doi: 10.28948/ngumuh.523939 Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 8, Sayı 2, (2019), 979-991 Omer Halisdemir University Journal of Engineering Sciences, Volume 8, Issue 2, (2019), 979-991

Araştırma / Research

DEPREM ETKİSİ ALTINDAKİ BETONARME KİRİŞSİZ PLAK DÖŞEMELERİN EĞILME MOMENTLERİNİN YSA ANALİZİ İLE TAHMİN EDİLMESİ

Ahmet ÖZBAYRAK¹ (ORCID: 0000-0002-8091-4990) *

¹İnşaat Bölümü, Tomarza Mustafa Akıncıoğlu Meslek Yüksekokulu, Kayseri Üniversitesi, 38900, Kayseri, Türkiye.

Geliş / Received: 07.02.2019 *Kabul / Accepted:* 17.06.2019

ISSN: 2564-6605

ÖZ

Bu çalışmada yatay kuvvetler altında betonarme kirişsiz plak döşemeli yapılardan elde edilen döşeme eğilme momentlerinin çok katmanlı yapay sinir ağları ile analizi yapılmıştır. Analiz sonucunda kirişsiz plak döşemelerin tasarımına esas olan döşeme momentlerinin bulunması hedeflenmiştir. Yapay sinir ağları (YSA) ile analiz yönteminde, yapıyla ilgili seçilen giriş verilerindeki değişkenler, kat yükseklikleri, döşeme kalınlıkları, deprem kuvvetleri, aks aralıkları ve kolon boyutlarıdır. Çıkış verisi olarak ise döşeme sonuç tasarım momentleri kullanılmıştır. Bu verileri üretmek için sonlu elemanlar yöntemini kullanan SAP2000 yazılımında dört katlı on adet yapı analiz edilmiştir. Bu verileri işlemek için ise MATLAB yazılımındaki Levenberg-Marquardt algoritmasından yararlanılmıştır. Buna göre %98,2'lik bir yakınlık elde edilerek YSA analiz sonuçlarının gerçek tasarım momentleri ile arasında büyük bir farklılığın oluşmadığı görülmüştür. Sonuç olarak betonarme kirişsiz plak döşemelerin tasarım momentlerinin bulunmasında YSA 'dan faydalanılması hızlı ve güvenilir sonuçlar elde edebilmek için avantaj sağlamaktadır.

Anahtar kelimeler: Deprem etkisi, betonarme yapılar, kirişsiz plak döşemeler, sonlu elemanlar yöntemi, yapay sinir ağları

ESTIMATION OF DESIGN BENDING MOMENTS OF RC FLAT SLABS UNDER EARTHQUAKE EFFECT BY ANN ANALYSIS

ABSTRACT

In this study, the bending moments obtained from reinforced concrete flat slab structures under the influence of horizontal forces were analysed by multi-layer artificial neural networks (ANN). In the analysis method with ANN, the variables in the input data related to the structure are storey heights, slab thickness, earthquake forces, axles spacing and column dimensions. As the output data, the resultant bending moments of the slabs were used. In SAP2000 generate this data, ten structures with four storeys were analysed. The Levenberg-Marquardt algorithm in MATLAB software was used to process this data. Accordingly, a proximity of 98.2% was obtained and it was observed that there was no significant difference between ANN analysis results and actual design bending moments. As a result, the use of ANN in the detection of design moments of reinforced concrete flat slabs can be evaluated as advantageous in terms of obtaining fast and reliable results.

Keywords: Earthquake effect, reinforced concrete structures, flat slabs, finite element method, artificial neural networks

^{*}Corresponding author / Sorumlu yazar. Tel.: +90 352 4378264/68616; e-mail/e-posta: ozbayrak@erciyes.edu.tr

1. GİRİŞ

Yatay yükler etkisindeki kirişsiz plak döşemelerin tasarımında hesap edilen eğilme momentleri çerçeveli sistemlerde olduğu gibi kolonlar arasında tek bir doğrultuda dağıtılmamaktadır. Ünlüoğlu'nun (1985) yaptığı çalışmalarda komşu çapraz kolonlara da önemli miktarlarda eğilme momentlerinin aktarıldığı görülmüştür [1]. Dolayısıyla kirişsiz plak döşemelerin tasarım momentlerinin hesabında sonlu elemanlar yöntemini kullanan bilgisayar yazılımlarına ihtiyaç duyulmaktadır. Ancak bu bilgisayar yazılımları ile yapılan analizler için de büyük miktarlarda bellek ve zaman gerekmektedir.

Bu calısmada, yatay yükler etkisindeki döseme tasarım momentlerinin hesabında; kat adedi, kat yükseklikleri, döşeme kalınlığı, deprem kuvvetleri, aks aralıkları ve kolon boyutları değişken kabul edilerek çok katmanlı yapay sinir ağları ile analizler yapılmıştır. Yapılan çalışmalarda mühendislik alanında yapay sinir ağları kullanımının oldukça yaygın olduğu belirlenmiştir. Özsoy ve Fırat (2004) deprem etkisi altında, seçtikleri kirişsiz döşemeli yapı ile ilgili çeşitli parametreler üzerinden ötelenmeleri yapay sinir ağları ile tahmin etmeye çalışmışlardır. Sonuç olarak ötelenmelerin sınırlandırılması için birtakım tavsiye ve önerilerde bulunulmuştur [2]. Kim ve Lee (2005) yaptıkları çalışmada doğru sonuçlar elde etmek için hayali kirişler ve matris tekniğinin kullanıldığı etkili bir analiz yöntemi önermişlerdir. Sonuçta önerilen metot sonlu elemanlar yöntemi ve eşdeğer cerceve yöntemi ile karşılaştırılarak doğrulanmıştır [3]. Sağlıyan vd. (2011) farklı parametreler kullanarak ürettikleri cok savıdaki cözümden elde edilen acıklık momentleri ve düsev ver değistirme değerlerini kullanarak Statistica programı yardımı ile moment ve yer değiştirme değerlerine uygun fonksiyonlar elde etmişlerdir. Elde edilen fonksiyonlar esdeğer çerçeve ve sonlu elemanlar yöntemi ile karşılaştırıldığında eşdeğer çerçeve yöntemi ile elde edilen açıklık momentlerinin sonlu elemanlar yöntemine göre daha küçük değerlere sahip olduğu belirlenmiştir [4]. Benavent-Climent vd. (2012) sismik yüklemeye tabi tuttukları betonarme kirişsiz döşemeli yapıların etkili genişliğini dinamik sarsma tablası testlerine dayanarak incelemişlerdir. Testlerden elde edilen efektif genişlik ile literatürde önerilen formüllerden elde edilen değerler arasında önemli farklılıklar bulunmuştur [5]. Priya vd. (2012) çok yaygın bir şekilde kullanılan SAP2000 programında kirişsiz döşemeli yapılar üzerinde statik itme analizi uygulayarak statik itme eğrisi ile talep eğrisi elde etmişlerdir. Bunun sonucu olarak da mevcut yapının güçlendirilmesine ilişkin daha net karar verilebileceği belirtilmiştir [6]. Bhina vd. (2013) tarafından aynı boyuttaki kirissiz plak döşemeli ve betonarme çerçeveye sahip simetrik yapılar farklı sismik etkiler altında incelenmiştir. Sonuç olarak mimari gereksinimler sebebi ile kirişsiz plak döşemeli binalar daha popüler olmasına rağmen betonarme çerçeveli binaların sismik performansının kirişsiz döşemeli yapılara göre daha iyi olduğu belirtilmiştir [7]. Qian ve Li'nin (2014) yaptıkları çalışmada kirişsiz plak döşemeli yapılarda ani çöküş etkilerini azaltmak için membran hareketi, zımbalama davranışı ve eğilme dayanımı açısından yapılar değerlendirilmiştir [8]. Qian ve Li (2015) yaptıkları bir diğer çalışmada ise kirişsiz plak döşemelerde kullanılan bölme duvar panellerinin eğilme direncini arttırması yanında kolonların zımbalama dayanımını önemli ölçüde arttırdığı bildirilmiştir [9]. Choi ve Kim (2015) tarafından yatay yük etkisindeki kirişsiz plak döşemelerde doğrusal olmayan statik analiz uygulamaları için analitik bir yöntem geliştirilmiştir. Önerilen yöntemle deney numunelerinin dayanım ve deformasyon kapasiteleri dahil, tüm yük deformasyon ilişkileri için benzer sonuçlar elde edilmistir [10]. Youssef vd. (2015) yaptığı calısmada kirissiz plak dösemeli binaların doğrusal olmayan vatay davranısını belirlemek icin Grillage analizi kullanmıştır. Kapsamlı bir parametrik calısma ile kirissiz döşeme iç açıklık birleşimlerinin yatay dayanıma olan katkısında etkili döşeme genişliğini değerlendirmişlerdir [11].

Çalışma ile hedeflenen yapay sinir ağlarının öğrenme kabiliyetinden yararlanarak kirişsiz döşemeli betonarme yapıların yatay yükler etkisi altındaki tasarım döşeme momentlerinin hesabında hızlı ve güvenilir bir şekilde sonuca ulaşmaktır. Gerçekte kolonlara etki eden momentler çerçeveli sistemlerde olduğu gibi sadece hesap yapılan aks doğrultusunda değil bu doğrultuya dik komşu kolonları da kapsayacak şekilde ele alınmalıdır. Bu sebeple eşdeğer çerçeve gibi yaklaşık çözüm yöntemleri yerine komşu kolonlara geçen moment dağılımlarının doğru bir şekilde hesaplanabilmesi için sonlu elemanlar yöntemine göre hesaplama yapan programlara ihtiyaç duyulmaktadır. Sonlu elemanlar yöntemine göre döşeme plakları çok sayıda sonlu elemanlara bölünerek çözüm için yeterli derecede hassasiyete sahip yapılar oluşturulmaktadır. Ancak büyük hacimli binaların analizinde sonlu elemanlar yöntemine göre analiz yapmak için ileri donanım seviyesinde bilgisayarlara ve yeterli zamana sahip olmak gerekmektedir. Kirişsiz plak döşemeli yapıların tasarımlarında zımbalama etkisinden dolayı kolonlarının düzgün sıralanmasına özen gösterilmektedir. Bu avantajlı durum sayesinde döşeme eğilme momentlerinin YSA ile tahmininde daha az değişken ile yeter derecede hassasiyete sahip sonuçlar elde edebilmek mümkündür. Döşeme tasarım momentlerinin elde edilmesinde sonuca etki edebilecek tüm yapısal karakteristik değişkenler YSA ile analizde öğrenme ve test verileri arasına dahil edilmiştir. Bu sayede yapısal farklılıklar olsa bile çözümü zor ve zaman alıcı problemler karşısında hem zaman kazanılacak hem de seçilen değişkenler üzerinden tasarım için en ideal kesit boyutları belirlenebilecektir. Literatürdeki diğer çalışmalardan farklı olarak bu çalışmada kirissiz plak döşemelerin tasarımı için geliştirilen ve kullanılan analiz yöntemlerine alternatif olabilecek farklı bir

çözüm yöntemi olan yapay sinir ağlarından faydalanılmıştır. Diğer çözüm yöntemlerine göre avantajları ise daha hızlı ve güvenilir olması olarak değerlendirilebilir.

