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Highlights 
• We introduce a new four parameter distribution called exponentiated Weibull Rayligh distribution. 

• We study some statistical properties of the new model. 

• We use the maximum likelihood method to estimate the parameters of the distribution. 

• We make simulation results by using Mathematica 9. 

• The new model is very flexible and include some special models. 
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Abstract 

A new four-parameter probability model, referred to the exponentiated Weibull Rayleigh (EWR) 

distribution, is introduced. Essential statistical properties of the distribution are considered. The 

maximum likelihood estimators of population parameters are given in case of complete sample. 

Simulation study is carried out to estimate the model parameters of EWR distribution. 

Additionally, parameter estimators are given in case of Type II censored samples.  We come up 

with two applications to confirm the usefulness of the proposed distribution.  

 

Received: 25/05/2017 

Accepted:25/09/2018 

 

Keywords 

Exponentiated Weibull- 

family of distributions 

Maximum likelihood 
Moments 

Characterizations  

 

 

 

1. INTRODUCTION 

 

In recent times, diverse statisticians exploered some new generated families of distributions by incorporate 

one or more extra shape parameter(s) to the baseline model to yield new flexible distributions. Some of the 

generated families are: the beta-G [1], Kumaraswamy (Kw)-G [2], Weibull-G [3],  Garhy-G [4], 

exponentiated Weibull-G (EW-G) [5], additive Weibull-G [6], Kw Weibull-G [7], Type II half logistic- G 

[8] and exponentiated extended-G [9] among others. 

 

Modelling lifetime phenomena is an important issue in many scientific fields. For a while, several classical 

models like exponential, Rayleigh, Weibull, gamma and Lomax distributions seemed suitable for modelling 

lifetime data. But as science improved, the old models were no longer to describe the new phenomena. So, 

in recent years, many researchers tried to the extend classical distributions and consequently many new 

flexible models appeared and proved to be more acceptable. Examples of these researches are the beta 

gamma distribution [10], the Weibull Rayleigh (WR) distribution [11] and the Marshall-Olkin extended 

generalized Rayleigh distribution [12]. 

 

We intend to introduce a new four-parameter model, called the EWR distribution. The EWR distribution is 
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very flexible and it extends the WR model (see [11]). First, we explain how we arrived at this model. [5] 

introduced the EW-G family of distributions. This family generates many new continuous 

distributions that are quite flexible for the purpose of modelling. The cumulative distribution 

function (cdf) of this family is defined by  
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where  ,a   are shape parameters, 0    is a scale parameter and G(x) is the cdf of the baseline 

distribution. The probability density function (pdf)  of the EW-G  is 

  

 

 

1
( )1

1 ( )

1

( )( ( )) ( )
( ) 1 exp ; 0 ; , , 0.

1 ( )( )
e

1

a
G x

G xa g x G x G x
f x x a

G xG x


 




  


    
 



   
             

 (2) 

 

By employing the Rayleigh distribution (as the baseline distribution) in the above family, we arrive at a 

new flexible distribution, namely the EWR distribution. In the following sections, we obtain the pdf, cdf 

and hazard rate function (hrf) of the EWR distribution besides explain the shapes of the pdf and the hrf of 

this model briefly. We derive general statistical properties of the proposed distribution, including the 

expansions for the pdf and cdf, quantile function, moments, mean deviations, inequality measures, order 

statistics and characterizations. The maximum likelihood (ML) estimators are also discussed. Numerical 

study is created to estimate the model parameters. Censored Type II of the parameters is discussed. Two 

real data applications are presented. Finally, we point out the conclusion of our study. 

 

2. THE EXPONENTIATED WEIBULL RAYLEIGH DISTRIBUTION 

 

Depend on (1), a four-parameter EWR distribution is defined. The pdf and cdf of random variable (r.v.)  X 

has the Rayleigh distribution with scale parameter are given by 

 
2

( ; ) 2 ; , 0,e xg x x x     (3) 

 

and 

 
2

( ; ) 1 e .xG x     (4)
 

 

Subsituting (3) into (1), we get the cdf of  the EWR distribution as follows 
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where ( , , , )a    is the parameter vector. From (2), (3) and (4), the pdf of EWR  distribution is as 

follows 
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We write XEWR ( , , , )a    if X has pdf (6). Specified sub-models of the EWR distribution are added in 

Table 1. 

