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Abstract

The aim of this paper is to introduce some special families of holomorphic and Salagean
type bi-univalent functions by making use of Horadam polynomials involving the modified

sigmoid activation function ¢(s) = H%’ s > 0 in the open unit disc ©. We investigate

S .
the upper bounds on initial coefficients for functions of the form g4(2) = 2+ > ¢(s)d;27, in
j=2

these newly introduced special families and also discuss the Fekete-Szegd problem. Some
interesting consequences of the results established here are also indicated.
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1. Introduction and preliminaries

Let N be the set of natural numbers, R be the set of real numbers and C be the set of
complex numbers. Let A be the family of normalized functions that have the form

g(2) = 2+ doz® +d32P + .= 2+ Y dj2, (1.1)
j=2

which are holomorphic in ® = {z € C: |z]| < 1} and let 8 be the collection of all members
of A that are univalent in ©. It is well- known (see[6]) that every function g € § has an
inverse g~ ! satisfying 2 = ¢g71(9(2)), z € ® and w = g(g~ 1 (w)), |w| < 70(g), ro(g) > 1/4,
where

g W) = f(w) = w — daw? + (2d3 — d3)w® — (5d5 — Bdadz + dg)w + ... (1.2)
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A member g of A is said to be bi-univalent in ® if both g and g~! are univalent in ®.

We denote the family of bi-univalent functions having the form (1.1), by >". For detailed
investigations of the family > and various subfamilies of the family >, one can see the
works of [3-5,13,16].

We recall the principle of subordination between two holomorphic functions g(z) and
f(2) in ®. It is known that g(z) is subordinate to f(z), written as g(z) < f(z), z € D,
if there is a 1 (z) holomorphic in ®, such that ¢(0) = 0 and |¢(2)| < 1, z € D, such that
9(z) = f(Y(2)), z € ®. In particular, if f is univalent in ®, g(z) < f(z) < ¢(0) = f(0)
and g(D) C f(D).

Recently, Horzum and Koger [12] (See also [11]) examined the Horadam polynomials
hj(x,a,b;p,q) (or briefly h;(x)). It is defined by the recurrence relation

hj(xz) = pxhj_i(x) + ghj_2(x), hi(z) =a, ho(z) = bz, (1.3)

where j € N—{1,2}, z € R,a,b,p and ¢ are real constants. It is very clear from (1.3)
that hs(z) = pbz? + ga. The generating function of the Horadam polynomials h;(x) is as
given below (see [12]):

a+ (b—ap)zz

o0
4 1—prz —qz?’

G(z,z) := Zhj(x)zj_l =

Jj=1

(1.4)

where = € R is independent of the argument z € C, that is z # R(z).

Few particular cases of Horadam polynomials h;(x,a,b;p,q) are:
i) hj(x,1,1;1,1) = Fj(x), the Fibonacci polynomials, i) h;(z,2,1;1,1) = L;(x), the Lu-
cas polynomials, ii) hj(x,1,2;2,1) = Pj(z), the Pell polynomials, iv)h;(x,2,2;2,1) =
Q;j(x), the Pell-Lucas polynomials, v)h;(z,1,1;2,—1) = T}(x), the first kind Chebyshev
polynomials and vi) hj(x,1,2;2,—1) = Uj(x), the second kind Chebyshev polynomials.

In the literature, estimates on |ds|, |d3| and celebrated Fekete- Szegd inequality were
found for bi-univalent functions associated with certain polynomials like the second kind
Chebyshev polynomials and Horadam polynomials. We also note that the above polynomi-
als and other special polynomials are potentially important in engineering, mathematical,
statistical and physical sciences. More details associated with these polynomials can be
found in [9-11,15,19]. Additional informations about Fekete-Szegd problem associated
with Haradam polynomials are available with the works of [2] and [18].