2. YÖNTEM

Taşıyıcı sistem elemanlarının rijitlik değerleri ve yapıya etkiyen deprem kuvvetleri kirişsiz plak döşemelerin tasarımını etkileyen önemli faktörlerdir. Kat yüksekliği, kolon boyutları, döşeme kalınlıkları, kolon aks aralıkları ve malzeme özellikleri taşıyıcı sistem elemanlarının rijitlik değerlerini belirleyen temel unsurlardır. Zemin özellikleri ve yapı ağırlığı ise deprem kuvvetlerinin büyüklüğünü etkileyen parametrelerdir. Dolayısıyla bütün bu değişkenler döşeme tasarım momentinin hesabında önemli rol oynamaktadır. Yapay sinir ağları ile yapılan analizlerde güvenilir sonuçlar elde edebilmek için on adet, dört katlı betonarme kirişsiz döşemeli yapı SAP2000 programında analiz edilmiştir (Tablo 1). Programda etki ettirilen yatay yükler, taşıyıcı sistem rijitlik değerlerini belirleyen unsurlar ve sonuç döşeme tasarım momentleri çok katmanlı yapay sinir ağları analizinde eğitme ve test verileri olarak kullanılmıştır.

2.1. Yapay Sinir Ağları

İnsan beyni doğumla başlayan süreçte çevresinde olan biteni duyu organları ile algılayarak davranışlarını buna göre biçimlendirir. Zamanla deneyim kazanarak farklı olaylar karşısında birtakım tepkiler geliştirir. Fakat deneyimsiz olduğu durumlarla da karsılasabilir. Vücudumuzun dısarıdan duyu organları vasıtasıyla olayları algılaması gibi yapay sinir ağlarıyla da öğrenme sürecinde dış ortamdan girişler alınır. Bu dışarıdaki olayların beynimizde değerlendirilerek tepki üretilmesine benzer şekilde yapay sinir ağlarında da girişler bir aktivasyon fonksiyonundan geçirilerek çıktı olarak bir tepki üretilir. Çıkış verilerinin test verileri ile karşılaştırılması sonucunda hata oranı tespit edilir. Yapay sinir ağları bazı öğrenme algoritmalarını kullanarak hatayı azaltmaya ve gerçek sonuç çıktılarına ulaşmaya çalışır. Bu test sürecinin her bir döngüsünde yapay sinir ağları etki faktörü değerlerini yenileyerek hedefe ulaşılmaya çalışır. Hedefe ulaşmanın ölçütü dışarıdan verilen bir değerdir. Yapay sinir ağlarındaki girdi ve çıktı değerleri birbirini doğruluyorsa; etki faktörü olarak kullanılan değerler saklanır. Etki faktörü değerlerinin devamlı yenilenerek sonuca erişilinceye kadar geçen süreye öğrenme denir. Yapay sinir ağlarında öğrenme gerçekleştikten sonra; daha önce test edilmemiş girişler kullanılarak, sinir ağlarının gerçek çıkış verilerine göre doğruluğu değerlendirilir. Elde edilen sonuç değerler doğru bir yaklaşım sergileyebiliyorsa, yapay sinir ağlarının problemi öğrendiği sonucuna ulaşılır. Bu noktada dikkat edilmesi gereken husus yapay sinir ağlarına verilen örnek sayısıdır. Eğer örnek sayısı optimum değeri asıyorsa burada öğrenme değil, ezberleme gerçekleşmiştir. Bu sebeple yapay sinir ağlarına; örneklerin %80'i verilip ağda öğrenme sürecinin tamamlanması sağlanır. Geri kalan %20'lik veri ile ise test edilir [12].

2.2. Levenberg-Marquardt Algoritması

Geri yayılma algoritmasının sonuca çok yavaş ulaşmasından dolayı bu çalışmada öğrenme algoritması olarak daha hızlı olan ancak daha fazla bellek gerektiren Levenberg-Marquardt algoritması kullanılmıştır [13, 14]. Bu algoritmanın uygulanması için ise MATLAB yazılımından faydalanılmıştır. Levenberg-Marquardt algoritması, Newton yönteminin hızlılığı ve geri yayılma yönteminin sağlamlığına sahiptir. Bu algoritmaya göre hata yüzeyine her bir iterasyon adımında parabolik fonksiyonlarla yaklaşılarak, çözümü oluşturacak minimum parabol adımı belirlenir. Newton yönteminde E(x) fonksiyonunun (x) parametresine göre minimize edilmesi denklem 1'de ifade edildiği şekildedir.

$$\Delta x = -[\nabla^2 E(x)]^{-1} \nabla E(x) \tag{1}$$

Denklem 1'de, $\nabla E(x)$ eğim, $[\nabla^2 E(x)]$ ifadesi ise Hessian matrisidir. E(x)'in karelerin toplam fonksiyonu olduğu kabul edilirse denklem 2'deki ifade elde edilir.

$$E(\underline{x}) = \sum_{i=1}^{N} e_i^2(\underline{x})$$
(2)

Denklem 3 ve denklem 4'de görüldüğü şekilde işlemler devam ettirilebilir.

A. ÖZBAYRAK

$$\nabla E(\underline{x}) = J^T(\underline{x})\underline{e}(\underline{x})$$
(3)

$$\nabla^2 E(x) = J^T(x)J(x) + S(x) \tag{4}$$

Jacobian matrisi J(x) olarak ifade edilmektedir. Jacobian matrisi denklem 5'de daha açık olarak yazılmıştır.

$$J(\underline{x}) = \begin{bmatrix} \frac{\partial e_1(\underline{x})}{\partial x_1} & \frac{\partial e_1(\underline{x})}{\partial x_2} & \cdots & \frac{\partial e_1(\underline{x})}{\partial x_n} \\ \frac{\partial e_2(\underline{x})}{\partial x_1} & \frac{\partial e_2(\underline{x})}{\partial x_2} & \cdots & \frac{\partial e_2(\underline{x})}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial e_N(\underline{x})}{\partial x_1} & \frac{\partial e_N(\underline{x})}{\partial x_2} & \cdots & \frac{\partial e_N(\underline{x})}{\partial x_n} \end{bmatrix}$$
(5)

Denklem 4 ifadesindeki S(x)'in açık olarak yazılması sonucu denklem 6'daki ifade elde edilir.

$$S(\underline{x}) = \sum_{i=1}^{N} e_i(\underline{x}) \, \nabla^2 e_i(\underline{x}) \tag{6}$$

Gauss-Newton yöntemine göre $S(x) \cong 0$ kabul edilir. Bu durumda 1 denkleminin son hali denklem 7'de verildiği şekildedir.

$$\Delta \underline{x} = [J^{T}(\underline{x})J(\underline{x})]^{-1}J^{T}(\underline{x})e(\underline{x})$$
⁽⁷⁾

Levenberg-Marquardt modifikasyonu ile Gauss-Newton yöntemine ait ifade denklem 8'de gösterildiği gibidir.

$$\Delta \underline{x} = [J^T(\underline{x}) J(\underline{x}) \mu]^{-1} J^T(\underline{x}) e(\underline{x})$$
(8)

 μ parametresi, E(x) artımı sonucundaki bir adımda β gibi bir faktörle ile çarpılır. E(x) azalımı sonucundaki bir adımda ise μ parametresi β gibi bir faktöre bölünür. μ büyük bir değer alırsa algoritmada adım düşümü $1/\mu$ adımı ile olur. Küçük μ parametresi için kullanılan algoritma ise Gauss-Newton'dur. Bu algoritmadaki anahtar adım Jacobian matrisinin hesaplanmasıdır. Yapay sinir ağlarının tasarım probleminde Jacobian matrisindeki ifadeler geri yayılma algoritmasının basitçe değiştirilmesi sayesinde hesaplanabilir.

Burada $x = [w^1(1,1) w^1(1,2) \dots w^1(S1, R) b^1(S1) w^2(1,1) \dots b^M(SM)]^T$ ve N = Q x SM ifadeleri ile gösterilen denklemlerden standart geri yayılma algoritması terimlerinin hesabı denklem 9'da gösterildiği şekilde hesaplanır.

$$\frac{\partial E}{\partial w^k(i,j)} = \frac{\partial \sum_{m=1}^{SM} e_q^2(m)}{\partial w^k(i,j)}$$
(9)

Levenberg-Marquardt algoritmasında kullanılacak Jacobian matrisine ait ifadeler denklem 10'da gösterildiği şekilde hesaplanabilir.

$$\frac{\partial e_q(m)}{\partial w^k(i,j)} \tag{10}$$

Bu terimler son katmanda bir değişiklik yapılarak standart geri yayılma algoritması yardımı ile hesaplanabilir.

$$\Delta^{M} = -F^{M}(\underline{n}^{M}) \tag{11}$$

Denklem 11'de ifade edilen matrisin ayrı ayrı tüm kolonları bir vektördür. Böylece Levenberg-Marquardt algoritması çok hızlı bir şekilde çözüme ulaşabilir. Ancak bunu yapmak için çok fazla miktarda bellek gerekmektedir.

2.3. Kirişsiz Plak Döşemelerin Tasarım Momentlerinin Hesabı

Yapay sinir ağlarının öğrenme kabiliyeti kullanıcılar tarafından anlaşılamaz. Çok katmanlı yapay sinir ağlarında ara tabaka hücre sayısı ve iterasyon sayısı en iyi sonuç elde edilene kadar deneme yanılma yolu ile bulunabilir.

