) (i− 1)! (i+ τ) (i+ 1 + τ)
(i ∈ N∗) .

Setting

m = 2 and g (z) =
1 + (1− 2γ) z

1− z (0 ≤ γ < 1; z ∈ U)

in Theorems 1 and 2, we have following corollaries, respectively.
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5. Corollary. [8] Let the function f ∈ A be de�ned by (1.1). If the function f is in the
class Ψ (n, α, β, µ, λ, ζ, γ, ξ), then

|ai| ≤
(α+ β)n+1

i−2∏
j=0

[j + 2 |ξ| (1− γ)]

(i− 1)! [α+ ζ (µ+ λ) (i− 1) + β] [α+ (µ+ λ) (i− 1) + β]n
(i ∈ N∗) .

6. Corollary. [8] Let the function f ∈ A be de�ned by (1.1). If the function f is in the
class Φ (n, α, β, µ, λ, ζ, γ, ξ, τ), then

|ai| ≤
(1 + τ) (2 + τ) (α+ β)n+1

i−2∏
j=0

[j + 2 |ξ| (1− γ)]

(i+ τ) (i+ 1 + τ) (i− 1)! [α+ ζ (µ+ λ) (i− 1) + β] [α+ (µ+ λ) (i− 1) + β]n
(i ∈ N∗) .

For several other closely-related investigations, see (for example) the recent works [1-7,
12, 13].
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