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* Corresponding Author E-mail: cekici@ogu.edu.tr

Abstract: In this paper, we investigated the minimal surfaces in three dimensional Galilean space G3. We showed that the condi-
tion of minimality of a surface area is locally equivalent to the mean curvature vector H vanishes identically. Then, we derived the
necessary and sufficient conditions that the minimal surfaces have to satisfy in Galilean space.
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1 Introduction

Minimal surfaces are one of the most interesting subject in mathematics. The study and computation of minimal surfaces has a long history
[12]. Lagrange made the first investigation of the minimal surfaces by asking a simple question named as Plateau’s problem which concerns
with finding a surface of least area that spans a given fixed one-dimensional contour in three-dimensional Euclidean space [15]. Later G.
Monge discovered that the condition for minimality of a surface leads to the condition that vanishing mean curvature, and therefore surfaces
with H = 0 are called "minimal" [6].

The study of minimal surface has arised many interesting applications in other fields in science, such as the interface between crystals
and organic matter in the skeletal element of sea urchins can be described as a minimal surface [11]. Moreover, the surfaces with vanishing
mean curvature are also studied in other ambient spaces [16]. In Lorentz–Minkowski Space, a spacelike surface has maximal area if its mean
curvature vanishes [10]. Moreover, the timelike minimal surfaces are investigated in [7, 8].

Simultaneity gives the characterization of the Galilean space. The simultaneous events (points), which are events that occur at the same time
[9]. The Galilean space G3 has three-dimensions (x, y, z): two dimensions of Euclidean plane (y, z) and one dimension of time (x) [17]. The
distance between non-simultaneous events p = (x, y, z) and q = (x1, y1, z1) in G3 is defined by

d1(p, q) = |x− x1| .

On the other hand, the distance between two simultaneous events p = (x, y, z) and q1 = (x, y1, z1) is defined by

d2(p, q1) =
√

(y − y1)2 + (z − z1)2.

Moreover, the Galilean space G3 can be considered as a Cayley-Klein space equipped with the projective metric of signature (0, 0,+,+)[5].
There are two types of plane in the Galilean space. Euclidean planes are in the following form x = k (y = z = 0) k ∈ R [4]. The other planes
are isotropic [2, 3]. The non-isotropic vectors are in the following form u = (u1, u2, u3), u1 6= 0. For isotropic vectors u1 = 0 holds. More
information about Galilean space can be found in [1, 13, 18]

Let a = (x, y, z) and b = (x1, y1, z1) be vectors in the Galilean space. The scalar product <,> is defined by

< a,b >= x1x. (1)

In addition, when both of the vectors p = (0, y, z) and q = (0, y1, z1) are isotropic, the scalar product <,>1 is given by

< p,q >1= yy1 + zz1. (2)

Let M be a surface in G3 given by parametrization

ϕ(v1, v2) = (x(v1, v2), y(v1, v2), z(v1, v2)).

The isotropic unit normal vector N is defined by

N =
ϕ1 ∧ ϕ2

w
(3)
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where the partial derivatives of the surface M with respect to v1 and v2 is denoted by ϕ1 and ϕ2, respectively and w = ‖ϕ1 ∧ ϕ2‖1 [14]. The
first fundamental form of the surface is given by

I = I1 + εI2 (4)

where I1 = gijdv
idvj and I2 = hijdv

idvj . If I1 = 0 then ε = 1, in the other cases ε = 0. The induced metrics hij and gij (i, j = 1, 2) on
the surface are given by

hij =
〈
ϕi, ϕj

〉
1
, gij =

〈
ϕi, ϕj

〉
. (5)

The components of the inverse metric are given by

g1 =
x2
w
, g2 = −x1

w
gij = gigj (6)

where the partial derivatives of the first component x(v1, v2) of the surface with respect to v1 and v2 is denoted by x1 and x2, respectively.
In [14], the coefficients Lij of the second fundamental form, the Gauss curvature K and mean curvature H of the surface are given by

Lij =<
ϕ,ijx,1 − x,ijϕ,1

x,1
, N >1,K =

detLij
w2

, 2H = gijLij . (7)

The partial derivatives of the normal vector is obtained by

Ni = −gjmLijϕm. (8)

2 Minimal surfaces in galilean space

In this section, we will give a mathematical definition of the minimal surface in Galilean space G3. Since the minimal surfaces locally minimizes
area, firstly we need to show that it is also meaningful in Galilean space. Similar to the three dimensional Euclidean space, the norm of the cross
product measures the area spanned by two vectors in the three dimensional Galilean space [17]. Therefore we state the following definition.