Let Ay denote the family of functions of the form

i 2 . 0 .
9¢(2) = 2+ Z = djz) =2+ Z o(s)d;2?,
j=2 i=2
where ¢(s) = H%,s > 0, is a modified sigmoid function. Clearly ¢(0) = 1 and hence

A1 = A (see [7]). For gy € Ay, k € NU {0}, Siligean type differential operator D* :
Ay — Ay, is defined by

Dog¢(z) = g¢(2), Dlg¢(z) = zg(’b(z), ...,Dkg¢(z) = D(Dk_lgd,(z)),z €D.

It is easy to see that if g,(2) = 2+ 3. ¢(s)d;27 € Ay, z € D, then
j=2

Dkg¢(z) =z+ ijtﬁ(s)djzj.
=2

When ¢(s) = 1, we have the Salagean differential operator [14].

Inspired by recent trends on bi-univalent functions, we define the following special
families of )~ by making use of the Horadam polynomials h;(x), which are given by the
recurrence relation (1.3) and the generating function (1.4).
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Definition 1.1. A function ¢(z) in ) of the form (1.1) is said to be in the family
S (@7, 1,k 0(5)), 0 <y < 1, > 0,4 > 7, k € NU{0} and (s) = 5=, > 0,
if

2(DFgy(2)) + pz?(DFgy(2))"
(1 —)Dkgg(2) + v2(DFgy(2))

w(D* fo(w)) + pw?(D* fo(w))”

(1 =)Dk fg(w) +yw(DF fy(w))
where fg(w) = g(gl(w) is an extension of g=! to D given by (1.2),a, b, p and q are as in
(1.3) and G is as in (1.4).

<9(z,2)+1—a,z€®

and

- < G(r,w)+1—a,w €D,

It is interesting to note that the special values of v and p lead the family
62(37, v, i, k, @(s)) to the following various subfamilies:

1. For v = p= 1, we get the family %Z($, k,o(s)) = 62(50, .3, k, ¢(s)) of functions
g(z) in >" of the form (1.1) satisfying

22(DFgy4(2))")’ W2(D¥ £, (w)))
%'<9(CC,Z)+1*aandW%%S(m,w)+l—a,z,w €®,

where fy(w) = g;l(w) is an extension of g~! to D given by (1.2),a, b, p and ¢ are as in
(1.3) and G is as in (1.4).

2. When v = 0,4 = 3, we obtain the family /Z(x,k,qﬁ(s)) = 62(33,0, 3.k, 8(s)) of
functions g(z) in > of the form (1.1) satisfying

22(D¥*gy(2))") w?(D¥ fy(w)))

where fy(w) = g(;l(w) is an extension of g~! to ® given by (1.2),a, b, p and ¢ are as in
(1.3) and G is as in (1.4).

3. On putting v = %,u = 1, we have the family .,?Z(:z:,k,cb(s)) = 62(1:, %, 1,k,6(s))
of functions g(z) in )" of the form (1.1) satisfying
22(=(Dgo(2))') 2(eo( D fo )Y

(2DFgg(2)) (WDF fg(w))!
where fj(w) = g;l(w) is an extension of g~! to D given by (1.2),a, b, p and ¢ are as in
(1.3) and G is as in (1.4).

4. On taking v = 0, we get the family ﬂz(az,u, k,o(s)) = GZ(x,O,u,k,qb(s)) of
functions g(z) in > of the form (1.1) satisfying

( Dgs(s) )\ T DFg( ) “I A LT 2R

<§(z,2)+1—a, z € Dand < §(z,w)+1—a,w €D,

D) (1 DAY ey 1
( D) )\ TR DR )y ) S Tl ma w e,

where fg(w) = gd_)l(w) is an extension of g~! to ® given by (1.2),a, b, p and ¢ are as in
(1.3) and G is as in (1.4).
Definition 1.2. A function g(z) in ) of the form (1.1) is said to be in the family
E5 (@7, 1,k 0(5)), 0<y <1, >0, >y, k € NU{0} and ¢(s) = 72=5,5 > 0, if
2(DFgy(2))" + p2*(Drgy(2))"
(1 —7)z +vz(DFgy(2))

<S(z,z)+1—a,z€D

and
w(DF f3(w))' + pw? (D fo(w))"
(1 = y)w + yw(DF fy(w))’

<G(r,w)+1l—a,weD,
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where fy(w) = gdjl(w) is an extension of g~! to ® given by (1.2),a, b, p and ¢ are as in
(1.3) and G is as in (1.4).