Yapay sinir ağlarında kullanılmak üzere; SAP2000 programı yardımıyla, rijitlik değerlerini oluşturan parametrelerin birbirinden farklı olduğu on adet dört katlı yapı tasarlanarak çok sayıda veri üretilmiştir. SAP2000 analizi sonucunda sistem simetrisinden yararlanılarak bir iç bir de kenar kolon şeridinden elde edilen döşeme tasarım momentleri kullanılmıştır (Şekil 1), [15]. Tablo 1'de gösterilen modeller arasındaki değişkenler; kat yükseklikleri, kolon boyutları, x ve y yönündeki taşıyıcı sistem aks aralıkları, döşeme kalınlıkları, katlara gelen eşdeğer deprem yükleri ve bu parametrelere bağlı olarak elde edilen kenar ve iç açıklık kolon şeridindeki döşeme tasarım momentleridir. Buna göre betonarme modeller arasındaki kat yükseklikleri 2,5 ila 3,5 m arasında değişmektedir. Döşeme kalınlıkları ise 0,16 m ve 0,25 m arasındadır. 4 adet aks aralığına sahip (y) yönündeki doğrultuda kolonlar arasındaki mesafe 4 ila 5 m arasında değişmektedir. 3 adet aks aralığına sahip (x) yönündeki doğrultuda ise kolonlar arasındaki mesafe 3 m ile 4 m arasındadır. İlk iki kattaki kolon boyutları birbiri ile aynıdır. Son iki katta ise kolon boyutları küçültülmüstür. Deprem doğrultusuna dik (y) yönündeki kolon boyutları 0,3 ila 0,55 m arasında değişmektedir. Deprem doğrultusundaki (x) yönünde ise kolon boyutları 0,5 m ile 0,75 m arasındadır. Yukarıda bahsi geçen geometrik değişkenlerden dolayı yapı ağırlığı her bir model için değişmektedir. Buna bağlı olarak yapı periyotları ve eşdeğer deprem yükleri her bir yapı modeli için ayrı ayrı hesaplanarak SAP2000'de analiz edilmiştir. Elde edilen kenar açıklık ve iç açıklık kolon şeritlerindeki döşeme moment değerleri YSA'da çıkış verisi olarak kullanılmıştır.

Şekil 1. Taşıyıcı sistem modeli

Beton ve donatı malzeme karakteristik özellikleri tüm taşıyıcı sistem modellerinde birbirinin aynısı alınmıştır. Dolayısıyla yapılan çalışmada beton ve donatı çeşitliliğinin tasarım momentine etkisi ihmal edilmiştir. Deprem kuvvetleri, yapı modellerindeki ağırlık ve periyot değişimlerine bağlı olarak farklılıklar göstermektedir. TDY2007 esas alınarak eşdeğer deprem yükü yöntemine göre 3. deprem bölgesi için hesaplanan deprem kuvvetlerine ait karakteristik bilgiler;

- Etkin yer ivmesi katsayısı (A_o) = 0,2
- Bina önem katsayısı = 1
- Spektrum karakteristik periyotları yerel zemin sınıfı Z_3 'e göre; $T_A = 0,15$ ve $T_B = 0,60$ sn
- Taşıyıcı sistem davranış katsayısı = 4
- Hareketli yük katılım katsayısı = 0,3 olarak kullanılmıştır [16].

Eşdeğer deprem yükü yöntemine göre hesaplarda kullanılan modellerin yapı ağırlığı ve periyotlarına ilişkin bilgiler ise SAP2000 programından alınmıştır. Çok katmanlı yapay sinir ağlarında kullanılmak üzere SAP2000 programında üretilen eğitme ve test verileri Tablo 1'de verildiği gibidir.

	Kat No					Aks A	ralığı	Dös.	Kat.			
Model 1		1	2		3	3	4	1	Х	y	Kal.	Yük.
Kenar Açıklık	0	10	15	6	24	4	26	0			n)	
Deprem Kuvveti (kN)	8,	10	15,	0	24	24,4		20,9		(m)		
İç Açıklık	1/	- 2	21	2	40	0	50	0				
Deprem Kuvveti (kN)	10	0,0	51,	3	48	,8	53	,8				
Kolon Boyutları (m)	0,30	x 0,75	0,30 x	0,75	0,30 x	x 0,55	0,30 2	x 0,55	2.0	1.0	0.16	2.5
Döşeme Momentleri	M _{sol}	$M_{sa\breve{g}}$	M _{sol}	$M_{\text{sağ}}$	M _{sol}	$M_{\text{sağ}}$	M _{sol}	$M_{\text{sağ}}$	3,9	4,9	0,16	2,5
Kenar Açıklık (kNm)	28,7	28,5	35,3	34,8	28,2	27,8	16,1	15,5				
İç Açıklık (kNm)	14,9	14,8	18,5	18,3	15,2	15,0	9,30	9,05	i l			
NC 110				Kat	No				Aks A	ralığı	Döş.	Kat.
Model 2		1	2		3	3	4	1	Х	y	Kal.	Yük.
Kenar Açıklık	10	0.0	26	2	25	<u>`</u> 0	27	. 5		(
Deprem Kuvveti (kN)	18	5,8	20,	3	30	,0	57	,5		(1	n)	
İç Açıklık	25	1 5	50	5	70		75	. 0				
Deprem Kuvveti (kN)	3	7,5	52,	2	70	,0	/5	,0				
Kolon Boyutları (m)	0,30	x 0,75	0,30 x	0,75	0,30 x	x 0,55	0,30 2	x 0,55	2.0	1.0	0.17	2.5
Döşeme Momentleri	M _{sol}	M _{sağ}	M _{sol}	M_{sag}	M _{sol}	M _{sağ}	M _{sol}	M _{sağ}	3,0	4,0	0,17	3,5
Kenar Açıklık (kNm)	119	97,0	105	87,2	67,0	55,6	26,1	21,3				
İç Açıklık (kNm)	70,6	60,9	62,0	56,9	40,8	35,8	17,2	14,8				
M. 1.12			•	Kat	No				Aks A	ralığı	Döş.	Kat.
Model 5		1	2		(*)	3	2	1	х	у	Kal.	Yük.
Kenar Açıklık	0	40	16.0 25.6		28.1		(m)					
Deprem Kuvveti (kN)	9,	40	10,	7	20	,0	20	9,1		(1	11)	
İç Açıklık	15	2 8	33	8	51	3	56	3				
Deprem Kuvveti (kN)	10	5,8	55,	0	51	,5	50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Kolon Boyutları (m)	0,35	x 0,70	0,35 x	0,70	0,35 2	x 0,50	0,35 2	x 0,50	38	18	0.18	26
Döşeme Momentleri	M _{sol}	$M_{\text{sa}\check{\text{g}}}$	M_{sol}	$M_{\text{sa}\check{g}}$	M _{sol}	$M_{\text{sa}\check{\text{g}}}$	M_{sol}	$M_{\text{sa}\check{\text{g}}}$	5,6	4,0	0,10	2,0
Kenar Açıklık (kNm)	38,3	36,9	43,5	42,3	32,0	30,7	15,5	14,8				
İç Açıklık (kNm)	19,7	19,4	23,2	22,8	17,7	17,3	9,40	9,10				
Model 4			-	Kat	No		-		Aks A	ralığı	Döş.	Kat.
WIGHEI 4		1	2		3	3	2	1	х	у	Kal.	Yük.
Kenar Açıklık	17	75	25	0	33	8	36	3		(r	n)	
Deprem Kuvveti (kN)	1.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	23,	0	55	,0	50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(1		
İç Açıklık	34	5.0	50	0	67	5	70	5				
Deprem Kuvveti (kN)	5.	9,0	50,	0	07	,5	12	.,5				
Kolon Boyutları (m)	0,35	x 0,70	0,35 x	0,70	0,35 x	x 0,50	0,35 2	x 0,50	31	4.1	0.10	3.4
Döşeme Momentleri	M _{sol}	M _{sağ}	M _{sol}	$M_{\text{sa}\check{g}}$	M _{sol}	M _{sağ}	M _{sol}	M _{sağ}	5,1	4,1	0,19	5,4
Kenar Açıklık (kNm)	109	90,1	96,8	81,7	61,3	52,1	23,7	20,1				
İç Açıklık (kNm)	63,9	55,8	56,9	50,5	37,3	33,4	15,8	13,9				
Model 5				Kat	No		-		Aks A	ralığı	Döş.	Kat.
MIULEI S		1	2			3	4	1	X	у	Kal.	Yük.
Kenar Açıklık	10) 6	18	1	26	5	20	. 4		(+	n)	
Deprem Kuyveti (kN)	10	,0	10,	T	20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	25	·,-		(1)	

Tablo 1. YSA eğitme ve test verileri [15, 17]