Let M be the surface parametrized by ϕ(u, v) = (x(u, v), y(u, v), z(u, v)). We can see that ‖ϕu ∧ ϕv‖1 is the area of the parallelogram
determined by ϕu and ϕv. Therefore, in Galilean space, the area of the surface can be obtained by

A(ϕ) =

∫ ∫
‖ϕu ∧ ϕv‖1 dudv. (9)

The minimal surface is the problem of minimizing A(ϕ). To do this, let us consider a normal variation of the surface M in Galilean space.
Let t(u, v) be any smooth function on such that it vanishes on the boundary of the surface and N be the unit surface normal. For some small λ
a normal variation of the surface Mσ can be parametrized by

ωσ(u, v) = ϕ(u, v) + σt(u, v)N(u, v) (10)

where −λ < σ < λ. This motivates the following theorem:
Theorem 2.1 Let A(σ) be the area of the normal variation of the surface M in Galilean space. The critical point of the area of the normal

variation Mσ is given by

A′(0) = −2

∫ ∫
t(u, v)H ‖ϕu ∧ ϕv‖1 dudv (11)

where prime denotes differentiation respect to σ.
Proof: The area A(σ) of the surface Mσ is given by

A(σ) =

∫ ∫ ∥∥ωσu ∧ ωσv ∥∥1 dudv. (12)

On the other hand from (10), the partial derivatives of the normal variation Mσ are obtained as

ωσu = ϕu + σtuN+σtNv , ωσv = ϕv + σtvN+σtNu.

By using Nu ∧Nv = 0 we arrive at

ωσu ∧ ωσv = ϕu ∧ ϕv + tσ(ϕu ∧Nv+Nu ∧ ϕv)+σ2t(tuN ∧Nv + tvNu ∧N).

Taking norms on both sides of above equation, then differentiating with respect to σ, finally putting σ = 0 into the result gives

A′(0) =

∫ ∫
t 〈ϕu ∧Nv+Nu ∧ ϕv, ϕu ∧ ϕv〉1∥∥ϕ,1 ∧ ϕ,2∥∥1 dudv (13)

where
dA(σ)

dσ

∣∣∣∣
σ=0

= A′(0).
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On the other hand, from (8) we have

Nu ∧ ϕv = (−g11L11 − g12L12)ϕu ∧ ϕv (14)

and
ϕu ∧Nv = ϕu ∧ ϕv(−g12L12 − g22L22). (15)

Substituting (14) and (15) into (13) gives

A′(0) =

∫ ∫
t(−2g12L12 − g22L22 − g11L11)

∥∥ϕ,1 ∧ ϕ,2∥∥1 dudv.
From (7), we get

A′(0) = −2

∫ ∫
t(u, v)H

∥∥ϕ,1 ∧ ϕ,2∥∥1 dudv
which completes the proof.

As a corollary, one deduces that a surface is a critical point for area under all smooth compactly supported variations if and only if the mean
curvature vanishes identically.

Definition 2.1 In Galilean space, a regular surface M is called a area minimizing surface (minimal surface) if and only if its mean curvature
is zero at each point.

Theorem 2.2 Suppose a surface M is the graph of a function of two variables. Then, the surface M can be parametrized by

ϕ(x, y) = (x, y, f(x, y)).

The surface M in G3 is minimal if and only if it can be locally expressed as the graph of a solution of

fyy = 0.

Proof: The partial derivatives of the surface are obtained as

ϕx = (1, 0, fx), ϕy = (0, 1, fy).

Thus, we have the unit normal vector as follows

N =
(0,−fy, 1)√

1 + f2y

.

The components of the second fundamental form are given by

L11 =
fxx√
1 + f2y

, L12 =
fxy√
1 + f2y

, L22 =
fyy√
1 + f2y

. (16)

On the other hand, using (6) gives

g11 = g12 = 0, g22 =
1

1 + f2y
. (17)

From (7), (16) and (17), we have the Gauss and mean curvatures as follows

K =
fxxfyy − f2xy

(1 + f2y )2

and

2H =
fyy

(1 + f2y )
3
2

.

Consequently, this surface is minimal if and only if fyy vanishes.
The geometric interpretation of the above expression is that let us consider the y−parameter curves ϕ(x0, y) = (x0, y, f(x0, y)) of the

surface, hence fyy = 0 the y−parameter curves are isotropic lines. Thus we state the following corollary.
Corollary 2.1 The minimal surfaces in the Galilean space given with a Monge patch are ruled surfaces type C parametrized by

ϕ(x, y) = α(x) + yβ(x)

where α(x) = (x, 0, z(x)) is the non-isotropic plane curve, β(x) = (0, 1, w(x)) is the isotropic plane line.
Example 2.1 Let us consider the surface given by

ϕ(x, y) = (x, y, x3y + xy).

