Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 12 Sayı: 2, 376 - 386, 27.06.2023
https://doi.org/10.17798/bitlisfen.1213673

Öz

Kaynakça

  • [1] M. Plessis-Fraissard, "Planning roads for rural communities," Transportation Research Record, vol. 1989, no. 1, pp. 1-8, 2007.
  • [2] A. Tunç, Kaplama mühendisliği ve uygulamaları. Asil Yayın Dağıtım, 2004.
  • [3] A. Tunç, Yol malzemeleri (agrega, asfalt, bitümlü karışımlar, beton, zemin) ve uygulamaları (kaplamalar ve zemin ıslahı-dizayn ve yapım metotları). Atlas-Nobel yayın dağıtım, 2001.
  • [4] M. M. Tanyıldızı and T. Geçkil, "Zemin taşıma gücünün rijit ve esnek üstyapıların kalınlıklarına ve maliyetlerine etkisi," Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 2, pp. 399-406, 2019. https://doi.org/10.35234/fumbd.521364.
  • [5] M. A. Önal and Z. Temren, "Comparison of flexible pavement designs of Turkey and some European countries," presented at the National Asphalt Symposium, 2004.
  • [6] D. Croney and P. Croney, The design and performance of road pavements. 1991.
  • [7] M. Tanyıldızı, "Joints in rigid pavements," Advanced Engineering Days (AED), vol. 4, pp. 67-70, 2022.
  • [8] E. Ağar, İ. Sütaş, and G. Öztaş, Beton yollar: rijit yol üstyapıları; malzeme-tasarım-üretim-yapım-bakım teknikleri. İstanbul Teknik Üniversitesi, 1998.
  • [9] M. Saltan and F. S. Fındık, "Stabilization of subbase layer materials with waste pumice in flexible pavement," Building and Environment, vol. 43, no. 4, pp. 415-421, 2008. https://doi.org/10.1016/j.buildenv.2007.01.007.
  • [10] M. V. Mohod and K. Kadam, "A comparative study on rigid and flexible pavement: A review," IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), vol. 13, no. 3, pp. 84-88, 2016.
  • [11] G. Taunk, "Rigid pavement vs. flexible pavement," Indian Highways, vol. 26, no. 2, 1998.
  • [12] A. Buss, M. Guirguis, and D. Gransberg, "Chip seal aggregate evaluation and successful roads preservation," Construction and Building Materials, vol. 180, pp. 396-404, 2018/08/20/ 2018. https://doi.org/10.1016/j.conbuildmat.2018.05.255.
  • [13] S. Shuler, "Chip seals for high traffic pavements," Transportation Research Record, vol. 1259, pp. 24-34, 1990.
  • [14] V. Uz, "Sathi kaplamalardaki kalıcı deformasyona etki eden parametrelerin incelenmesi," Doktora Tezi, Fen Bilimleri Enstitüsü, Süleyman Demirel Üniversitesi, Isparta, 2012.
  • [15] P. Cui, S. Wu, Y. Xiao, R. Hu, and T. Yang, "Environmental performance and functional analysis of chip seals with recycled basic oxygen furnace slag as aggregate," Journal of Hazardous Materials, vol. 405, p. 124441, 2021. https://doi.org/10.1016/j.jhazmat.2020.124441.
  • [16] İ. Gökalp, "Laboratory investigation of the effects of aggregates type, size and polishing level to skid resistance of surface coatings," Master Thesis, Graduate School of Natural and Applied Sciences, Department of Civil Engineering, Adana Science and Technology University, Adana, 2016.
  • [17] D. D. Gransberg and D. M. James, Chip seal best practices. Transportation Research Board, 2005.
  • [18] C. Gürer, B. E. Korkmaz, Ş. Yarcı, and M. B. Rahmany, "Sıcak agrega ile sathi kaplama uygulamasının araştırılması," Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol. 19, no. 2, pp. 401-409, 2019. https://doi.org/10.35414/akufemubid.543410.
  • [19] M. Karaşahin, C. Gürer, M. Saltan, M. V. Taciroğlu, and V. E. Uz, "Investigation of chip seal performance under cold climate conditions," Science and Engineering of composite materials, vol. 23, no. 6, pp. 649-658, 2016. https://doi.org/10.1515/secm-2014-0041.
  • [20] J. Lee, J. Lee, Y. R. Kim, and S. Mun, "A comparison study of friction measurements for chip seal," Journal of Testing and Evaluation, vol. 40, no. 4, pp. 603-611, 2012.
  • [21] I. Gökalp, V. E. Uz, and M. Saltan, "Comparative laboratory evaluation of macro texture depth of chip seal samples using sand patch and outflow meter test methods," in Bearing Capacity of Roads, Railways and Airfields: CRC Press, 2017, pp. 915-920.
  • [22] V. E. Uz and İ. Gökalp, "The effect of aggregate type, size and polishing levels to skid resistance of chip seals," Materials and Structures, vol. 50, pp. 1-14, 2017. https://doi.org/10.1617/s11527-017-0998-6.
  • [23] K. B. Akalın and M. Karacasu, "Çevresel atıklarla modifiye edilmiş sathi kaplamaların performansının agrega-bitüm İlişkisi bağlamında değerlendirilmesi," Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 1, pp. 127-136, 2020. https://doi.org/10.35234/fumbd.599096.
  • [24] Y. Abut, "Sathi kaplamalı üstyapı tasarımında mekanistik yaklaşım," 2022: 4th International Conference on Applied Engineering and Natural Sciences.
  • [25] A. Güngör and A. Sağlık, "Karayolları esnek üst yapılar projelendirme rehberi," Karayolları Genel Müdürlüğü, Teknik Araştırma Dairesi Başkanlığı, Ankara, pp. 7-9, 2008.
  • [26] P. Garnica Anguas, N. Pérez García, and J. Gómez López, "Módulos de resilencia en suelos finos y materiales granulares," Publicación Técnica, no. 142, 2000.