 

Table 1. The special sub-models of the EWR distribution 

 Model 
a

 



 



 



 

Distribution Function Authors 

1 Exponentaited 

exponential 

Rayleigh  

- - 1 - 
2

e( ) 1 exp( ( 1))  
a

xF x     
 

 

 

2 Exponentaited 

Rayleigh Rayleigh 

Distribution  

- - 2 - 
2 2e( ) 1 exp( ( 1) )  

a
xF x     

 

 

 

3 Weibull Rayleigh  1 - - - 
2

( ) 1 exp( e( 1) )xF x     

 

[11] 

4 Exponential 

Rayleigh  

1 - 1 - 
2

( ) 1 exp( e( 1))xF x    

 

 

5 Rayleigh Rayleigh  1 - 2 - 
2 2( ) 1 exp( e( 1) )xF x    

 

 

 

 

The survival, hrf and reversed hrf of the EWR distribution, respectively, are  
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The pdf and hrf plots of the EWR distribution at 1    and for certain values  of a and  are clarified 

in Figures 1 and 2, respectively. 
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Figure 1. The pdf plots of the EWR distribution for selected parameter values at 1    

 

Figure 2. The hrf plots of the EWR distribution for selected parameter values at 1    

From Figure 2, we observe that the hrf is increasing and bathtub shaped, showing its flexibility in modelling 

lifetime data sets. We note that in life phenomena, we normally encounter bathtub shaped hazard rates. We 

also discovered an interesting case when a = 4 and = 0.15 for which the hrf is increasing-decreasing-

increasing.  

 

3. MAIN PROPERTIES 

 

Part of the properties of the EWR distribution, in this section, is explored.  

 

3.1.  Important Expansions  

 

Representations of the pdf and cdf of EWR distribution are provided. First, we consider the following 

generalized binomial expansion, 
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                                                                                       (7) 

The expansion  (7) stops at the (d+1)th term if d  is a positive integer value. 
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Now, by applying (7), we find an expansion for the cdf raised to the power m, where m is an integer, namely 
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Using power series expansion for the exponential function and the identity 
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Thus, [ ( ; )]mF x   is written as 
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For m =1, we have the expansion for the cdf. Diffrentiating (9) with respect to x when m =1, the pdf of the 

EWR will be as follows 
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From (11), we see that the density of the EWR distribution is a linear combination of Rayleigh densities. 

Next, we find an expansion for [ ( ; )] ,f x      is a positive number. Note that 

2

2 2

, 0

, 0

( 1) ( )
[ ( ; )] [ 1]

!

( 1) ( )
[1 ] .

e

e
!

e

q w w
m x w

q w
q w w

x w wx

q w

am q
F x

q w
am q

q w

 

  














  
   

 
  

  
 







1065 Mohammed ELGARHY et al. / GU J Sci, 32(3): 1060-1081 (2019) 

 

 

 

       2 2 2
( 1)

( 1) 2( ; ) 2 [ 1] exp (e e 1) 1 exp ( 1) .e

 

a
x x xf x a x x


           


         

   

 

Using (7) and exponential expansion, we have 
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Again, using identity 
2 2 2

e 1 e1 ( ) ,ex x x     we have 

 

   
2 2 2( ) [ ( ) ]

, 0

( 1)( 1) [ ( )]
( ; ) 2 e(1

!
e e ) .

j q j
x x j j x

q j

aq
f x a x

qj

           



     



  
   

 
  

 

Considering (8) and using (7), we get 
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From  the above relations, we arrive at 
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We can use (12) as an alternative expansion for the pdf of the EWR distribution after setting   
   

 

3.2.  Quantile Function 

 

The quantile function, say 1( ) ( )Q u F u , of X is obtained by inverting (5). So we have  
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where 0 1.u   Note that if U is a uniform (0,1), then Q(U) is an EWR r.v. Therefore, one can simulate 

numbers from EWR distribution by using (14). Given u = 0.5 in (14), the median of EWR model is obtained 

as follows  
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Furthermore, based on quantile measures, the variability analysis of the skewness and kurtosis on 

the shape parameters a and  is inspected. The Bowley (B)  skewness  (see [13]), is defined by 
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The Moors (MO) kurtosis, (see [14]), is defined by 
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The B and MO measures do not rely on the moments of the distribution and are nearly insensitive to outliers. 