İç Açıklık	21	3	36	3	53	0	58	8				
Deprem Kuvveti (kN)	21	,5	50,	,5	55	,0	50	,0				
Kolon Boyutları (m)	0,40 x	0,65	0,40 x	0,65	0,40 x	0,45	0,40 x	x 0,45	37	17	0.20	27
Döşeme Momentleri	M _{sol}	M _{sağ}	M_{sol}	$M_{\text{sa}\check{\text{g}}}$	M _{sol}	$M_{\text{sa}\check{\text{g}}}$	M _{sol}	M_{sag}	5,7	-,,	0,20	2,7
Kenar Açıklık (kNm)	47,3	45,6	51,4	48,9	35,6	32,7	15,0	14,0				
İç Açıklık (kNm)	25,0	24,6	28,2	27,3	21,0	19,6	9,60	9,10		1 4		
Model 6	1		2	Kat	<u>No</u> 3		4	Ļ	Aks A	v v	Döş. Kal.	Kat. Yük.
Kenar Açıklık	16	2	22	0	22	-	25	0				
Deprem Kuvveti (kN)	16	,3	23,	,8	32	,5	35	,0		(r	n)	
İç Açıklık	22	5	17	5	65	٥	70	0				
Deprem Kuvveti (kN)	52,	,3	47,	,5	03	,0	70	,0				
Kolon Boyutları (m)	0,40 x	0,65	0,40 x	0,65	0,40 x	0,45	0,40 x	x 0,45	2 7	4.2	0.21	2.2
Döşeme Momentleri	M _{sol}	$M_{\text{sa}\check{\text{g}}}$	M_{sol}	$M_{\text{sa}\check{\text{g}}}$	M _{sol}	$M_{\text{sa}\check{\text{g}}}$	M _{sol}	$M_{\text{sa}\check{\text{g}}}$	3,2	4,2	0,21	5,5
Kenar Açıklık (kNm)	99,8	83,3	88,9	76,0	55,7	48,3	21,1	18,6				
İç Açıklık (kNm)	58,1	51,3	52,2	46,9	34,2	31,0	14,3	12,9				
Model 7				Kat	No				Aks A	ralığı	Döş.	Kat.
Niodel /	1		2		3		4	ŀ	Х	у	Kal.	Yük.
Kenar Açıklık	11	0	10	4	27	8	30	6		(*	n)	
Deprem Kuvveti (kN)	11,	,9	19,	,4	27	,0	50	,0		(1	1)	
İç Açıklık	23	Q	29	Q	55	5	61	3				
Deprem Kuvveti (kN)	23	,0	50,	,0	55	,5	01	,5				
Kolon Boyutları (m)	0,45 x	0,60	0,45 x	0,60	0,45 x	0,40	0,45 x	x 0,40	36	4.6	0.22	28
Döşeme Momentleri	M _{sol}	M_{sag}	M_{sol}	$M_{\text{sa}\check{g}}$	M _{sol}	$M_{\text{sa}\check{\text{g}}}$	M _{sol}	M_{sag}	5,0	4,0	0,22	2,0
Kenar Açıklık (kNm)	58,2	54,5	59,5	54,8	39,8	34,2	14,9	13,4				
İç Açıklık (kNm)	31,7	30,3	33,8	31,9	24,6	22,2	10,2	9,35				
Model 8				Kat	No				Aks A	ralığı	Döş.	Kat.
would b	1		2		3		4	L	х	v	Kal.	Yük.
					-					,		
Kenar Açıklık	15	0	22	5	31	3	33	8		(r	n)	
Kenar Açıklık Deprem Kuvveti (kN)	15,	,0	22,	,5	31	,3	33	,8		(r	n)	
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık	15. 30.	,0 .0	22, 45.	,5 .0	31 62	,3 .5	33 67	,8		(r	n)	
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN)	15. 30.	0,0	22, 45,	,5 ,0	31 62	,3 ,5	33	,8 ,5		(r	n)	
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m)	15, 30, 0,45 x	,0 ,0 0,60	22, 45, 0,45 x	,5 ,0 0,60	31 62 0,45 x	,3 ,5 0,40	33 67 0,45 x	,8 ,5 (0,40	3,3	(r 4,3	n) 0,23	3,2
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri	15, 30, 0,45 x M _{sol}	,0 ,0 0,60 M _{sağ}	22, 45, 0,45 x M _{sol}	,5 ,0 0,60 M _{sağ}	31 62 0,45 x M _{sol}	,3 ,5 0,40 M _{sağ}	33 67 0,45 x M _{sol}	,8 ,5 0,40 M _{sağ}	3,3	(r 4,3	n) 0,23	3,2
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm)	15, 30, 0,45 x M _{sol} 91,1	0 0,60 0,60 M _{sağ} 76,8	22, 45, 0,45 x M _{sol} 81,2	5 0 0,60 M _{sağ} 70,3	31 62 0,45 x M _{sol} 50,2	,3 ,5 0,40 M _{sağ} 44,4	33 67 0,45 x M _{sol} 18,3	,8 ,5 0,40 <u>M_{sağ}</u> 16,9	3,3	(r 4,3	n) 0,23	3,2
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm)	15, 30, 0,45 x M _{sol} 91,1 53,0	0 0,60 0,60 M _{sağ} 76,8 47,2	22, 45, 0,45 x M _{sol} 81,2 48,0	5 0 0,60 <u>M_{sağ}</u> 70,3 43,5	31 62 0,45 x M _{sol} 50,2 31,2	,3 ,5 0,40 <u>M_{sağ}</u> 44,4 28,7	33 67 0,45 × M _{sol} 18,3 12,8	,8 ,5 0,40 <u>M_{sağ}</u> 16,9 12,0	3,3	(r 4,3	n) 0,23	3,2
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) Model 9	15. 30. 0,45 x M _{sol} 91,1 53,0	0 0 0,60 <u>M_{sağ}</u> 76,8 47,2	22, 45, 0,45 x M _{sol} 81,2 48,0	5 0 0,60 <u>M_{sağ}</u> 70,3 43,5 Kat	31 62 0,45 x M _{sol} 50,2 31,2 No	,3 ,5 0,40 M _{sağ} 44,4 28,7	33 67 0,45 x M _{sol} 18,3 12,8	,8 ,5 0,40 M _{sağ} 16,9 12,0	3,3 Aks A	(r 4,3 vralığı	n) 0,23 Döş.	3,2 Kat.
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm)	15. 30. 0,45 x M _{sol} 91,1 53,0	0 0 0,60 <u>M_{sağ}</u> 76,8 47,2	22, 45, 0,45 x M _{sol} 81,2 48,0 2	5 0 0,60 <u>M_{sağ}</u> 70,3 43,5 Kat	31 62 0,45 x M _{sol} 50,2 31,2 No 3	,3 ,5 0,40 <u>M_{sağ}</u> 44,4 28,7	33 67 0,45 x M _{sol} 18,3 12,8	,8 ,5 0,40 <u>M_{sağ}</u> 16,9 12,0	3,3 Aks A x	(r 4,3 <u>aralığı</u> y	n) 0,23 Döş. Kal.	3,2 Kat. Yük.
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) Model 9 Kenar Açıklık	15, 30, 0,45 x M _{sol} 91,1 53,0 1 13,	0 0,60 <u>M_{sağ}</u> 76,8 47,2	$\begin{array}{c} 22, \\ 45, \\ 0, 45 \\ x \\ M_{sol} \\ 81, 2 \\ 48, 0 \\ \hline \\ 2 \\ 20, \end{array}$	5 0 0,60 <u>M_{sağ}</u> 70,3 43,5 Kat	31 62 0,45 x M _{sol} 50,2 31,2 No 29	,3 ,5 0,40 <u>Msağ</u> 44,4 28,7	33 67 0,45 × M _{sol} 18,3 12,8 4 4 31	,8 ,5 0,40 <u>M_{sağ}</u> 16,9 12,0 ,9	3,3 Aks A x	(r 4,3 vralığı y (r	n) 0,23 Döş. Kal. n)	3,2 Kat. Yük.
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) Model 9 Kenar Açıklık Deprem Kuvveti (kN)	15, 30, 0,45 x 91,1 53,0 1 13,	0 0,60 <u>M_{sağ}</u> 76,8 47,2	$\begin{array}{c} 22, \\ 45, \\ 0,45 x \\ \underline{M_{sol}} \\ 81,2 \\ 48,0 \\ \hline \\ 20, \\ \end{array}$	5 0 0,60 <u>M_{sağ}</u> 70,3 43,5 Kat	31 62 0,45 x M _{sol} 50,2 31,2 No 29	,3 ,5 0,40 <u>M_{sağ}</u> 44,4 28,7	33 67 0,45 x M _{sol} 18,3 12,8 4 31	,8 ,5 (0,40) (M _{sağ}) (16,9) (12,0) (3,3 Aks A x	(r 4,3 vralığı y (r	n) 0,23 Döş. Kal. n)	3,2 Kat. Yük.
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) Model 9 Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık	15, 30, 0,45 x M _{sol} 91,1 53,0 1 13, 26,	0 0,60 <u>M_{sağ}</u> 76,8 47,2 ,1	$\begin{array}{c} 22, \\ 45, \\ 0,45 \text{ x} \\ \underline{M}_{sol} \\ 81,2 \\ 48,0 \\ \hline \\ 220, \\ 41, \end{array}$	5 0 0,60 <u>M_{sağ}</u> 70,3 43,5 Kat 6	31 62 0,45 x M _{sol} 50,2 31,2 No 3 29 58	,3 ,5 0,40 <u>M_{sağ}</u> 44,4 28,7 ,0	33 67 0,45 x M _{sol} 18,3 12,8 4 31 63	,8 ,5 (0,40) (M _{sağ}) (16,9) (12,0) (3,3 Aks A x	(r 4,3 sralığı y (r	n) 0,23 Döş. Kal. n)	3,2 Kat. Yük.
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) Model 9 Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN)	$ \begin{array}{c} 15, \\ 30, \\ 0, 45 \text{ x} \\ \underline{M}_{sol} \\ 91, 1 \\ 53, 0 \\ \hline 1 \\ 13, \\ 26, \\ 0, 50 \text{ x} \end{array} $	0 0,60 <u>M_{sağ}</u> 76,8 47,2 1 ,1	$\begin{array}{c} 22, \\ 45, \\ 0,45 \text{ x} \\ M_{sol} \\ 81,2 \\ 48,0 \\ \hline \\ 20, \\ 41, \\ 0.50 \text{ x} \end{array}$	5 0 0,60 M _{sağ} 70,3 43,5 Kat 6 3	31 62 0,45 x M _{sol} 50,2 31,2 No 29 58	,3 ,5 0,40 <u>M_{sağ}</u> 44,4 28,7 ,0 ,0	33 67 0,45 × M _{sol} 18,3 12,8 4 31 63 0,50 ×	,8 ,5 (0,40) (16,9) (12,0) (12	3,3 Aks A x	(r 4,3 <u>vralığı</u> <u>y</u> (r	n) 0,23 Döş. Kal. n)	3,2 Kat. Yük.
