
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 49 (5) (2020), 1718 – 1725

DOI : 10.15672/hujms.512563

Research Article

Some analysis on a fractional differential equation
with a right-hand side which has a discontinuity

at zero

Müfit Şan1, Uğur Sert∗2

1Department of Mathematics, Faculty of Science, Çankırı Karatekin University, Tr-18100, Çankırı,
Turkey

2Department of Mathematics, Faculty of Science, Hacettepe University, Beytepe, Tr-06800, Ankara,
Turkey

Abstract
In this article, we consider an initial value problem for a nonlinear differential equation
with Riemann-Liouville fractional derivative. By proposing a new approach, we prove
local existence and uniqueness of the solution when the nonlinear function on the right
hand side of the equation under consideration is continuous on (0, T ] × R.
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1. Introduction and motivation
The birth of fractional calculus dates back to the early days of differential calculus. The

number of researchers working on fractional calculus were inadequate when compared to
researchers in differential calculus studies, eventually there has been no progress on this
field in a reasonable amount of time. However, the interest in fractional calculus and
fractional differential equations has increased considerably for the last three decades. This
has led to a rapidly development in fractional calculus by virtue of the techniques, methods
and results used in the ordinary differential calculus. Evidently, a substantial part of the
interest in this subject derives from initial-value problems (IVPs) and boundary-value
problems (BVPs) for the fractional differential equations with fractional derivatives such
as Riemann-Liouville (RL), Caputo, Caputo-Fabrizio, Grünwald-Letkinov etc. Existence
and uniqueness of solution for the IVPs and BVPs were studied by many researchers (see
for example [2, 5, 7, 11, 13–16, 21–26]). These articles deal with the qualitative properties
of solutions for the equations with continuous right-hand side. However, in this paper, we
address an equation with Riemann-Liouville derivative

Dau(x) = f
(
x, u(x)

)
,

such that f(x, t) has a discontinuity at x = 0 where (x, t) ∈ [0, T ] × R.
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Throughout the text, by an equation with continuous right-hand side, we mean a func-
tion f(x, t) which is continuous on [0, T ]×R, and a discontinuous right-hand side will refer
a function f(x, t) which has a discontinuity at x = 0.

Considering the coincidence of first order RL derivative with ordinary derivative (see
[20, 21]), real-world applications of an equation with RL derivative which has discontin-
uous right-hand side would be enlightening from many problems arising from mechanics,
electrical engineering and the theory of automatic control. Differential equations with
discontinuous right-hand sides, in particular with a function f(x, t) which is discontinuous
in x and continuous in t were studied widely in the literature. For these studies, we refer
the book of Filippov [12] (also the references cited therein), which is accepted as a basic
source for the general theory of discontinuous dynamical systems.

In this paper, we investigate the following initial value problem for a differential equation
with RL fractional derivative:{

Dau(x) = f
(
x, u(x)

)
, x > 0

u(0) = u0,
(1.1)

where 0 < a < 1, u0 ̸= 0 is a real number and the function f will be specified later. The
operator, Da represents RL fractional derivative of order a, which is defined by combining
the ordinary derivative and RL fractional integral Ia as follows:

Dau (x) := d

dx

[
xI1−au

]
with Iau (x) := 1

Γ (a)

∫ x

0

u (ξ)
(x − ξ)1−a dξ,

where, Γ(·) is the well-known Gamma function.
Problem (1.1) with continuous right-hand side was first discussed in [16] and it was

claimed that the continuous solution of the problem exists on the interval [0, T ]. Never-
theless, Zhang [26] gave an example which indicates that the initial condition u(0) = u0
(except u0 = 0) is not suitable for studying the existence of continuous solution of (1.1),
when the function f is continuous on [0, T ] × R. Accordingly, Şan [23] considered this
problem with f which satisfies the following conditions:
(A.1) f(x, t) and xaf(x, t) are continuous on (0, T ] × R and [0, T ] × R respectively,
(A.2) xaf(x, u0)

∣∣
x=0 = u0

Γ(1 − a)
.