Plots of the B and MO for certain values of a as function of  and for certain choices of   as function of a  

are provided in Figures 3 and  4.  

 
(a) 

 

                            (b) 

 

Figure 3.  B skewness of the EWR distribution. (a) As function of β for certain  values of a (b) 

As function of a for certain  values of β at 2    
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(a) 

 

 

 

 (b) 

 

Figure 4.  MO kurtosis of the EWR distribution. (a) As function of β for certain  values of a (b) As 

function of a for certain values of β at 2    

 

3.3.  Moments 

 

The rth moment of EWR model is given by  
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where ,k m is given in (10) and  is the gamma function.  In addition, the moment generating function of 

EWR model is given by 
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3.4.  Mean Deviations  

 

Two important dispersion measures are the mean deviation from the mean ( and the mean deviation from 

the median (M) denoted by 1 and 2 ,  are defined, respectively, by 

 

1 2
0 0

| | ( , ) and   | | ( , )d d ,x f x x x M f x x  
 

        

 

First, we obtain the incomplete moments, denoted by ( ),s t of the EWR distribution as follows, where  

( ),s t  defined by  
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Using (11), ( )s t  will be as given 
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where   1
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t
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Now, the mean deviations from  and the mean deviation from M, respectively,  are  
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where 1( )t  and  M are given, in (17) and  (15) respectively. 

 

3.5.  Residual Life Function 

 

The nth moment of the residual life (see [15-17]),  is specified by 

 

    d
1

( ) ( ) .
( )

n n

n
t

m t E X t X t x t f x x
R t

          

Employing the  pdf (11) and binomial expansion for   
n

x t , then mn (t) will be   

  ,1 2

1 0 2

1
( ) 1, ,

( ; ) 2
( )

n r
n

k

n r
k r

nt r
m t k t

rR t
k


 






 

    
    

   
  (18) 

 

where  ,s t  is the upper incomplete gamma function. For, n =1, in (18), we obtain the so called mean 

residual life (MRL).  The MRL as pointed out is the expected supplemantry life length of an item that is 

alive at age t.  Hence, if 1n   in (18), we get the MRL of EWR model. 

 

On the other hand, nth  order moment of reversed residual life (RRL) is 

  

   
0

1
( ) ( ) .

( )
d

tn n

nM t E t X X t t x f x x
F t

        
 

 
So, the moments of RRL for EWR model is   

 

  ,1 2

1 0 2

11
( ) 1, .

( , ) 2
( )

r n rn
k

n r
k r

nt r
M t k t

rF t
k








 

    
     

   
                                                                   

 

3.6. Inequality Measures  

 

The Lorenz, Bonferroni and Zenga curves (see [18]) are obtained, respectively, as follows 
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and 

  

,
)(

)(
1=)(

x

x
xAF 








  

 

where 
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
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
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
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 
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and 

 

2
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3
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,1
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3
,
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( ) = = .
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d

1 e

k

k
x

k x

k
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
















 
 
 










     

3.7.  Rényi and  Entropies 

 

For a r.v.  X, the Rényi entropy is given by 

 

 

 

 

 

Using (12), the Rényi entropy of EWR distribution is given by 

 

 
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 
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
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where 
*

,k  is defined in (13). Furthermore, the  entropy is defined by 

 

1

0

( ) (1 ) log 1 ( ) , 0 and   1.dH X f x x
   




 
     

 
  

 

Therefore, the  entropy of EWR distribution is given by 

 

 
21 *

,
1

( ) (1 ) log 1 2 e .k x
k

k

H X x
 

   


 



 
   

 
  

 

3.8. Order Statistics 

 

Let X(1) ,…, X(n) be the order statistics (Os) of a random sample of size n  from EWR distribution, then the 

pdf of the sth Os, is given ( see [19]) by 

 

   
( )

1

0

( )
( ) 1 ( ) ,

( , 1)s

n s
v v s

X

v

n sf x
f x F x

vB s n s


 



 
   

   
  (19) 

 

where B(.,.)is the beta function. By substituting (9) and (11) into (19) and replacing m  with 1,v s   we 

have 

 