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) Model 9 Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri	$ \begin{array}{c} 15, \\ 30, \\ 0, 45 \text{ x} \\ M_{sol} \\ 91, \\ 153, \\ 0, \\ 13, \\ 26, \\ 0, 50 \text{ x} \\ M_{sol} \\ \end{array} $	0 0,60 M _{sag} 76,8 47,2 1 ,1 ,3 0,55 M	$\begin{array}{c} 22, \\ 45, \\ 0,45 \\ x \\ M_{sol} \\ 81,2 \\ 48,0 \\ \hline \\ 20, \\ 41, \\ 0,50 \\ x \\ M \\ \end{array}$	5 0 0,60 M _{sag} 70,3 43,5 Kat 6 3 0,55 M	31 62 0,45 x M _{sol} 50,2 31,2 No 29 58 0,50 x	,3 ,5 0,40 M _{sağ} 44,4 28,7 ,0 ,0 ,0 0,35	33 67 0,45 x M _{sol} 18,3 12,8 4 31 63 0,50 x	,8 ,5 0,40 M _{sag} 16,9 12,0 ,9 ,8 0,35 M	3,3 Aks A x 3,5	(r 4,3 wralığı y (r 4,5	n) 0,23 Döş. Kal. n) 0,24	3,2 Kat. Yük. 2,9
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) Model 9 Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri	15, 30, 0,45 x M _{sol} 91,1 53,0 1 13, 26, 0,50 x M _{sol}	0 0,60 M _{sağ} 76,8 47,2 ,1 ,1 ,3 0,55 M _{sağ} 63,0	$\begin{array}{c} 22, \\ 45, \\ 0,45 \text{ x} \\ M_{\text{sol}} \\ 81,2 \\ 48,0 \\ \hline \\ 20, \\ 20, \\ 41, \\ 0,50 \text{ x} \\ M_{\text{sol}} \\ 67.5 \end{array}$	5 0 0,60 M _{sağ} 70,3 43,5 Kat 6 3 0,55 M _{sağ} 61 9	31 62 0,45 x M _{sol} 50,2 31,2 No 29 58 0,50 x M _{sol} 44 8	,3 ,5 0,40 <u>M_{sağ}</u> 44,4 28,7 ,0 ,0 ,0 ,0 ,0 ,35 <u>M_{sağ}</u> 35 0	$\begin{array}{c} 33\\ 67\\ 0,45\times\\ M_{sol}\\ 18,3\\ 12,8\\ 4\\ 31\\ 63\\ 0,50\times\\ M_{sol}\\ 15.6\\ \end{array}$,8 ,5 (0,40) (M _{sağ}) (16,9) (12,0) (3,3 Aks A x 3,5	(r 4,3 <u>vralığı</u> y (r 4,5	n) 0,23 Döş. Kal. n) 0,24	3,2 Kat. Yük. 2,9
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) Model 9 Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm)	15, 30, 91,1 53,0 1 13, 0,50 x M _{sol} 69,9 39,4	0 0 0,60 M _{sağ} 76,8 47,2 1 ,1 0,55 M _{sağ} 63,0 36,7	$\begin{array}{c} 22, \\ 45, \\ 0,45 \text{ x} \\ M_{sol} \\ 81,2 \\ 48,0 \\ \hline \\ 20, \\ 41, \\ 0,50 \text{ x} \\ M_{sol} \\ 67,5 \\ 40.0 \\ \end{array}$	5 0 0,60 M _{sağ} 70,3 43,5 Kat 6 3 0,55 M _{sağ} 61,9 36 6	31 62 0,45 x M _{sol} 50,2 31,2 No 29 58 0,50 x M _{sol} 44,8 29 8	,3 ,5 0,40 M _{sağ} 44,4 28,7 ,0 ,0 0,35 M _{sağ} 35,0 25,0	33 67 0,45 × M _{sol} 18,3 12,8 4 31 63 0,50 × M _{sol} 15,6 11,3	,8 ,5 (0,40) (16,9) (12,0) (12	3,3 Aks A x 3,5	(r 4,3 <u>vralığı</u> y (r 4,5	n) 0,23 Döş. Kal. n) 0,24	3,2 Kat. Yük. 2,9
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) İç Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm)	15, 30, 0,45 x M _{sol} 91,1 53,0 1 13, 0,50 x M _{sol} 69,9 39,4	0 0 0,60 M _{sağ} 76,8 47,2 1 3 0,55 M _{sağ} 63,0 36,7	$\begin{array}{c} 22, \\ 45, \\ 0,45 \text{ x} \\ \text{M}_{\text{sol}} \\ 81,2 \\ 48,0 \\ \hline \\ 220, \\ 41, \\ 0,50 \text{ x} \\ \text{M}_{\text{sol}} \\ 67,5 \\ 40,0 \\ \end{array}$	5 0 0,60 <u>M_{sağ}</u> 70,3 43,5 Kat 6 3 0,55 <u>M_{sağ}</u> 61,9 36,6 Kat	31 62 0,45 x M _{sol} 50,2 31,2 No 29 58 0,50 x M _{sol} 44,8 29,8 No	,3 ,5 0,40 M _{sağ} 44,4 28,7 ,0 ,0 0,35 M _{sağ} 35,0 25,0	$\begin{array}{c} 33\\ 67\\ 0,45 \times \\ M_{sol}\\ 18,3\\ 12,8\\ 4\\ 31\\ 63\\ 0,50 \times \\ M_{sol}\\ 15,6\\ 11,3\\ \end{array}$,8 ,5 (0,40) (16,9) (12,0) (12	3,3 Aks A x 3,5	(r 4,3 <u>aralığı</u> y (r 4,5	n) 0,23 Döş. Kal. n) 0,24	3,2 Kat. Yük. 2,9
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) İç Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm)	15, 30, 0,45 x M _{sol} 91,1 53,0 1 13, 26, 0,50 x M _{sol} 69,9 39,4	0 0,60 M _{sağ} 76,8 47,2 ,1 ,1 ,3 0,55 M _{sağ} 63,0 36,7	$\begin{array}{c} 22, \\ 45, \\ 0,45 \\ x \\ M_{sol} \\ 81,2 \\ 48,0 \\ \hline \\ 20, \\ 20, \\ 41, \\ 0,50 \\ x \\ M_{sol} \\ 67,5 \\ 40,0 \\ \hline \\ 2 \\ \end{array}$	5 0 0,60 M _{sağ} 70,3 43,5 Kat 6 3 0,55 M _{sağ} 61,9 36,6 Kat	31 62 0,45 x M _{sol} 50,2 31,2 No 3 29 58 0,50 x M _{sol} 44,8 29,8 No 3	,3 ,5 0,40 M _{sağ} 44,4 28,7 ,0 ,0 ,0 0,35 M _{sağ} 35,0 25,0	33 67 0,45 x M _{sol} 18,3 12,8 4 31 63 0,50 x M _{sol} 15,6 11,3	,8 ,5 (0,40 M _{sağ} 16,9 12,0 ,9 ,8 (0,35 M _{sağ} 12,9 9,80 (0,35)	3,3 Aks A x 3,5 Aks A x	(r 4,3 wralığı y (r 4,5 vralığı y	n) 0,23 Döş. Kal. n) 0,24 Döş. Kal.	3,2 Kat. Yük. 2,9 Kat. Yük.
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) İç Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) Model 10 Kenar Açıklık	15, 30, 0,45 x M _{sol} 91,1 53,0 1 13, 26, 0,50 x M _{sol} 69,9 39,4 1	0 0 0,60 M _{sağ} 76,8 47,2 1 ,1 3 0,55 M _{sağ} 63,0 36,7 8	$\begin{array}{c} 22, \\ 45, \\ \hline 0,45 x \\ M_{sol} \\ 81,2 \\ 48,0 \\ \hline 2 \\ 20, \\ \hline 41, \\ 0,50 x \\ M_{sol} \\ 67,5 \\ 40,0 \\ \hline \\ 2 \\ 21 \\ \hline \end{array}$	5 0 0,60 M _{sağ} 70,3 43,5 Kat 6 3 0,55 M _{sağ} 61,9 36,6 Kat	31 62 0,45 x M _{sol} 50,2 31,2 No 29 58 0,50 x M _{sol} 44,8 29,8 No 3 20	,3 ,5 0,40 M _{sağ} 44,4 28,7 ,0 ,0 0,35 M _{sağ} 35,0 25,0	$\begin{array}{c} 33\\ 67\\ 0,45 \times \\ M_{sol}\\ 18,3\\ 12,8\\ 4\\ 31\\ 63\\ 0,50 \times \\ M_{sol}\\ 15,6\\ 11,3\\ 4\\ 4\\ 22\\ 32\\ 32\\ 4\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33\\$,8 ,5 (0,40) (M _{sağ}) (16,9) (12,0) (3,3 Aks A x 3,5 Aks A x	(r 4,3 4,3 4,5 (r 4,5 vralığı y	n) 0,23 Döş. Kal. n) 0,24 Döş. Kal.	3,2 Kat. Yük. 2,9 Kat. Yük.
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) İç Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm)	$\begin{array}{c} 15, \\ 30, \\ 0, 45 \text{ x} \\ M_{sol} \\ 91, 1 \\ 53, 0 \\ \hline \\ 11 \\ 13, \\ 26, \\ 0, 50 \text{ x} \\ M_{sol} \\ 69, 9 \\ 39, 4 \\ \hline \\ 11 \\ 13, \\ 13, \\ \end{array}$	0 0 0,60 M _{sağ} 76,8 47,2 1 3 0,55 M _{sağ} 63,0 36,7 8	$\begin{array}{c} 22, \\ 45, \\ 0,45 \text{ x} \\ M_{sol} \\ 81,2 \\ 48,0 \\ \hline \\ 220, \\ 41, \\ 0,50 \text{ x} \\ M_{sol} \\ 67,5 \\ 40,0 \\ \hline \\ 221, \\ \end{array}$	5 0 0,60 M _{sağ} 70,3 43,5 Kat 6 3 0,55 M _{sağ} 61,9 36,6 Kat 3 3	31 62 0,45 x M _{sol} 50,2 31,2 No 3 29 58 0,50 x M _{sol} 44,8 29,8 No 3 30	,3 ,5 0,40 M _{sağ} 44,4 28,7 ,0 ,0 ,0 0,35 M _{sağ} 35,0 25,0 ,0	$ \begin{array}{r} 33\\ 67\\ 0,45 \times \\ M_{sol}\\ 18,3\\ 12,8\\ 4\\ 31\\ 63\\ 0,50 \times \\ M_{sol}\\ 15,6\\ 11,3\\ 4\\ 32\\ 4\\ 32\\ 4\\ 32\\ 32\\ 4\\ 32\\ 32\\ 32\\ 32\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33$,8 ,5 (0,40) (16,9) (12,0) (12	3,3 Aks A x 3,5 Aks A x	(r 4,3 4,3 4,3 (r 4,5 4,5 4,5	n) 0,23 Döş. Kal. n) 0,24 Döş. Kal. n)	3,2 Kat. Yük. 2,9 Kat. Yük.