In [23], it is proved that the condition (A.2) is necessary for the existence of the
continuous solution of problem (1.1). The author also gave a partial answer to the question
of the existence of continuous solutions to (1.1). Problem (1.1) represents a system,
accordingly the initial condition must be independent of the tools we analyze. Based
on this view, after a discussion with Manuel D. Ortigueira (see also [18, 19]) we draw a
conclusion that it would be more accurate to discuss the nonexistence of a continuous
solution of (1.1) instead of querying the suitability of the initial datum. In fact, if there
were a continuous solution u of (1.1) when f is continuous on [0, T ]×R, then by using the
compositional relation u (x) = IaDau(x) proved in Proposition 2.4 in [5] and u ∈ C[0, T ],
Dau ∈ C[0, T ], it would be shown that

u (x) = 1
Γ (a)

∫ x

0

f (ξ, u (ξ))
(x − ξ)1−a dξ, x ∈ [0, T ] . (1.2)

Thus, by the continuity of f(x, u(x)) on [0, T ] we obtain,

0 ̸= u0 = lim
x→0+

u(x) = 1
Γ(a)

∫ 1

0

limx→0+ xaf(xt, u(xt))
(1 − t)1−a

dt = 0,

which yields a contradiction. This implies that problem (1.1) with continuous right-hand
side and initial condition u(0) = u0 ̸= 0 does not have a continuous solution u(x) on the
closed interval.
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In the following section, under the conditions (A.1)-(A.2), we first prove the existence
of continuous solutions of (1.1) by using Leray-Schauder alternative. However, as seen in
the sequel, this theorem does not inform us about the existence interval of the solution. In
the literature, there are some researchers (e.g. [3,10] and references therein) who worked on
the existence interval and maximal existence interval of the solution for certain fractional
differential equations. For example, Mustafa and Baleanu [3] presented a method by virtue
of Leray-Schauder alternative to gain a better estimate for the existence interval of the
continuous solutions to the problem they considered. Such an approach cannot be applied
directly to the analysis of (1.1) hence, developing a new technique and using Schauder’s
fixed point theorem, we prove a Peano-type existence theorem for (1.1) which explicitly
shows the existence interval of the solution.

For the uniqueness of problems similar to (1.1), there exist some Nagumo-type unique-
ness results (see, for example, [7, 11, 15, 22]) which were proved by the technique and
approach developed by Diaz [6]. Apart from the Nagumo-type conditions, for the func-
tions satisfying certain conditions, Diethelm [7] and Odibat [17] employed fractional mean
value theorems to establish the uniqueness. We verify the existence and uniqueness of the
continuous solution of (1.1) when the function f fulfills a Nagumo-type condition. Unlike
the techniques used in the book [1], in this paper, we present a novel technique to prove
the uniqueness of (1.1) by combining with a fractional mean value theorem for functions
u ∈ C[0, T ] satisfying the inclusions, Dau ∈ C(0, T ] and xaDau ∈ C[0, T ].

2. Preliminaries and main results
Before proceeding to study problem (1.1), we remind some basic facts from functional

analysis. At first, we give a lemma which shows the equivalence of the solutions of problem
under consideration and solutions of the corresponding integral equation (1.2) (see, [23,
24]).

Lemma 2.1. Under the conditions of (A.1)-(A.2), u ∈ C[0, T ] is a solution of problem
(1.1) if and only if u ∈ C[0, T ] is a solution of (1.2).

Let us define the operator M : C[0, T ] 7→ C[0, T ] associated with integral equation (1.2)
as follows:

Mu (x) := 1
Γ (a)

∫ x

0

f (ξ, u (ξ))
(x − ξ)1−a dξ, x ∈ [0, T ] . (2.1)

Since, the fixed points of the operator M coincide with the solutions of integral equation
(1.2), our goal is to find out the fixed points of operator M by applying following theorems
[4, 8, 9].

Theorem 2.2 (Schauder’s fixed-point theorem). Let X be a real Banach space, B ⊂ X
nonempty closed bounded and convex, M : B → B compact. Then, M has a fixed point.

Remark 2.3. In applications, it is usually too difficult or impossible to establish a set
B so that M(B) ⊆ B (see, [8]). Therefore, it will be convenient to consider operator M

that maps the whole space X into X to overcome this difficulty. The following result is
intimately associated with what we stated above.