2
1 2

( ) 1 2

1 2
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, , ,
1 00

2
( e) ,

( , 1)s
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X v s k k
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B s n s




  
 

 


 

  (20) 

 

where  
1 2 2 1, , , 1 , 1 ,11 .

v

v s k k k v s k

n s
k

v
   

 
   

 
 

 

In addition, from (20), the rth moment of X(s) is given by 

 

 
1 2

1 2

, , ,
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11 002 2

1 2

( 2) 1
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n s
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  

 

 


  

  

4.  CHARACTERIZATIONS 
 

Here, we provide certain characterizations of EWR distribution. However, these characterizations (CHs) 

are based on: (i) a relation between two truncated moments; (ii) the hrf ; (iii) the reversed  hrf and (iv) 

conditional expectation of a function of the r.v. One of the benefits of CH (i) is that the cdf does not required 

to be in closed form. CHs in our study are provided in the following subsections. 

 

4.1. Characterizations via Ratio of Truncated Moments 

 

We offer CHs of EWR distribution in terms of a simple relationship between two truncated moments. This 

CH result employs a theorem due to [20] (see Theorem 1- Appendix A). Note that the result holds also 

when the interval H is not closed. However, as previously mentioned, it can be also applied when the cdf 

does not have a closed form. According to [21], this CH is stable in the sense of weak convergence. 

 

Proposition 4.1.  Let X : ∞
 
is a continuous r.v. and let 
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2 1

1( ) 1 exp( (e 1) ) ,xq x


 


    
 

  and   
2

2 1( ) ( )exp( (e 1) ),xq x q x      

    

 

for x > 0. The r.v.  X has pdf (6) if and only if the function defined in Theorem 1 has the form 

 

21
( ) exp( (e 1) ),       0.

2

xx x       

 

Proof. Let X be a r.v. with pdf (6), then 

 
2

1(1 F( ))E ( ) exp( (e 1) ),       >0,xx q X X x a x         

 

2

2

1
(1 F( ))E ( ) exp( 2 (e 1) ),       0.

2

xx q X X x x          

 

and 

 

2

1 2 1

1
( ) ( ) ( ) ( )exp( (e 1) ) 0  for    0.

2

xx q x q x q x x         

 

Conversely, if  is given as above, then 

 

 2 2 1
1

1 2

( ) ( )
( ) 1    >0.

( ) ( ) ( )

x xx q x
s x xe e x

x q x q x


 





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
 

 

And 

 

 2 1

( ) 1    >0.xs x e x





    

 

According to Theorem 1, then X has pdf (6). 

 

Corollary 4.1. Let X : ∞
 
 be a continuous r.v. and let q1(x) be as in Proposition 4.1. The pdf of X 

is (6) if and only if there exist functions q2(x) and defined in Theorem 1 verifying the differential equation 

 2 2 1
1

1 2

( ) ( )
1    0.

( ) ( ) ( )

x xx q x
xe e x

x q x q x


 





  


 

 

The general solution of the differential equation in Corollary 4.1 is 

 

 
 

2 2

2
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1

1

1 2

1
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exp( (e 1) ) ( ) ( ) D

x x
x

x

xe e
x

q x q x


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 

 
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 







      
    
  

 

where D be a constant. Note that a set of functions verifying the above differential equation is provided in 

Proposition 4.1 for D = 0. Also, it pay attension to note that there are other triplets (q1(x), q2(x),   
verifying  the conditions of Theorem 1. 

 

4.2. Characterization via Hazard Function 
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It is known that the hrf, hF, of a twice differentiable distribution function, F, verifies the first order 

differential equation 

 

 
 

 .F
F

F

f x h
h x

f x h

 
   

 

For various univariate continuous distributions, this is the only CH available in terms of the hrf. The 

following CH create a non-trivial CH of EWR distribution, when a= 1, which is not of the above trivial 

form. 

 

Proposition 4.2. Let X : ∞
 
 be a continuous r.v.  The pdf of X for a = 1, is (6) if and only if its hrf 

hF
 
(x) verifies the differential equation 

 

       2 2 21
1 2 24 1 2 1 ,       0.x x x

F Fh x x h x x e e e x


  


       

 

Proof. If X has pdf (6), then the above differential equation holds, then for  x > 0, 

 

     2 2 1
1 2 1 ,x x

F

d d
x h x e e

dx dx


 


    

 

 

from which, we obtain 

 

   2 2 1

2 1 ,   0,x x

Fh x xe e x


 


    

 

which is the hrf of EWR distribution for a = 1. 