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) İç Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm)	$ \begin{array}{c} 15, \\ 30, \\ 0,45 \\ x \\ M_{sol} \\ 91,1 \\ 53,0 \\ \hline 11 \\ 13, \\ 26, \\ 0,50 \\ x \\ M_{sol} \\ 69,9 \\ 39,4 \\ \hline 13, \\ 27, \\ 27 \end{array} $	$\begin{array}{c} 0 \\ 0 \\ 0,60 \\ M_{sag} \\ 76,8 \\ 47,2 \\ 1 \\ 3 \\ 0,55 \\ M_{sag} \\ 63,0 \\ 36,7 \\ 8 \\ 5 \\ \end{array}$	$\begin{array}{c} 22, \\ 45, \\ 0,45 \text{ x} \\ M_{sol} \\ 81,2 \\ 48,0 \\ \hline \\ 22, \\ 20, \\ 41, \\ 0,50 \text{ x} \\ M_{sol} \\ 67,5 \\ 40,0 \\ \hline \\ 22, \\ 1, \\ 42, \\ 12$	5 0 0,60 M _{sağ} 70,3 43,5 Kat 6 3 0,55 M _{sağ} 61,9 36,6 Kat 3 5	31 62 0,45 x M _{sol} 50,2 31,2 No 33 29 58 0,50 x M _{sol} 44,8 29,8 No 30 60	,3 ,5 0,40 M _{sağ} 44,4 28,7 ,0 ,0 ,0 0,35 M _{sağ} 35,0 25,0 0	$\begin{array}{c} 33\\ 67\\ 0,45 \times \\ M_{sol}\\ 18,3\\ 12,8\\ \hline \\ 4\\ 31\\ \hline \\ 63\\ 0,50 \times \\ M_{sol}\\ 15,6\\ 11,3\\ \hline \\ 4\\ 32\\ \hline \\ 65\\ \hline \end{array}$,8 ,5 (0,40) (16,9) (12,0) (12	3,3 Aks A x 3,5 Aks A x	(r 4,3 vralığı y (r 4,5 vralığı y (r	n) 0,23 Döş. Kal. n) 0,24 Döş. Kal. n)	3,2 Kat. Yük. 2,9 Kat. Yük.
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) Model 9 Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm)	$\begin{array}{c} 15, \\ 30, \\ 0, 45 \text{ x} \\ M_{sol} \\ 91, 1 \\ 53, 0 \\ \hline \\ 11 \\ 13, \\ 26, \\ 0, 50 \text{ x} \\ M_{sol} \\ 69, 9 \\ 39, 4 \\ \hline \\ 11 \\ 13, \\ 27, \\ 27, \\ \end{array}$	0 0 0,60 M _{sağ} 76,8 47,2 1 ,1 ,3 0,55 M _{sağ} 63,0 36,7 8 8 ,5	$\begin{array}{c} 22, \\ 45, \\ 0,45 \text{ x} \\ M_{sol} \\ 81,2 \\ 48,0 \\ \hline \\ 22, \\ 20, \\ 41, \\ 0,50 \text{ x} \\ M_{sol} \\ 67,5 \\ 40,0 \\ \hline \\ 22, \\ 41, \\ 42, \\ 42, \\ \end{array}$	5 0 0,60 M _{sağ} 70,3 43,5 Kat 6 3 0,55 M _{sağ} 61,9 36,6 Kat 3 5	31 62 0,45 x M _{sol} 50,2 31,2 No 29 58 0,50 x M _{sol} 44,8 29,8 No 30 60	,3 ,5 0,40 M _{sağ} 44,4 28,7 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0	$\begin{array}{c} 33\\ 67\\ 0,45 \times \\ M_{sol}\\ 18,3\\ 12,8\\ \hline \\ 4\\ 31\\ \hline \\ 63\\ 0,50 \times \\ M_{sol}\\ 15,6\\ 11,3\\ \hline \\ 4\\ 32\\ \hline \\ 65\\ \hline \end{array}$,8 ,5 (0,40) (16,9) (12,0) (12	3,3 Aks A x 3,5 Aks A x	(r 4,3 <u>vralığı</u> y (r 4,5 vralığı y (r	n) 0,23 Döş. Kal. n) 0,24 Döş. Kal. n)	3,2 Kat. Yük. 2,9 Kat. Yük.
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm) Kolon Boyutları (m)	15, 30, 0,45 x M _{sol} 91,1 53,0 1 13, 0,50 x M _{sol} 69,9 39,4 1 13, 0,55 x	$\begin{array}{c} 0 \\ 0 \\ 0,60 \\ \hline M_{sag} \\ 76,8 \\ 47,2 \\ \hline 1 \\ 3 \\ 0,55 \\ \hline M_{sag} \\ 63,0 \\ 36,7 \\ \hline 8 \\ 5 \\ 0,50 \\ \hline \end{array}$	$\begin{array}{c} 22, \\ 45, \\ 0,45 \\ x \\ M_{sol} \\ 81,2 \\ 48,0 \\ \hline \\ 22, \\ 20, \\ 41, \\ 0,50 \\ x \\ M_{sol} \\ 67,5 \\ 40,0 \\ \hline \\ 21, \\ 42, \\ 0,55 \\ x \\ \hline \\ 0,55 \\ x \\ \hline \end{array}$	5 0 0,60 M _{sağ} 70,3 43,5 Kat 6 3 0,55 M _{sağ} 61,9 36,6 Kat 3 5 0,50	31 62 0,45 x M _{sol} 50,2 31,2 No 33 29 58 0,50 x M _{sol} 44,8 29,8 No 30 60 0,55 x	,3 ,5 0,40 M_{sag} 44,4 28,7 ,0 0,35 M_{sag} 35,0 25,0 ,0	$\begin{array}{c} 33\\ 67\\ 0,45 \times \\ M_{sol}\\ 18,3\\ 12,8\\ \hline \\ 4\\ 31\\ \hline \\ 63\\ 0,50 \times \\ M_{sol}\\ 15,6\\ 11,3\\ \hline \\ 4\\ 32\\ \hline \\ 65\\ 0,55 \times \\ 0,55 \times \end{array}$,8 ,5 (0,40 M _{sağ} 16,9 12,0 ,9 ,8 (0,35 M _{sağ} 12,9 9,80 ,5 ,0 (0,50	3,3 Aks A x 3,5 Aks A x	(r 4,3 <u>vralığı</u> y (r 4,5 vralığı y (r	n) 0,23 Döş. Kal. n) 0,24 Döş. Kal. n)	3,2 Kat. Yük. 2,9 Kat. Yük.
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm) İç Açıklık (kNm) Kolon Boyutları (m) Döşeme Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) İç Açıklık	15, 30, 0,45 x M _{sol} 91,1 53,0 1 13, 26, 0,50 x M _{sol} 69,9 39,4 1 13, 27, 0,55 x M _{sol}	$\begin{array}{c} 0 \\ 0 \\ 0,60 \\ M_{sag} \\ 76,8 \\ 47,2 \\ 1 \\ 1 \\ 3 \\ 0,55 \\ M_{sag} \\ 63,0 \\ 36,7 \\ 8 \\ 5 \\ 0,50 \\ M_{sag} \\ 5 \\ 0,50 \\ M_{sag} \\ \end{array}$	$\begin{array}{c} 22,\\ 45,\\ 0,45 \text{ x}\\ M_{sol}\\ 81,2\\ 48,0\\ \hline \\ 20,\\ 20,\\ 41,\\ 0,50 \text{ x}\\ M_{sol}\\ 67,5\\ 40,0\\ \hline \\ 21,\\ 42,\\ 0,55 \text{ x}\\ M_{sol}\\ \hline \end{array}$	5 0 0,60 M _{sag} 70,3 43,5 Kat 6 3 0,55 M _{sag} 61,9 36,6 Kat 3 5 0,50 M _{sag}	31 62 0,45 x M _{sol} 50,2 31,2 No 3 29 58 0,50 x M _{sol} 44,8 29,8 No 3 3 0,55 x M _{sol} 44,8 29,8 No	,3 ,5 0,40 M _{sağ} 44,4 28,7 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0	33 67 0,45 x M _{sol} 18,3 12,8 4 31 63 0,50 x M _{sol} 15,6 11,3 4 32 65 0,55 x M _{sol}	,8 ,5 (0,40) M _{sağ} 16,9 12,0 ,9 ,8 (0,35) M _{sağ} 12,9 9,80 ,5 ,0 (0,50) M _{sağ}	3,3 <u>Aks A</u> <u>3,5</u> <u>Aks A</u> <u>3,4</u>	(r 4,3 4,3 4,3 (r 4,5 (r 4,5 (r 4,4	n) 0,23 Döş. Kal. n) 0,24 Döş. Kal. n)	3,2 Kat. Yük. 2,9 Kat. Yük. 3,1
Kenar Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) İç Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) Kolon Boyutları (m) Döşeme Momentleri Kenar Açıklık (kNm) İç Açıklık (kNm) İç Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) İç Açıklık Deprem Kuvveti (kN) İç Açıklık	15, 30, 0,45 x M _{sol} 91,1 53,0 1 13, 26, 0,50 x M _{sol} 69,9 39,4 1 13, 27, 0,55 x M _{sol}	0 0,60 M _{sağ} 76,8 47,2 ,1 ,1 ,3 0,55 M _{sağ} 63,0 36,7 8 ,8 ,5 0,50 M _{sağ} 70,5	$\begin{array}{c} 22,\\ 45,\\ 0,45 \text{ x}\\ M_{sol}\\ 81,2\\ 48,0\\ \hline \\ 20,\\ 41,\\ 0,50 \text{ x}\\ M_{sol}\\ 67,5\\ 40,0\\ \hline \\ 21,\\ 42,\\ 0,55 \text{ x}\\ M_{sol}\\ 73,8\\ \end{array}$	5 0 0,60 M _{sağ} 70,3 43,5 Kat 6 3 0,55 M _{sağ} 61,9 36,6 Kat 3 5 0,50 M _{sağ} 64,6	31 62 0,45 x M _{sol} 50,2 31,2 No 29 58 0,50 x M _{sol} 44,8 29,8 No 30 60 0,55 x M _{sol} 44,6	,3 ,5 0,40 M _{sağ} 44,4 28,7 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0	$\begin{array}{c} 33\\ 67\\ 0,45\times\\ M_{sol}\\ 18,3\\ 12,8\\ 12,8\\ 4\\ 31\\ 63\\ 0,50\times\\ M_{sol}\\ 15,6\\ 11,3\\ 4\\ 32\\ 65\\ 0,55\times\\ M_{sol}\\ 15,4\\ \end{array}$,8 ,5 ,5 ,0,40 M _{sağ} 16,9 12,0 ,9 ,9 ,8 (0,35 M _{sağ} 12,9 9,80 ,5 ,5 ,0 (0,50 M _{sağ} 15,1	3,3 Aks A x 3,5 Aks A x 3,4	(r 4,3 4,3 4,5 (r 4,5 (r 4,4	n) 0,23 Döş. Kal. n) 0,24 Döş. Kal. n) 0,25	3,2 Kat. Yük. 2,9 Kat. Yük. 3,1