Theorem 2.4 (Leray-Schauder alternative). Let X be normed linear space and M : X →
X be a completely continuous (compact) operator. Then, either there exists u ∈ X such
that

u = Mu

or the set
E(M) := {u ∈ X : u = µM(u) for a certain µ ∈ (0, 1)} (2.2)

is unbounded.
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The compactness of operator M was proved previously by Theorem 2.5 in [23], therefore
it is sufficient to show that remaining conditions of the fixed point theorems given above
will be fulfilled. The first existence theorem for problem (1.1) is as follows:

Theorem 2.5. Let conditions (A.1)-(A.2) be satisfied for 0 < T < ∞. Moreover, assume
that there exists a positive real number M such that

M = sup
(x,t)∈[0,T ]×R

∣∣∣∣xaf(x, t) − u0
Γ(1 − a)

∣∣∣∣ .
Then, problem (1.1) admits at least one continuous solution u ∈ C([0, T ]).

Proof. We employ Leray-Schauder alternative and it is sufficient to show that the set
E(M) defined in (2.2) is bounded. For an arbitrary u ∈ E(M) one has

|u(x)| ≤ µ
1

Γ (a)

∣∣∣∣∣
∫ x

0

f (ξ, u (ξ))
(x − ξ)1−a dξ

∣∣∣∣∣
<

1
Γ (a)

∣∣∣∣∣
∫ x

0

f (ξ, u (ξ)) − ξ−a u0
Γ(1−a) + ξ−a u0

Γ(1−a)

(x − ξ)1−a

∣∣∣∣∣
≤ MΓ(1 − a) + |u0|

Γ(1 − a)Γ(a)

∫ x

0

1
ξa (x − ξ)1−a dξ

= MΓ(1 − a) + |u0| .

Thus, for any u ∈ E(M) we get

sup
x∈[0,T ]

|u(x)| < MΓ(1 − a) + |u0| ,

which yields that E(M) is bounded. As a result of Leray-Scauder alternative, (1.1) admits
at least one solution in C[0, T ]. �

We now, give a mean value theorem for RL derivative to establish existence and unique-
ness results for problem (1.1). For the proof of this theorem, we follow the path outlined
in [7] and [17].

Lemma 2.6. Let u ∈ C[0, T ] with Dau ∈ C(0, T ] and xaDau ∈ C[0, T ] for 0 < a < 1.
Then, there exists a function λ(x), λ : [0, T ] → (0, T ) with 0 < λ(x) < x such that

u(x) = Γ(1 − a)(λ(x))aDau(λ(x))

is fulfilled for all x ∈ [0, T ].

Proof. By using the fact u (x) = IaDau(x) and by mean value theorem of integral calculus
we have,

u(x) = 1
Γ (a)

∫ x

0

Dau(ξ)
(x − ξ)1−a dξ

= 1
Γ (a)

∫ x

0

ξaDau(ξ)
ξa (x − ξ)1−a dξ

=(λ(x))aDau(λ(x))
Γ (a)

∫ x

0

1
ξa (x − ξ)1−a dξ

=Γ (1 − a) (λ(x))aDau(λ(x)),

where λ = λ(x) ∈ (0, x) for all x ∈ [0, T ]. �
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Remark 2.7. In [17], the dependence of λ on x was not clearly expressed. Essentially,
λ can be considered as a function of x. To see this, let u(x) = 1 + x2. It follows from
Lemma 2.6 that

1 + x2 = Γ(1 − a)λa

(
λ−a

Γ(1 − a)
+ λ2−a

Γ(3 − a)

)
= 1 + 2λ2

(1 − a)(2 − a)
.

From last equality, we get

λ =

√
(1 − a)(2 − a)

2
x ∈ (0, x),

which shows that λ is a function depending on x.

In the following, we present a Peano-type existence theorem for problem (1.1), We use
Theorem 2.2 to prove the existence of the continuous solution of (1.1).