It is easy to observe that the special values of v lead the family 22(:6, v, p, K, d(s)) to
the following various subfamilies:

1. For v = 0, we get the family fiz(x,,u, k,o(s)) = SZ(J:,O,u,k,gZ)(s)) of functions
g(z) in > of the form (1.1) satisfying

(D*gs(2)) + nz(D*gy(2))" < G(x,2) +1—-a, z€D
and
(D ()’ + (D fy())" < Gl,0) +1— a, w € D,

where fy(w) = g;l(w) is an extension of g~! to D given by (1.2),a, b, p and ¢ are as in
(1.3) and G is as in (1.4).

2. When v = 1, we have the family 32 (z,p, by 9(s)) = ’SZ (z,1, p, k, ¢(s)) of functions
g(z) in >_ of the form (1.1) satisfying

Z(Dkg¢(z))”> T,z —a, z
1+“<(D@A@Y Sz EeD

and

«mw<wj e
1+“<u%m<»' S rimawes,

where fy(w) = gdjl(w) is an extension of g~! to ® given by (1.2),a, b, p and ¢ are as in
(1.3) and G is as in (1.4).

Definition 1.3. A function g(z) in ) of the form (1.1) is sald to be in the family
%Z(a:,{,T,k,¢(s)), E>1,7>1, ke NU{0} and ¢(s) = s >0, if

(1= &) +€[(=(Drg0(2))T"
(DEgs(2))

(1= &) +&[(w(D*fo(w))]"
(D* fo(w))
where fy(w) = g;l(w) is an extension of g~! to D given by (1.2),a, b, p and ¢ are as in
(1.3) and G is as in (1.4).
Note that the particular values of £ and 7 lead the family %E(x,f, T,k, ¢(s)) to the

following two subfamilies:
1. When 7 = 1, we have the family ///Z(a:, &k, o(s)) = %Z(az, &, 1,k,¢(s)) of functions

g(z) in " of the form (1.1) satisfying

1+ —Ss)

<G(z,2)+1—a,z€D

and

<S(z,w)+1—a,weD,

2 k 2))
(1—§)W+€<1+m> <G(x,2)+1—a,z€D

and Dk "
kl /+§( +W( kf¢(w))/
(D¥ fg(w)) (D* fg(w))
where fg(w) = g;l(w) is an extension of g=! to D given by (1.2),a, b, p and ¢ are as in
(1.3) and G is as in (1.4).
2. For £ = 1, we have the family ‘ﬁz(m,T, k,o(s)) = ‘BZ(:U, 1,7,k,¢(s)) of functions
g(z) in " of the form (1.1) satisfying

[(2(D*gs(2)")']"
(DEgo(2))

(1-¢) )%9(x,w)+1—a,w€@,

(WD fo(w)))]”
(D fo(w))

<S(z,2)+1—a, z € Dand

<S(zr,w)+1—a,w €9,
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where fy(w) = gdjl(w) is an extension of g~! to ® given by (1.2),a, b, p and ¢ are as in
(1.3) and G is as in (1.4).