 

4.3. Characterizations on the basis of the Reversed hrf 

 

The reversed hrf, rF, of a twice differentiable distribution function, F, is defined as 

 

 
 
 

,F

f x
r x

F x
  x є support of F. 

 

Proposition 4.3. Let X : ∞
 
 be a continuous r.v. The r.v. X has pdf (6) if and only if its reversed hrf 

Fr  verifies the following differential equation 
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 
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  

 

 

Proof: If X has pdf (6), then clearly the above differential equation holds. That is 

  



1073 Mohammed ELGARHY et al. / GU J Sci, 32(3): 1060-1081 (2019) 

 

 

 

 

 

 

 

 

from which, we have, for x > 0 
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4.4. Characterization via the Conditional Expectation of Certain Functions of the Random Variable 

 

Here, we utilize a single function  of X and characterize the distribution of X in terms of the truncated 

moment of x. Proposition 4.4 is used to characterize EWR distribution, clearly, this proposition has 

previously appeared in [22]. 

 

Proposition 4.4. Let X : ∞
 
 be a continuous r.v. with cdf F. Letx be a differentiable function 

on (c,e) with lim ( ) 1.
x e

x
 Then, for 1, 

 
 

     ,      , .E X X x x x c e     
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      
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1
,      ,x F x x c e


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Remark 4.4. For (c,e)=∞,     2

1 exp 1  xx e


     and = ,
1

a

a



 Proposition 4.4 

provides a CH of EWR distribution. 

 

 

5.  MAXIMUM LIKELIHOOD ESTIMATION 

 

ML proedure is the commonly employed method of estimation. The estimators that are obtained based on 

this procedure enjoy desirable asypmtotic properties and therefore they are often utilized to obtain 

confidence intervals (CI) and test of statistical hypotheses. Suppose that  1, , nx x   be an observed random 

sample from the EWR distribution with pdf (6). Then the log-likelihood function, denoted by ln ,   for the 

set of parameters ( , , , )a     is   
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By differentiating (21) partially with respect to unknown parameters, then, we have 
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The ML estimates are obtained numerically as solutions of the above nonlinear equations after setting them 

equal zeros. The observed information matrix is required in case of interval estimation. This 4×4 symmetric 

matrix, denoted by I (is derived by considering the second-order derivatives of the ln ,  with respect 

to the parameters. Under regularity conditions, the vector of the ML estimators of the parameters, denoted 

by ˆ ˆˆ ˆˆ( , , , ) ,T Ta      approximately possesses a 4-variate normal distribution with the mean  and the 

variance-covariance matrix I-1 ( where I-1 ( is the inverse matrix of I( This property of ML 

estimators can be used to obtain approximate CI for the model parameters. We note that the elements of 

I(depend on the parameters and the ML estimators may substitute for the corresponding parameters to 

evaluate I(   

 

6. SIMULATION ILLUSTRATION 

 

A numerical investigation is established to examine the behavior of ML estimates (MLE) for EWR model. 

For different sample sizes, measures like; biases and mean square errors (MSEs) are calculated to evaluate 

the performance of estimates. A numerical study is done using Mathematica (9) software. The steps of 

simulation procedure is listed as follows 

 We generate 10000 from EWR distribution of sizes; n = 30, 50, 75 and 100. 

 Certain values of parameters  , , ,a     are chosen as Set 1=(2,2,0.5,1.5), Set 2 =(1.5,2,0.5,1.5), 

Set 3=(2,2,0.75,1.5) and Set 4= (2,2,0.9,1.5). 

 MLE of the parameters ˆˆˆ, ,a    and ̂  are calculated for each n and for all sets. 
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 Calculate the biases and MSE for each n. 

 Result outcomes are listed in Tables 2 and 3. 