Theorem 2.8. Let (A.1) is satisfied and r, T be fixed positive real numbers. Moreover,
suppose that there exists a positive real number M∗ such that∣∣∣∣xaf(x, t) − u0

Γ(1 − a)

∣∣∣∣ ≤ M∗ max
(
x,

|t − u0|
r

)
(2.3)

holds for all x ∈ [0, T ] and for all t ∈ [u0 − r, u0 + r] . Then, (1.1) has at least one
continuous solution on [0, T0], where

T0 :=


r

M∗Γ(1−a) , if M∗Γ(1 − a) ≥ r,

T , if M∗Γ(1 − a) ≤ r.

Proof. Let us first construct an appropriate closed convex ball of C([0, T ]) to verify the
conditions of Theorem 2.2. According to inequality (2.3) let us assume that∣∣∣∣xaf(x, t) − u0

Γ(1 − a)

∣∣∣∣ ≤ M∗x (2.4)

is fulfilled for all x ∈ [0, T ] and for all t ∈ [u0 − r, u0 + r] .
We define the ball

Br(u0) ≡
{
u ∈ C[0, T0] : sup

x∈[0,T0]
|u(x) − u0| ≤ r

}
where M∗Γ(1 − a) ≥ r. Then, for any u ∈ Br(u0), from (2.4) one has

|Mu (x) − u0| ≤ 1
Γ (a)

∫ x

0

∣∣∣f (ξ, u (ξ)) − ξ−a u0
Γ(1−a)

∣∣∣
(x − ξ)1−a dξ

= 1
Γ (a)

∫ x

0

∣∣∣ξaf (ξ, u (ξ)) − u0
Γ(1−a)

∣∣∣
ξa (x − ξ)1−a dξ

≤ M∗

Γ (a)

∫ x

0

ξ

ξa (x − ξ)1−a dξ

≤ M∗ |x| Γ(2 − a),

estimating the right side of the above inequality by using the fact: Γ(2 − a) < Γ(1 − a) for
all a ∈ (0, 1), then we get

|Mu (x) − u0| ≤ M∗T0Γ(1 − a).
It follows from the last inequality and by the definition of T0, that

sup
x∈[0,T0]

|Mu (x) − u0| < M∗Γ(1 − a)T0 ≤ r. (2.5)
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On the other hand, if ∣∣∣∣xaf(x, t) − u0
Γ(1 − a)

∣∣∣∣ ≤ M∗

r
|t − u0| (2.6)

holds for all x ∈ [0, T ] and for all t ∈ [u0 − r, u0 + r] , we construct Br such that

Br(u0) ≡
{
u ∈ C[0, T ] : sup

x∈[0,T ]
|u(x) − u0| ≤ r

}
for M∗Γ(1 − a) ≤ r. It follows from (2.6),

|Mu (x) − u0| ≤ 1
Γ (a)

∫ x

0

∣∣∣ξaf (ξ, u (ξ)) − u0
Γ(1−a)

∣∣∣
ξa (x − ξ)1−a dξ

≤ M∗

rΓ (a)

∫ x

0

|u(ξ) − u0|
ξa (x − ξ)1−a dξ

≤ M∗

Γ(a)

∫ x

0

1
ξa (x − ξ)1−a dξ.

for any u ∈ Br and for all x ∈ [0, T ]. So, we find that

sup
x∈[0,T ]

|Mu (x) − u0| ≤ M∗Γ(1 − a) ≤ r. (2.7)

From (2.5) and (2.7), we attain M(Br(u0)) ⊂ Br(u0) which completes the proof. �

Theorem 2.9 (Existence and Uniqueness). Under the conditions of Theorem 2.5, suppose
that the inequality

xa |f(x, t1) − f(x, t2)| ≤ 1
Γ(1 − a)

|t1 − t2| (2.8)

holds for all x ∈ [0, T ], t1, t2 ∈ R and 0 < a < 1. Then problem (1.1) admits a unique
continuous solution on [0, T ].