For functions of the form (1.1) belonging to these newly introduced families
62(3:, v, iy ky d(8)), 22 (z,7, 1, k,d(s)) and %Z(x, &, 7,k,o(s)), we derive the estimates

for the coefficients |da| and |d3| and also consider the celebrated Fekete- Szego problem [8]
in Section 2.
2. Coefficient estimates and Fekete-Szego inequality

We obtain coefficient estimates in the following theorem for functions in

S~ (2,7, 1,k B(s))-

Theorem 2.1. Let 0 <~y <1, u>0, p >, k€ NU{0} and ¢(s) = #,s >0. If g(2)
of the form (1.1) is in (‘SZ(x,'y,u,k,qb(s)), then

|da| < ool v bz (2.1)
= 280(s) V(1 =) (1 — v+ 2p) + 2)(bx)? — (1 — v + 2p)%(pba? + qa)|
1 (bx)? |bx|
ds| < 2.2
4s] < 3kp(s) l(1—7+2u)2 2(1 =~ +3p) (22)
and for 6 € R
|b| 3k
. | T = s
|d3 — dd3| < lbar] |1 358 (2:3)
221‘347(5) -1 = 3kg > J
3G () [ (1—) (T—+2)+20) (b2) 2~ (1= +2)2 (pba? +qa)] 7|~ — 2%kg(s) | =
where
1 pbx? + qa
= 1=l —y+2u) +2u— (1 —y+2p)? | 2
J 20—~ 530 (T=y)d=v+2u)+2u—(1—v+2p) < 2.7 )‘

Proof. Let g(z) € Gz(m,%u,k,qﬁ(s)). Then, for two holomorphic functions m and n
such that m(0) = n(0) = 0, |m(z)| < 1 and |n(w)| < 1, z,w € D, and using Definition 1.1,

we can write
2(D*gy(2)) + pz*(D*g4(2))"
(1 —7)DFkgy(2) + v2(Dkgy(2))

w(D* f(w))" + po® (D fg(w))"
(1 =) DF fo(w) +yw(DF fo(w))
Or, equivalently
2(D*gy(2)) + pz*(DFgy(2))"
(1 —7)DFgy(2) + v2(DFgy(2))
and
w(D* fs(w))" + p® (D fo(w))"
(1 =) D* f(w) +rw(Dk fo(w))
From (2.4) and (2.5), in view of (1.3), we obtain
2(D¥gy(2)) + pz*(DFgy(2))”
(1 —~)Dkgy(z) + v2(Drgg(2))
and
w(D* fo(w)) + pe® (D fo(w))”
(1 =) D* fo(w) +yw(Dk fo(w))

- =G(r,m(2)) +1—a,

and

= 9(1'7“((“)) +1-a.

=14 () — a+ ho(z)m(z) + hg(x)(m(2))% + ... (2.4)

o =1+ hi1(z) —a+ ha(z)n(w) + hy(z)(n(w))? + ... (2.5)

= 1+ ho(z)myz + [ha(z)ma + ha(z)m222 + ... (2.6)

2

=14 hg(x)nlw + [hz(aj‘)l’lz + h3($>'ﬂ%]w =+ ... (27)
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It is well known that if [m(z)| = [miz +me2? + m32® + .| < 1, 2z € D and |n(w)| =
Inw +now? +nzwd 4+ ... <1, w €D, then
m;| <1and n;] <1 (i€N). (2.8)
Comparing the corresponding coefficients in (2.6) and (2.7), we have
254 () (1 — v + 2u)ds = ho(z)my (2.9)
2(3"0(s))(1 = + 3u)ds — 276 () (1 +7)(1 — 7 + 2u)d5 = ha(a)mz + hy(z)mi  (2.10)
—2%p(s)(1 — v + 2u)dy = ho(z)ny (2.11)
— 2(359(5))(1 — 7 + 3p1)ds + 22 6(5) (77 — (4+ 20)7 + (3 + 101))d3 = ha(w)na + hy(x)nd.
From (2.9) and (2.11), we can easily see that 212
mp =-—-n (2.13)
and also
2282 (5) (1 — 7y + 2u)*d3 = (mf + nf) (ho())*. (2.14)

If we add (2.10) and (2.12), then we obtain
22 2 ()((1 = ) (1 — 7y + 2) + 2p)d5 = ho(x)(mz + no) + hg(z)(m] +ni).  (2.15)
Substituting the value of m$ + n? from (2.14) in (2.15), we get
2 (ha(x))*(m2 + ng)
222G (s) [(1 = )L =7 +20) + 20) (h2(2))? — (1 — 7 + 20)2hs(2)]
which yields (2.1) on using (2.8).
Using (2.13) in the subtraction of (2.12) from (2.10), we obtain