 

 

 

Table 2. Parameter estimates of EWR distribution for different sample sizes 

n Parameter Mean Bias MSE Mean Bias MSE 

  Set1=(2,2,0.5,1.5)  Set2=(1.5,2,0.5.1,5)  

 a  2.0661 0.0661 0.1521 1.5538 0.0538 0.0881 

30   2.1413 0.1413 0.4373 2.0987 0.0987 0.2603 

   0.5307 0.0307 0.0208 0.5328 0.0328 0.0212 

   1.5525 0.0525 0.0908 1.5381 0.0381 0.0627 

 a  2.0365 0.0365 0.0893 1.5290 0.0290 0.0505 

50   2.0864 0.0863 0.2112 2.0626 0.0626 0.1374 

   0.5179 0.0179 0.0112 0.5185 0.0185 0.0111 

   1.5359 0.0359 0.0545 1.5267 0.0266 0.0380 

 a  2.0287 0.0287 0.0571 1.5195 0.0195 0.0322 

75   2.0495 0.0495 0.1165 2.0367 0.0367 0.0850 

   0.5128 0.0128 0.0069 0.5115 0.0115 0.0068 

   1.5215 0.0215 0.0344 1.5154 0.0154 0.0250 

 a  2.0217 0.0217 0.0426 1.5152 0.0152 0.0232 

10

0 

  

2.0344 0.0344 0.0825 2.0279 0.0279 0.0611 

   0.5093 0.0093 0.0049 0.5091 0.0091 0.0048 

   1.5154 0.0154 0.0252 1.5121 0.0121 0.0188 

 

Table 3. Parameter estimates of EWR distribution for different sample sizes 

n Parameter Mean Bias MSE Mean Bias MSE 

  set 3=(2,2,0.75,1.5) set 4= (2,2,0.9,1.5) 

 a  2.0729 0.0729 0.1626 2.0599 0.0599 0.1557 

30   2.1398 0.1398 0.4224 2.1500 0.1500 0.3931 

   0.8028 0.0528 0.0506 0.9570 0.0570 0.0681 

   1.6183 0.1183 0.2426 1.6936 0.1936 0.4927 

 a  2.0409 0.0409 0.0910 2.0381 0.0381 0.0882 

50   2.0828 0.0828 0.2004 2.0816 0.0816 0.1914 

   0.7789 0.0289 0.0250 0.9336 0.0336 0.0357 

   1.5713 0.0713 0.1257 1.6026 0.1026 0.2039 

 a  2.0257 0.0257 0.0569 2.0312 0.0312 0.0595 

75   2.0511 0.0511 0.1159 2.0478 0.0478 0.1170 

   0.7681 0.0181 0.0156 0.9243 0.0243 0.0238 

   1.5447 0.0447 0.0753 1.5613 0.0613 0.1175 

 a  2.0214 0.0214 0.0420 2.0187 0.0187 0.0414 

100   2.0340 0.0340 0.0835 2.0413 0.0413 0.0839 

   0.7636 0.0136 0.0112 0.9171 0.0171 0.0162 

   1.5304 0.0304 0.0548 1.5508 0.0508 0.0826 

The values in Tables 2 and 3 show that, in general, the MSE for the estimates of the parameters ˆˆˆ, ,a    

and ̂  decreases as n increases. 



1076 Mohammed ELGARHY et al. / GU J Sci, 32(3): 1060-1081 (2019) 

 

 

 

 

 

 

 

7. TYPE-II CENSORING ESTIMATION 

 

Consider X(1),…,X(n) be sample of size n whose life time's have the EWR distribution are set on a life test 

and the test is stopped at certain number of failure r before all n items have failed. The log likelihood 

function, denoted by 1ln ,  of TII censoring sample is,  
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  
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Note that; for simplicity we write xi instead of x(i). The ML estimators of ,a   and based on TII censored 

sample are obtained by solving the non-linear equations which we get it from first derivatives of 1ln ,  

with respect to parameters ,a   and . 