A. ÖZBAYRAK

Yapılan araştırmadaki kurulan modellerde tasarım momentleri çıkış verisi olarak kullanılmıştır. Yapay sinir ağlarında belirlenen tüm kurallar gizli katmanda oluşturulmaktadır. Tablo 1'deki dört katlı on adet yapının analizinde kullanılan verilerden 1280 adedi eğitme verisi ve 320 adedi ise test verisi olarak kullanılmıştır. Ara tabaka hücre sayısının optimum değeri çok katmanlı yapay sinir ağlarında ancak denenerek elde edilebilir. Çalışmada MATLAB programı içerisine yazılarak kullanılan karşılaştırma ölçütleri; ortalama karekök hata değeri (mse22), ortalama mutlak göreceli hata değeri (mare22) ve belirginlik katsayısı değeridir (R2). Oluşturulan yapay sinir ağları modelindeki ortalama karekök hata ve ortalama mutlak göreceli hata gibi karşılaştırma ölçütlerine ait değerlerin minimum olması ve belirginlik katsayısı değerinin ise 1'e yaklaştırılabilmesi için ara tabaka ve iterasyon sayısında deneme yanılma yolu ile değişikler yapılmıştır [18].

3. BULGULAR VE TARTIŞMA

Yapay sinir ağları uygulamasında bulunan döşeme tasarım momentlerini etkileyen başlıca parametreler yapıya etkiyen yatay yük değerleri ve yapıyı oluşturan elemanların rijitlik değerleridir. Bu rijitlik değerleri; her iki doğrultudaki aks aralıkları, kat yüksekliği, kolon boyutları ve döşeme kalınlığına bağlı olarak değişmektedir. Beton ve donatı sınıfı gibi malzeme özellikleri analizi yapılan tüm yapılarda birbirinin aynısı seçilmiştir. Ayrıca yapay sinir ağlarında oluşturulan eğitme ve test verilerinde her iki aks doğrultusundaki sistem simetrisinden faydalanarak tek bir kenar ve iç açıklığa ait olan döşeme tasarım momentleri kullanılmıştır.

Buna göre SAP2000 programında her bir kattaki kenar ve iç açıklığa ait mesnet momentleri bulunarak, her kat için toplam dört adet moment değeri eğitme ve test verisi olarak kullanılmıştır. Dört katlı on adet yapının analizi ile elde edilen toplam 160 adet moment değerinin %80'i eğitme verisi olarak, %20'si ise test verisi olarak kullanılmıştır. Sonuç olarak SAP2000 programı ve YSA uygulamasından elde edilen sonuç tasarım momentlerinin karşılaştırılması Şekil 2'deki gibidir.

Tasarım Momentleri

Sekil 2. SAP2000 ve YSA 'da bulunan momentler arasındaki ilişki [15, 17, 18]

Şekil 2'deki tüm noktalar, kolon döşeme düğüm noktalarından SAP2000 ve yapay sinir ağları analizi ile elde edilen mesnet momentlerinin ortalama değerleridir. Eğitme ve test verilerine ait istatiksel parametreler tablolar halinde sunulmuştur (Tablo 2), (Tablo 3), (Tablo 4), (Tablo 5).

I-N_m	Kat	Döş.	Kat	Aks Mes.	Aks Mes.	Kolon	Kolon	Yatay	Tasarım
KIN- III	No	Kal.	Yüks.	x-x yönü	y-y yönü	Eni	Boyu	Kuvvet	Momenti
Ortalama	2,50	0,20	3,00	3,45	4,45	0,48	0,48	36,06	39,23
Ortanca	2,50	0,20	3,00	3,45	4,45	0,45	0,45	32,50	32,38
St. Sapma	1,12	0,02	0,37	0,32	0,32	0,14	0,14	17,85	25,44
Varyans	1,26	0,00	0,14	0,10	0,10	0,02	0,02	318,7	647,1
Basıklık	-1,37	-1,24	-1,68	-1,58	-1,58	-0,71	-0,71	-0,70	0,51
Çarpıklık	0,00	0,00	0,00	0,00	0,00	0,62	0,62	0,57	1,04
Aralık	3,00	0,07	1,00	0,90	0,90	0,45	0,45	66,88	110,85
Maksimum	4,00	0,23	3,50	3,90	4,90	0,75	0,75	75,00	119,90
Minimum	1,00	0,16	2,50	3,00	4,00	0,30	0,30	8,13	9,05
Toplam	320	24,96	384	441,6	569,6	60,80	60,80	4615,5	5021,7
Say	128,0	128,0	128,0	128,0	128,0	128,0	128,0	128,0	128,0

Tablo 2. Eğitme verilerine ait istatistiksel parametreler [15]

Tablo 3. Test verilerine ait istatistiksel parametreler [15]

I-N m	Kat	Döş.	Kat	Aks Mes.	Aks Mes.	Kolon	Kolon	Yatay	Tasarım
KIN- III	No	Kal.	Yüks.	x-x yönü	y-y yönü	Eni	Boyu	Kuvvet	Momenti
Ortalama	2,50	0,25	3,00	3,45	4,45	0,53	0,48	36,02	39,37
Ortanca	2,50	0,25	3,00	3,45	4,45	0,53	0,50	30,94	39,70
St. Sapma	1,14	0,01	0,10	0,05	0,05	0,03	0,08	17,03	21,22
Varyans	1,29	0,00	0,01	0,00	0,00	0,00	0,01	289,9	450,3
Basıklık	-1,39	-2,14	-2,14	-2,14	-2,14	-2,14	-0,74	-0,98	-0,87
Çarpıklık	0,00	0,00	0,00	0,00	0,00	0,00	-0,93	0,53	0,31
Aralık	3,00	0,01	0,20	0,10	0,10	0,05	0,20	51,88	73,00
Maksimum	4,00	0,25	3,10	3,50	4,50	0,55	0,55	65,00	82,80
Minimum	1,00	0,24	2,90	3,40	4,40	0,50	0,35	13,13	9,80
Toplam	80,00	7,84	96,00	110,4	142,4	16,80	15,20	1152,7	1259,8
Say	32,00	32,00	32,00	32,00	32,00	32,00	32,00	32,00	32,00

 Tablo 4. Eğitme verilerine ait korelasyon [15]

IN m	Kat	Döş.	Kat	Aks Mes.	Aks Mes.	Kolon	Kolon	Yatay	Tasarım
KIN- III	No	Kal.	Yüks.	x-x yönü	y-y yönü	Eni	Boyu	Kuvvet	Momenti
Kat No	1,00								
Döş. Kal.	0,00	1,00							
Kat Yüks.	0,00	0,21	1,00						
Aks Mes. (x-x)	0,00	-0,20	-1,00	1,00					
Aks Mes. (y-y)	0,00	-0,20	-1,00	1,00	1,00				
Kolon Eni	-0,33	-0,20	0,83	-0,84	-0,84	1,00			
Kolon Boyu	-0,33	-0,20	0,83	0,84	0,84	-0,72	1,00		
Yatay Kuvvet	0,61	-0,20	0,31	-0,31	-0,31	0,05	-0,48	1,00	
Tas. Momenti	-0,60	-0,20	0,53	-0,53	-0,53	0,76	-0,34	-0,43	1,00

Çalışmada toplam dört katlı on adet yapı tasarlanarak bunlardan sekizi yapay sinir ağlarının eğitilmesinde ikisi ise yapay sinir ağlarından elde edilen sonuçların test edilmesinde kullanılmıştır. SAP2000 programında üretilen test verileri ile çok katmanlı yapay sinir ağlarından elde edilen sonuç momentlerin karşılaştırılmasında kullanılan iki yapıdan birincisine ait sonuç bilgileri şekil 3 ve tablo 6'da ikincisine ait sonuç bilgileri ise şekil 4 ve tablo 7'de verildiği gibidir.

kN m	Kat	Döş.	Kat	Aks Mes.	Aks Mes.	Kolon	Kolon	Yatay	Tasarım
KIN- III	No	Kal.	Yüks.	x-x yönü	y-y yönü	Eni	Boyu	Kuvvet	Momenti
Kat No	1,00								
Döş. Kal.	0,00	1,00							
Kat Yüks.	0,00	1,00	1,00						
Aks Mes. (x-x)	0,00	-1,00	-1,00	1,00					
Aks Mes. (y-y)	0,00	-1,00	-1,00	1,00	1,00				
Kolon Eni	0,00	1,00	1,00	-1,00	-1,00	1,00			
Kolon Boyu	-0,60	0,33	1,00	-0,33	-0,33	0,33	1,00		
Yatay Kuvvet	0,65	0,03	0,03	-0,03	-0,03	0,03	-0,39	1,00	
Tas. Momenti	-0,81	0,09	0,09	-0,09	-0,09	0,09	0,49	-0,77	1,00

Tablo 5. Test verilerine ait korelasyon [15]

Şekil 3. Test verisi olarak kullanılan ilk yapının SAP2000 ve YSA sonuç momentleri