2% ¢(s)
ds = ——; d3 +
Then in view of (2.14), (2.17) becomes
ds = (ha(x))?(m? + n) ha(z)(mg — np)
2(35(s)) (1 =7 +2u)* ~ 4(3%¢(s))(1 — v+ 3u)’
which yields (2.2) on using (2.8).
From (2.16) and (2.17), for § € R, we get

|d3 — 6d3| =

(2.16)

ha(x)(m2 — ny)

1) (L~ 1 30) (217)

1 1
|ha(2)] ‘(T(& ) + 4(3Fp(s))(1 — v + 3H)> m2 + (T(&x) C4(3F(s)) (11— + BM)) ek
where
. (552 = ) (ha(a))?

226192 (5) [(1 = ) (1 = 7 + 20) + 2) (ha(2))? — (1 — v + 2p)ha ()]
In view of (1.3), we conclude that

s () | s
ds — 63| < {2(3k¢(8)§(17+3u) 0= T02)| < grsma—ram

2lha(2)|[T'(6, )| 5|T(6,2) > 4(3k¢(5))%1_7+3u)7
which yields (2.3). This evidently completes the proof of Theorem 2.1. O

Remark 2.2. The results obtained in Theorem 2.1 coincide with Corollary 1 and Corollary
3 obtained in [15], for £ =0,y =0, k =0 and ¢(s) = 1.

In the following theorem, we find coefficient estimates for functions in SZ (, v, p, k, ().
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Theorem 2.3. Let 0 <~y <1, u>0, up>~, ke NU{0} and ¢(s) =
of the form (1.1) is in Sz(x,fy,u,k:,gb(s)), then

(@) |V
el S )T = T a1 30+ o)~ P g

H%’S > 0. If g(z)

1 b2a? |b(z)|
ds| < 2.19
ds] = 3Fo(s) [4192 T30t (2.19)
and for 6 € R
[b()] : 3kg
o | T L= gl s M
Ul T T Y
T~z Pt ¢ LT e | 2 M
where

pbz? + qa

b2z2

RECEY) (4% = (7 + 4p)y + 3(1 + 2p)) — 492 <

>| and Yv=1—v+pu.
(2.21)

Proof. Let g(z) € ,Sz(x,%u, k,¢(s)). Then, for two holomorphic functions m and n
such that m(0) = n(0) = 0, |m(2)| = Jmyz + mez? + mgz3 + .| < 1,2 € D, |n(w)| =
Inw + now? +n3w? + ...| < 1, w € D, and using Definition 1.2, we can write
2(D*gy(2)) + pz*(DPgy(2))"
(1=7)z +72(D*gy(2))’

= §(z,m(2)) +1—a (2.22)

and
w(D*fs(w))" + pw*(D* fo(w))"
(1 = 7w + 7w (D*fo(w))’
Following (2.4), (2.5), (2.6), and (2.7) in the proof of Theorem 2.1, one gets the following
in view of (2.22) and (2.23):

=G(z,n(w))+1—a. (2.23)

2k (5)0dy = ho(z)my (2.24)

3L (s) (9 4 p)dz — 22202 (s)9vd3 = ho(z)my + ha(z)m? (2.25)

— 2" 3(5)0 dy = ho(x)ny (2.26)

=31 () (04 p)d3+2°7F1 9% (5)[29% — (5420)7+3(142p)]d5 = ho(z)ng+hg(z)nf, (2.27)

where ¥ is as in (2.21).
The results (2.18)-(2.20) of this theorem now follow from (2.24)-(2.27) by applying the
procedure as in Theorem 2.1 with respect to (2.9)-(2.12). O

Remark 2.4. The results obtained in Theorem 2.3 conincide with results obtained in
[1, Theorem 2.2] for 4 =0 and v =0, k = 0 and ¢(s) = 1.