Table 4. Parameter estimator of EWR distribution under TII censored samples 

 Mean Bias MSE Mean Bias MSE 

n Parameter X(r) set 1  (2,2,0. 5,1.5) set 2 (1.5,2,0.5,1.5) 

 

 

 

 

50 

a  50% 

80% 
2.230 

2.079 

0.230 

0.079 

0.673 

0.156 

1.631 

1.553 

0.131 

0.053 

0.306 

0.095 

  50% 

80% 
2.174 

2.097 

0.174 

0.097 

0.692 

0.299 

1.631 

1.553 

0.157 

0.088 

0.475 

0.214 

  50% 

80% 
0.572 

0.526 

0.072 

0.026 

0.068 

0.014 

0.561 

0.525 

0.061 

0.025 

0.060 

0.016 

  50% 

80% 
1.853 

1.933 

0.353 

0.433 

0.163 

0.222 

1.728 

1.885 

0.228 

0.385 

0.077 

0.166 

 

 

 

100 

a  50% 

80% 
2.075 

2.035 

0.075 

0.035 

0.200 

0.066 

1.567 

1.512 

0.067 

0.012 

0.137 

0.036 

  50% 

80% 
2.109 

2.047 

0.109 

0.047 

0.252 

0.118 

2.073 

2.044 

0.073 

0.044 

0.155 

0.078 

  50% 

80% 
0.525 

0.512 

0.025 

0.012 

0.016 

0.006 

0.531 

0.507 

0.031 

0.007 

0.021 

0.006 

  50% 

80% 
1.856 

1.941 

0.356 

0.441 

0.145 

0.211 

1.716 

1.893 

0.216 

0.393 

0.058 

0.162 

 

 

 

 

150 

a  50% 

80% 
2.058 

2.029 

0.058 

0.029 

0.111 

0.048 

1.547 

1.517 

0.047 

0.017 

0.073 

0.024 

  50% 

80% 
2.049 

2.031 

0.049 

0.031 

0.137 

0.077 

2.035 

2.018 

0.035 

0.018 

0.098 

0.056 

  50% 

80% 
0.518 

0.510 

0.018 

0.010 

0.009 

0.004 

0.520 

0.507 

0.020 

0.007 

0.011 

0.004 
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  50% 

80% 
1.845 

1.944 

0.345 

0.444 

0.130 

0.209 

1.709 

1.889 

0.209 

0.389 

0.051 

0.157 

 

From Table 4, we see that as n increases the MSE tend to decrease. 

8. APPLICATIONS 

 

Two real data sets are utilized to show that the EWR model outperforms some of other-models. These 

models are the EW Weibull (EWW) that introduced in [14], WR, Rayleigh Rayleigh (RR) and exponential 

Rayleigh (ER) dsitributions.  

 

We use formal goodness-of-fit criteria for the purpose of comparison. These criteria are as the minus value 

of ln ,  multiplied by 2, Kolmogorov-Smirnov (K-S) test and its p-value, Akaike information criterion 

(AIC), the corrected AIC (CAIC), the Bayesian information criterion (BIC) and the Hannan-Quinn 

information criterion (HQIC). The better fitness corresponds to largest p-value and the smallest values for 

all other meaures.  

 

Example 1. 
 

The first data represents 30 successive values of March precipitation (in inches) for Minneapolis/St Paul 

(see [23]).  Table 5 provides the MLEs of parameters of the EWR, EWW, WR, RR and ER distributions 

and their standard errors (S.Es). While, the goodness-of-fit measures are mentioned in Table 6. 

 

Table 5. The MLEs and the S.Es (in parentheses) of the model parameters for the first data set 

 

Model 

MLEs and SEs  

â     ̂  ̂  ̂  ̂  

EWR 
3.322 

(0.02659) 

4.918 

(0.164) 

0.468 

(0.086) 

0.042 

(0.00629) 

 

EWW 
78.61 

(0.14836) 

79.35 

(0.561) 

20.486 

(0.131) 

0.624 

(0.024) 

0.014 

(0.148) 

WR  
3.888 

(0.08635) 

0.792 

(0.015) 

0.043 

(0.02) 

 

RR 
 100.351 

(0.21297) 

 0.014 

(0.00229) 

 

ER  
9.151 

(0.09666) 
 

0.025 

(0.00306) 

 

 

We notice that the EWR distribution yields a better fit than other-models. It has largest p-value and the 

smallest values for the other measures. Plots of the fitted densities and cdfs of the considered distributions 

are represented in Figure 5. As seen from this figure, that the EWR distribution outperforms the WR, RR 

and ER distributions. 