Proof. We proved the existence of the solution in Theorem 2.5. Thus for the uniqueness,
let (1.1) has two different continuous solutions u1 and u2. We initially assume ω(x) ̸≡ 0,
where

ω(x) :=
{

|u1(x) − u2(x)| , x > 0
0 , x = 0

It is easily seen that ω(x) is nonnegative for all x ∈ [0, T ] and continuous for all these
x values except x = 0. For the continuity of ω(x) at x = 0, using variable substitution
ξ = xt and condition (A.1) respectively, we have

0 ≤ lim
x→0+

ω(x) = lim
x→0+

1
Γ(a)

∣∣∣∣∣
∫ x

0

f (ξ, u1 (ξ)) − f (ξ, u2 (ξ))
(x − ξ)1−a dξ

∣∣∣∣∣
≤ lim

x→0+

1
Γ(a)

∣∣∣∣∣
∫ 1

0

(xt)a [f (xt, u1 (xt)) − f (ξ, u2 (xt))
]

ta (1 − t)1−a dt

∣∣∣∣∣
≤ 1

Γ(a)

∫ 1

0

limx→0+
∣∣ (xt)a [f (xt, u1 (xt)) − f (ξ, u2 (xt))

]∣∣
ta (1 − t)1−a dt

= 0

which simply means that limx→0+ ω(x) = 0 = w(0).
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It is obvious that there exists a λ ∈ (0, T ] such that ω(λ) ̸= 0, i.e. ω(λ) > 0. By using
Lemma 2.6 and inequality (2.8), we get

0 < ω(λ) = |u1(λ) − u2(λ)|
= Γ(1 − a) |λa

∗Da(u1 − u2)(λ∗)|
= Γ(1 − a) |f (λ∗, u1 (λ∗)) − f (λ∗, u2 (λ∗))|
≤ |u1(λ∗) − u2(λ∗)| = ω(λ∗)

for some λ∗ ∈ (0, λ). Applying the same procedure for the point λ∗ we find that, there
exists some λ2 ∈ (0, λ∗) such that 0 < ω(λ) ≤ ω(λ∗) ≤ ω(λ2). Continuing in the same way,
we construct a sequence {λn}∞

n=1 ⊂ [0, λ) with λ1 = λ∗ satisfying λn → 0 and

0 < ω(λ) ≤ ω(λ1) ≤ ω(λ2) ≤ ... ≤ ω(λn) ≤ ... (2.9)

On the other hand, since ω(x) is continuous at x = 0 and λn → 0, then ω(λn) → ω(0) = 0
that contradicts with (2.9). Hence ω(x) ≡ 0, namely IVP (1.1) admits a unique continuous
solution. �

It is interesting to note that there are some other techniques and theorems (see, for
example [7] and [22]) that enable us to replace a positive fixed real number larger than
Nagumo constant or an arbitrary positive real number instead of Nagumo constant so
that the corresponding IVPs admit a unique solution. However, the mentioned techniques
and theorems could not be applied to problem (1.1), namely there does not exist a larger
number than 1

Γ(1−a) in (2.8) which can be replaced instead of 1
Γ(1−a) to guarantee the

uniqueness of the continuous solution of (1.1). The following example may clearly express
the foregoing discussion.

Example 2.10. Let us consider the function, fβ(x, t) := Γ(β+1)
Γ(1−a+β)x−a (t + k) where k =

Γ(β−a+1)−Γ(1+β)Γ(1−a)
Γ(1+β)Γ(1−a) , β > 0 and u0 = 1 in problem (1.1). It is clear that conditions

(A.1) and (A.2) are satisfied. However, inequality (2.8) does not hold for fβ(x, t), since
Γ(β+1)

Γ(1−a+β) replaces instead of 1
Γ(1−a) in (2.8) and Γ(β+1)

Γ(1−a+β) > 1
Γ(1−a) for β > 0 and a ∈ (0, 1).

That is to say, the solution of (1.1) may not be unique. Indeed, (1.1) has infinitely many
solutions u(x) = cxβ + 1, where c is an arbitrary real number. Furthermore, it is to be
pointed out that Γ(β+1)

Γ(1−a+β) → 1
Γ(1−a) and fβ(x, t) → f(x, t) = x−at

Γ(1−a) when β → 0 and that,
for f(x, t) = x−at

Γ(1−a) , (1.1) with u0 = 1 admits a unique solution in the form u(x) = 1.
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