Remark 2.5. The results obtained in Theorem 2.3 conincide with Theorem 2.1 of [17]
for k =0 and ¢(s) = 1.

Theorem 2.6. Let{ > 1, 7> 1, k € NU{0} and ¢(s) = %,s > 0. If g(z) of the form
(1.1) is in %Z(x,f,T,k,qﬁ(s)), then

|bx|\/[ba]
PN [ TV Ty 1=y v TR
dg| < = (ba)” b2 (2.29)

= 3Fg(s) [4(267 —1)% ' 3(3¢6T — 1)
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and for 6 € R
[b(z)] . 3k§
o | FmGET P - wEl= @
22k ¢(s) . ‘1 __3ks | >0
3kp(s)| (8672 —=TeT+1) (bx)? —4(267—1)?(pba>+qa)| 2hg(s)! = 77

xz a
where Q) = ﬁ ‘(8572 —TET 1) — 4(267 — 1) (%) :

Proof. Let g(z) € %Z(m,f,ﬂ k,¢(s)). Then, for some analytic functions m and n such
that m(0) = n(0) = 0, [m(2)| = |myz +me2? +m32® +..| < 1,2 € D, n(w)| = [mw +
now? 4+ nzw? + ...| < 1, w € D, and using Definition 1.3, we can write
(1 &) +&[(2(Drgs(2)))T
(D¥gy(2))'

=G(z,m(z))+1—a,z€D (2.31)

and
(1— &) + El(w(DF fo(w)))]
(D¥ fo(w))
Following (2.4), (2.5), (2.6), and (2.7) in the proof of Theorem 2.1, one gets the following
in view of (2.31) and (2.32):

— S(x,n(w))—l—l—a, w €D. (2.32)

(267 —1)259(s)da = ha(z)m (2.33)

222 (5) (2677 — 46 + 1)d5 + 3FT 4 (5)(3¢T — 1)d3 = ha(x)my + ha(x)m]  (2.34)

— (267 — 1)2Fg(s)do = ho(z)my (2.35)

222 (5) (4677 + &7 — 1)d3 — 3" p(s) (36T — 1)ds = ha(x)ny + hg(z)ni.  (2.36)

The results (2.28)-(2.30) of this theorem now follow from (2.33)-(2.36) by applying the
procedure as in Theorem 2.1 with respect to (2.9)-(2.12). O

Remark 2.7. The results obtained in Theorem 2.6 conincide with Theorem 2.2 of [17]
when k£ =0 and ¢(s) = 1.

In the next section, we present some interesting consequences of our main results.

3. Corollaries and consequences
Corollary 3.1. Let g(z) be in the family ,%/Z(:n, k,o(s)). Then

2lba|y/[br] s < b (4002 [ba]
PIT=3k(s) |9 4

el < S S VT 2)? = 9 T 4a)]

and for some § € R,

_lbx| | 3k 1|7 _ g (pbr*tqa
L | 1) 1= gt < |79 ()
s = 0d| < 2loal® 1_22%5() 35 1 b2
: - > |79 (b))
o7l O(pbe?qa)] || Pas)| = 16 (%

Corollary 3.2. Let g(z) be in the family /Z(:c, k,o(s)). Then

|bx|/[bx] 1 [b%a? |baz|]

|da| <

= 2k¢(5)\/|3(bl’)2 — 4(p$2 + qa)|7 ’d3’ <———|—+

3kg(s) | 4 5

and for 6 € R,

|ba] . 3k 1 pbx24qa
L | 5@Fee -] < b ()
|d3 — 0d3| < bl |1 5350
22k ¢ (s) 11— 3ks > 1 34 pbz2+qa
3k ¢(s)[3(bx)2—4(pba?+ga)| 7 2%kp(s)| = 5 b2a? :
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Corollary 3.3. Let g(z) be in the family fz(:c, k,¢(s)). Then