 

Table 6. The goodness-of-fit statistics for the first data set 

Distribution 2ln  AIC CAIC BIC HQIC K-S p-value 

EWR 114.703 122.703 124.303 122.132 126.329 0.062 0.99985 

EWW 129.022 139.022 141.522 136.407 141.263 0.113 0.83514 

WR 127.973 133.973 134.896 132.405 135.318 0.088 0.97545 

RR 243.627 247.627 248.071 247.341 249.439 0.426 0.00004 

ER 139.679 143.679 144.124 142.634 144.576 0.12 0.78339 
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Figure 5. The fitted cdfs (left) and pdfs (right) of the EWR, WR, RR and ER distributions of first data  

 

Example 2. 

 

We consider the second data which represent the survival times (in  days) of 72 guinea pigs infected with 

different amout of virulent tubercle bacilli (see [24]).  Table 7 contains the MLEs of the parameters of the 

considered models and their corresponding S.Es. While Table 8 displays the goodness-of-fit statistics. 

 

Table 7. The MLEs and the S.Es (in parentheses) of the parameters for the second data set 

 

Model 

MLEs  

â  ̂  ̂  ̂  ̂  

EWR 
1.415 

(0.0078) 

3.17 

(0.105) 

0.648 

(0.057) 

0.051 

(0.00405) 

 

EWW 
115.001 

(0.0787) 

125.918 

(0.361) 

19.125 

(0.085) 

0.61 

(0.015) 

0.013 

(0.093) 

WR - 
4.9 

(0.05586) 

0.809 

(0.015) 

0.031 

(0.011) 

 

RR - 
25.417 

(0.13753) 
- 

0.022 

(0.00147) 

 

ER  
12.812 

(0.06241) 
 

0.016 

(0.00197) 

 

 

Table 8. The goodness-of-fit statistics for the second data set 

Distribution 2ln  AIC CAIC BIC HQIC K-S p-value 

EWR 257.833 265.833 266.43 265.263 269.459 0.097 0.50777 

EWW 302.076 312.076 312.972 311.363 316.608 0.134 0.14963 

WR 265.356 271.356 271.709 270.928 274.075 0.117 0.27833 

RR 552.88 556.88 557.054 556.595 558.693 0.506 0.0000 

ER 321.478 325.478 325.652 325.193 327.291 0.146 0.09292 

 

We observe the EWR distribution gives the best fit among the other selected models. The fitted pdfs and 

cdfs plots of mentioned distributions for the second data are represented in Figure 6 for the purpose visual 

comparison. According to these plots, we observe that the EWR distribution is prefable than other 

distributions. 



1079 Mohammed ELGARHY et al. / GU J Sci, 32(3): 1060-1081 (2019) 

 

 

 
Figure 6.  The fitted cdfs (left) and pdfs (right) of the EWR, WR, RR and ER distributions for the second 

data set 

 

9. CONCLUSION 

 

A four-parameter exponentiated Weibull Rayleigh distribution is introduced. Some certain properties of the 

proposed distribution are discussed. This model includes some new special distributions. The practical 

importance of the EWR model is clarified through two applications, where the EWR distribution yields the 

best fit among the else regarded models. We conclude that the EWR distribution can be regarded as a quite 

flexible gadget for modelling a big group of life data.  We trust that the new distribution may serve as rather 

model to else life distributions and has application in lots of scientific fields.  

 

APPENDIX A 

 

Theorem 1. Suppose that (Ω,F,P) is a given probability space and let H = [a, b]  is an interval for some d< 

b (a=-∞ , b=∞ might as well be allowed): Let X : Ω → H be a continuous r.v. with cdf F. Also, suppose q1 

and q2  are two real functions defined on H, where 

 

2 1( ) ( ) ( ),       ,E q X X x E q X X x x x H           

 

is defined with some real function η. Further, let q1, q2 є C1(H),  є C2(H),  and F is twice continuously 

differentiable and strictly monotone function on the set H. Finally, assume that the equation  q1= q2 has 

no real solution in the interior of H. Then F is uniquely determined by the functions q1, q2 and η, specifically, 

 

( )

1 2

( )
( ) e ,

( ) ( ) ( )
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s u
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u
F x C du

u q u q u




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where the function is a solution of differential equation 1

1 2

( ) .
q

s x
q q






 


 and C is the normalization 

constant, such that 1.H dF   
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