SONUÇ MOMENTLER (kNm)								
KONUM	SAP2000	YSA	FARK (%)					
4. kat iç açıklık M _{sol}	11,30	12,59	12					
4. kat iç açıklık M _{sağ}	9,800	10,32	5					
4. kat kenar açıklık M _{sol}	15,60	14,74	5					
4. kat kenar açıklık M _{sağ}	12,90	8,910	31					
3. kat iç açıklık M _{sol}	29,80	31,35	5					
3. kat iç açıklık M _{sağ}	25,05	26,58	5					
3. kat kenar açıklık M _{sol}	44,80	47,27	5					
3. kat kenar açıklık M _{sağ}	35,00	39,22	10					
2. kat iç açıklık M _{sol}	40,00	35,49	11					
2. kat iç açıklık M _{sağ}	36,65	33,18	10					
2. kat kenar açıklık M _{sol}	67,50	63,54	6					
2. kat kenar açıklık M _{sağ}	61,90	58,85	5					
1. kat iç açıklık M _{sol}	39,40	41,26	5					
1. kat iç açıklık M _{sağ}	36,75	35,43	3					
1. kat kenar açıklık M _{sol}	69,90	67,22	4					
1. kat kenar açıklık M _{sağ}	63,05	59,84	5					

Tablo 6. Test verisi olarak kullanılan ilk yapıya ait SAP2000 ve YSA sonuç momentleri

Şekil 4. Test verisi olarak kullanılan ikinci yapının SAP2000 ve YSA sonuç momentleri

SONUÇ MOMENTLER (kNm)									
KONUM	SAP2000	YSA	FARK (%)						
4. kat iç açıklık M _{sol}	11,20	11,31	1						
4. kat iç açıklık M _{sağ}	10,95	13,93	21						
4. kat kenar açıklık M _{sol}	15,40	19,59	21						
4. kat kenar açıklık M _{sağ}	15,15	18,58	18						
3. kat iç açıklık M _{sol}	28,30	27,81	2						
3. kat iç açıklık M _{sağ}	26,55	28,03	5						
3. kat kenar açıklık M _{sol}	44,60	49,57	10						
3. kat kenar açıklık M _{sağ}	40,40	46,38	13						
2. kat iç açıklık M _{sol}	44,00	42,20	4						
2. kat iç açıklık M _{sağ}	40,25	38,61	4						
2. kat kenar açıklık M _{sol}	73,80	71,54	3						
2. kat kenar açıklık M _{sağ}	64,60	65,49	1						
1. kat iç açıklık M _{sol}	48,50	52,10	7						
1. kat iç açıklık M _{sağ}	43,40	44,97	3						
1. kat kenar açıklık M _{sol}	82,80	79,57	4						
1. kat kenar açıklık M _{sağ}	70,55	70,83	0						

Tablo 7. Test verisi olarak kullanılan ikinci yapıya ait SAP2000 ve YSA sonuç momentleri

Ortalama karekök hata değerleri (mse22) ve ortalama mutlak göreceli hata değerleri (mare22), belirginlik katsayısı (R²) ile ters orantılıdır. Eğitme verilerinin sayısının arttırılması MATLAB programında çok katmanlı yapay sinir ağları ile öğrenme kabiliyetini yükseltmekte ve daha rasyonel sonuçlar elde edilerek hataları en aza indirgemektedir (Tablo 8).

Tablo 8. YSA uygulaması sonuçları [15, 18]

Tahmin Edilen Veri	Model	MRSE22	R22	MSE22	MARE22
Uygulama	Çok Katmanlı YSA	0.0510	0.9821	0.0832	8.4387

A. ÖZBAYRAK

İterasyon sayısı belli bir değere ulaşana kadar sonuca etki etmektedir. Bu çalışmada iterasyon sayısının sonuca etkisini minimuma indirmek için değeri elli olarak belirlenmiştir. Ara tabaka sayısı ise sonucu en iyi çıkaracak değerlerin deneme yanılma yolu ile seçilmesinden elde edilmiştir. Sonuç olarak elde edilen tasarım momentleri arasında çok büyük farklılıkların oluşmadığı görülmektedir.

4. SONUÇLAR

Eğitme ve test verilerinin oluşturulmasında kullanılan SAP2000 programı sonlu elemanlar yöntemine göre hesap yapan ve güvenilirliği kanıtlanmış sonuçlar veren bir programdır. Kirişsiz plak döşemeli yapıların tasarımını etkileyen ve sonuca etkiyen başlıca faktörler ise taşıyıcı sistem elemanlarının rijitlik değerleridir. Bu rijitlik değerlerinin çok katmanlı yapay sinir ağlarında farklı değişkenler olarak atanması, sonuç olarak elde edilmek istenen döşeme tasarın momentlerinin YSA 'da doğru bir şekilde hesaplanmasına olanak sağlanmıştır. Yapay sinir ağları analizi Levenberg-Marquardt Algoritması temel alınarak yapılmıştır. Yapay sinir ağları uygulamasından hesaplanan test verisi sonuçlarındaki hata oranları mühendislik hesaplamaları bakımından kabul edilebilecek seviyededir. Çok katmanlı yapay sinir ağları ile ele alınan yapının çözümünde iterasyon sayısı sabit tutularak yalınızca ara tabaka hücre sayısı değiştirilmiştir. Buna göre elde edilebilecek en yüksek belirginlik katsayısı R2 değeri ile en düşük ortalama karekök hata (mse22) ve ortalama mutlak göreceli hata (mare22) değerleri elde edilmiştir.

Sonuçta %98'lik bir benzerlik elde edilmesi sebebiyle, deprem etkisi altındaki kirişsiz plak döşemeli yapıların tasarımında yapay sinir ağları modellemesinden elde edilen sonuçlar yeterli doğruluktadır. Deprem etkisindeki betonarme kirişsiz plak döşemeli yapıların çok katmanlı yapay sinir ağları ile döşeme tasarım momentlerinin hesaplanmasında çok daha hızlı ve güvenilir sonuçlar elde edebilmek için YSA analizinden faydalanılması avantajlı bir durum olarak değerlendirilebilir. Yapay sinir ağlarının, öğrenme kabiliyeti sayesinde mühendislik uygulamalarının çözümündeki birçok alanda kendine da fazla yer bulması beklenmektedir.

TEŞEKKÜR

Bu çalışmanın oluşturulmasında yararlandığım yüksek lisans tezimin tez danışmanı olarak görev yapan ve 2013 yılında vefat eden çok değerli hocam Yrd. Doç. Dr. Yaşar Uğur'a sonsuz şükran ve teşekkürlerimi sunar kendisine Allah'tan rahmet dilerim.

KAYNAKLAR

- ÜNLÜOĞLU, E., Kirişsiz Döşemeli Sistemlerde Yatay Kuvvetler Etkisi Altında Rijitlik Değerlerinin Araştırılması. T.C. Anadolu Üniversitesi Yayınları No:344, Mühendislik Mimarlık Fakültesi Yayınları No:47, Eskişehir, Türkiye, 1985.
- [2] ÖZSOY, İ., FIRAT, M., "Kirişsiz Döşemeli Betonarme bir Binada Oluşan Yatay Deplasmanın Yapay Sinir Ağları ile Tahmini", DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 6(1), 51-63, 2004.
- [3] KIM, H.S., LEE, D.G., "Efficient analysis of flat slab structures subjected to lateral loads", Engineering structures, 27(2), 251-263, 2005.
- [4] SAĞLIYAN, S., ERDOĞAN, A.S., KARATON, M., "The effect of dimensional parameters on the behavior of reinforced concrete slabs with continuous drop panel", Engineering sciences, 6(2), 497-506, 2011.
- [5] BENAVENT-CLIMENT, A., ZAMORA-SÁNCHEZ, D., GIL-VILLAVERDE, J.F. "Experimental study on the effective width of flat slab structures under dynamic seismic loading", Engineering Structures, 40, 361-370, 2012.
- [6] PRIYA, K.S., DURGABHAVANI, T., MOUNIKA, K., NAGESWARI, M., POLURAJU, P., "Non-linear pushover analysis of flat slab building by using SAP2000", International Journal of Recent Technology and Engineering (IJRTE), 1(1), 29-33, 2012.
- [7] BHINA, M.R., BANERJEE, A., PAUL, D.K., "Assessment of different aspects of RC flat-slab building over normal RC frame building", International Conference on Structural Engineering and Construction Management, At Sri Lanka, 2013.
- [8] QIAN, K., LI, B., "Dynamic disproportionate collapse in flat-slab structures", Journal of Performance of Constructed Facilities, 29(5), B4014005, 2014.

- [9] QIAN, K., LI, B., "Load-resisting mechanism to mitigate progressive collapse of flat slab structures", Magazine of concrete research, 67(7), 349-363, 2015.
- [10]CHOI, K.K., KIM, J.C., "Nonlinear model simulating load- deformation relationship of flat plate structures", Engineering Structures, 85, 26-35, 2015.
- [11]YOUSSEF, M.A., CHOWDHURY, A.O., MESHALY, M.E., "Seismic capacity of reinforced concrete interior flat plate connections", Bulletin of Earthquake Engineering, 13(3), 827-840, 2015.
- [12]HAYKIN, S., Neural networks, a comprehensive foundation, Mc Master University, Mac Col Publishers Company, New York, USA, 1994.
- [13]LEVENBERG, K., "A Method for the Solution of Certain Problems in Least Squares", Quarterly Journal of Applied Mathematics 2(2), 164-168, 1944.
- [14]MARQUARDT, M., "An Algorithm for Least-Squares Estimation of Nonlinear Parameters". Journal of the Society of Industrial and Applied Mathematics 11(2), 431-441, 1963.
- [15]ÖZBAYRAK, A., Kirişsiz Döşemeli Betonarme Yapıların Yatay Kuvvetler Altında Rijitlik Değerlerinin Yapay Sinir Ağları ile Analizi, Yüksek Lisans Tezi, ERÜ, Fen Bilimleri Enstitüsü, Kayseri, 2008.
- [16]DBYBHY, "Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik", Bayındırlık ve İskân Bakanlığı, Ankara, 2007.
- [17]SAP2000 v8 Educational Version, Computers and Structures Inc., Berkeley, California, USA, 2004.
- [18]MATLAB 5.3., The Math Works Inc., Neural Networks Toolbox for Use MATLAB User's Guide, 1999.