It is easy to see that hence we have fyy = 0, this surface is a minimal surface shown in Fig.1.
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Fig. 1:

This surface is also a ruled surface of type C parametrized by

ϕ(x, y) = (x, 0, 0) + y(0, 1, x3 + x).

There is not isothermal coordinates in Galilean space. In order to have a similar view of the minimal surface in Galilean space. We give
following definition.

Definition 3.2 In Galilean space, a surface ϕ(u, v) = (x(u, v), y(u, v), z(u, v)) can be parameterized by using a isothermal-like
parameterization as follows

g11 = g22 = g12 = λ2 (18)

and Euclid isothermal-like parameterization as follows

h11 = h22 = λ21, h12 = 0 (19)

where g11, g22, g12 and h11, h22, h12 are the coefficients of the first fundamental forms I1 and I2, respectively.
Theorem 2.3 Let M be a surface described by an isothermal-like and Euclid isothermal-like patch parameterization in Galilean space. Then

we have
w2 = ‖ϕu ∧ ϕv‖21 = 2λ2λ21. (20)

Proof: From (3) we have
‖ϕu ∧ ϕv‖21 = x2u(z2v + y2v) + x2v(y2u + z2u)− 2xuxv(zuzv + yuyv). (21)

It is easy to see that

g11 = x2u, g12 = xuxv, g22 = x2v (22)

and
h11 = y2u + z2u, h12 = zuzv + yuyv, h22 = z2v + y2v . (23)

Substituting (22) and (23) into (21) gives

w2 = g11h22 + g22h11 − 2g12h12.

From (18) and (19) we have
w2 = 2λ2λ21.

Theorem 2.4 Let M be a surface described by an isothermal-like patch in Galilean space. Then the first fundamental form I of the surface
is given by

I = I1 + εI2 (24)

where if du 6= −dv then ε = 1, in the other cases ε = 0 and I1, I2 are obtained as

I1 = λ2(du+ dv)2

and
I2 = 2λ21dv

2.

Proof: The proof is straightforward.
Theorem 2.5 Let M be a surface described by an isothermal-like patch given by parameterization ϕ(u, v) = (x(u, v), y(u, v), z(u, v)) in

Galilean space. The surface M is minimal if and only if the partial derivatives of the surface satisfy the following equation

ϕuu − 2ϕuv + ϕvv = 0.

Proof: From (18) and (22), it follows that
xu(u, v) = λ, xv(u, v) = λ (25)

where the partial derivatives of the first component x(u, v) of the surface with respect to u and v is denoted by xu and xv, respectively.
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Combining (6), (25) and (20) we arrive at

g11 =
λ2

w2
, g22 =

λ2

w2
, g12 = − λ

2

w2
. (26)

Substituting (26) into (7) we get
2Hw2

λ2
= L11 − 2L12 + L22.

Which implies that
2Hw2

λ2
= 〈ϕuu − 2ϕuv + ϕvv, N〉1 .

It follows that
2Hw2N

λ2
= ϕuu − 2ϕuv + ϕvv.

Thus, the surface is minimal if and only if
ϕuu − 2ϕuv + ϕvv = 0

holds.
Example 2.2 Let us consider the surface given by

ϕ(u, v) = (u+ v, u2 − v2, u− v).

From (5) we get
g11 = g12 = g22 = 1.

In addition, it is easy to see that
ϕuu = (0, 2, 0), ϕuv = (0, 0, 0), ϕvv = (0,−2, 0).

Hence we have ϕuu − 2ϕuv + ϕvv = 0, the surface is a minimal surface shown in Fig.2.

Fig. 2:

Special cases:

• If xu = λ and xv = 0 then, from (6) we have

g11 = g12 = 0, g22 =
1

w2
. (27)

It is easy to see that

L22 =
1

w
〈(0, zvxu,−yvxu), (0, yvv, zvv)〉1 . (28)

Substituting (27) and (28) into (7) we get
2Hw3 = 〈ϕvv, N〉1 .

Thus, the surface is minimal if and only if ϕvv vanishes. One of the interesting example of this case is that the ruled surface of type C.
Example 2.3 Assume that the ruled surface of type C is parametrized by

Φ(u, v) = (u, u2 + v cosu, v sinu)

where r(u) = (u, u2, 0) is the directrix and a(u) = (0, cosu, sinu) is the generator.
Observe that xu = 1, xv = 0 and Φvv = 0. Thus this surface is a minimal surface shown in Fig.3.

• If xu = 0 and xv = λ then, similar to the previous case, the surface is minimal if and only if ϕuu = 0 holds. One of the exciting example
of this case is the helicoid parametrized by

ϕ(u, v) = (v, u cos v, u sin v).

• If xu = xv = 0 then, the surface is a part of a plane with vanishing mean curvature.
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Fig. 3:
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