2|bx|/|bx] 1 4222 |bx|
|da| < < —

» ds| < +
~ 2k¢(5)1/[13(bx)% — 25(pba? + qa)| 45| 3kgp(s) | 25 7
and for 6 € R,

|bx| : 3kg 1 bz +
o ) TG 1= | < o 18 - 25 (M)
‘d3 - 5d2| S 2|b$|3 1— 3ks
22k ¢ (s) 3k ’ 1 '13 — 95 (PbIQJrqa)
3FG(s)[13(bx)?—25(pba?tqa)] 7 |* T 2%Re(s)| = 28 A
Corollary 3.4. Let g(z) be in the family @Z(x,,u, k,¢(s)). Then

bx bx
d| < |baz|/Joz] 1ds| <
2 (s)y/ [|(1H4p2) ()2 — (14202 (pbr? +qa) ]
and for § € R,

b222 |bz|
e | s T )

Jba

S — - <
2(1+31)354(s) |t T 2Rg(s)

s - 05| < et 1
3E3(s)[(1H4p0) (ba)?— (14242 (pba® +qa)] 22%( )

where J; = m ’(1 +4p) — (1 +2pu)? (M) )

Corollary 3.5. Let g(z) be in the family ﬁz(aﬁ,,u, k,¢(s)). Then
|b(z)|/1b(=) b2a? |b(@)] }

1
da] = 26 (s)/13(1+2u) (be)? — 4(1+u) (pba2+qa)|’ ds| < 3kg(s) { 0+ T 302
and for 6 € R,

|b(z)] i 3k§
3FH1(s) (1420) 1= @iyl < M
|ds — 6d3] < 3|y__sks
3 21 = |b()] 1_22k¢(s)

ks
P11 - 22%¢(S | > M,

3k (s)13(1+2u) (bx)? —4(1+p)? (pba2+qa)|

2
where My = m ’3(1 +2p) — 4(1 + p)? (%) ]

Corollary 3.6. Let g(z) be in the family 32@,#, k,o(s)). Then

lb(2)|/[b(x)] 1 b2a? | [b(2)]
da] < 2k (s)/ 20| (bx)2 =2 (pbr+qa)|’ s < 35 (2ud(s)) [ 2p T3 }
and for 0 € R,
[b()| . 3kg 1 bz’ +qa
y < | T -] < a2 ()
lds = 03] < b()? 22k¢( ) 3k b2+
s . _ pbe’+qa
(3k¢<s>)\(bx>2 e |1 e | 2 5 |12 (P )|
Corollary 3.7. Let g(z) be in the family //lz(x,f,k,qb(s)). Then
|da] < 2k (s)/|(6+1) (bx)2— 4(25 1)2(pbz2+qa)|’ lds| < 3k¢(s) {4(26—1)2 T 3(3571)}

and for § € R,

o) :
2 3FLG(s) (3E 1) L 2%( ’ < $h
|d3 — dd5| < 2|1— %k b A
22K ¢ () P -
386 (s)(€+1)(bx)? —4(26—1)? (pbz°+qa)| 22hg(s) | =

where O = (35 ) ‘(g +1) —4(26 — 1)2 (%) ‘
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Corollary 3.8. Let g(z) be in the family mz(x,T, k,¢(s)). Then

|bz|/[bx| 1 (bz)? b
da] < 2k ¢(s)/|(872—T7+1)(bx)2—4(27—1)2(pba2+qa)|’ |3 < 3k g(s) {4(27—1)2 + 3(37_1)}
and for ¢ € R,
[b()] . 3k§
A Ear Ol -] <
|d3 — dd3] < 1__3%s Ibz|3
22k¢’<5> . 1 3k:6 > Q
3kp(s)|(872—T7+1)(bx)2—4(27—1)2(pbx2+qa)| 2k¢(s) | = 2
where Qo = ﬁ ‘(872 —Tr+1) — 427 — 1)? (sz;;;q:z) _
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