  • [27] C. Plati and B. Cliatt, "A sustainability perspective for unbound reclaimed asphalt pavement (RAP) as a pavement base material," Sustainability, vol. 11, no. 1, p. 78, 2018. https://doi.org/10.3390/su11010078.
  • [28] H. B. Seed, C. K. Chan, and C. L. Monismith, "Effects of repeated loading on the strength and deformation of compacted clay," in Highway research board proceedings, 1955, vol. 34.
  • [29] C. H. Signes, P. M. Fernández, J. Garzón-Roca, M. E. G. de la Torre, and R. I. Franco, "An evaluation of the resilient modulus and permanent deformation of unbound mixtures of granular materials and rubber particles from scrap tyres to be used in subballast layers," Transportation Research Procedia, vol. 18, pp. 384-391, 2016. https://doi.org/10.1016/j.trpro.2016.12.050.
  • [30] R. Carmichael and E. Stuart, "Predicting resilient modulus: A study to determine the mechanical properties of subgrade soils (abridgment)," Transportation Research Record, no. 1043, 1985.
  • [31] E. Sadrossadat, B. Ghorbani, P. R. Oskooei, and M. H. M. Sheikhkanloo, "A new model for estimating the resilient modulus of silt-clay subgrade soils," presented at the International Conference on Modern Research in Civil Engineering, Architecture Urban Management and Environment, 2018.
  • [32] A. Sağlik and A. G. Gungor, "Resilient modulus of unbound and bituminous bound road materials," in 5th Eurasphalt & Eurobitume congress, 2012, pp. 455-463.
  • [33] W. Heukelom and A. Klomp, "Dynamic testing as a means of controlling pavements during and after construction," in International Conference on the Structural Design of Asphalt Pavements University of Michigan, Ann Arbor, vol. 203, no. 1, 1962 [34] J. L. Green and J. W. Hall, Nondestructive vibratory testing of airport pavements: Experimental test results and development of evaluation methodology and procedure. US Army Engineer Waterways Experiment Station, Soils and Pavements Laboratory, 1975 . [35] F. Ahmed, J. Thompson, D. Kim, N. Huynh, and E. Carroll, "Evaluation of pavement service life using AASHTO 1972 and mechanistic-empirical pavement design guides," International Journal of Transportation Science and Technology, 2021. https://doi.org/10.1016/j.ijtst.2021.11.004.
  • [36] R. L. E. de Carvalho, Mechanistic-empirical design of flexible pavements: a sensitivity study. University of Maryland, College Park, 2006.
  • [37] S. Ozcanan and M. Akpınar, "Determining the critical tire and axle configuration for flexible pavements based on mechanistic analysis," Teknik Dergi, vol. 25, no. 1, 2014.
  • [38] V. E. Uz, M. Saltan, and İ. Gökalp, "Feasibility of using 4th power law in design of plastic deformation resistant low volume roads," Procedia Engineering, vol. 143, pp. 961-970, 2016. https://doi.org/10.1016/j.proeng.2016.06.084.
  • [39] Ü. Karadoğan, G. Çevikbilen, and B. Teymur, "Deniz dibi tarama malzemelerinin yol dolgusu olarak kullanımı," Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 25, no. 2, pp. 1059-1070, 2020. https://doi.org/10.17482/uumfd.679700.
  • [40] O. Sarıoğlu and M. Saltan, "Sathi kaplamali yollarin yapisal performansinin değerlendirilmesi," Mühendislik Bilimleri ve Tasarım Dergisi, vol. 9, no. 2, pp. 463-475, 2021. https://doi.org/10.21923/jesd.884480.
  • [41] H. İ. Fedakar, "Poliüretan ile güçlendirilmiş balastın hareket eden tekerlek yükü altındaki deformasyon davranışının nümerik olarak İncelenmesi," Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, vol. 37, no. 1, pp. 79-91, 2022. https://doi.org/10.21605/cukurovaumfd.1094976.
  • [42] "2022 Yılı Yol, Köprü, Tünel, Bitümlü Kaplamalar, Bakim Ve Trafik İşlerine Ait Birim Fİyat Listesi." Karayolları Genel Müdürlüğü. https://www.kgm.gov.tr/SiteCollectionDocuments/KGMdocuments/MerkezBirimler/ProgramIzlemeDairesiBaskanligi/2022BirimFiyatListesi.pdf [Accessed: Oct.10, 2022].

The Effect of The Bearing Capacity of Sub-Grade Soil on The Thickness and Cost of The Superstructure of Chip Seals

Yıl 2023, Cilt: 12 Sayı: 2, 376 - 386, 27.06.2023
https://doi.org/10.17798/bitlisfen.1213673

Öz

applied for preventative treatment of an existing road or to overlay low-trafficked roads. The thickness of the superstructure of a chip seal pavement is directly related to the bearing capacity of sub-grade soil. The bearing capacity of soil is represented by Resilient Modulus (MR) for the design of the thickness of layers. This study has focused on the effect of the bearing capacity of sub-grade soil on the thickness and cost of superstructures of chip seals. In addition, linear regression analysis was performed to investigate the relationship between the bearing capacity of the subgrade soil and the thickness of the superstructure. Two-dimensional numerical modeling was performed with the layer thicknesses found according to the resilient modulus. It was indicated that there was a strong correlation between the bearing capacity of sub-grade soil and the thickness of superstructures of chip seals with high R-square values. An increase in the bearing capacity of the subgrade resulted in a decrease in the thickness of the superstructures of the chip seal. So, it has importance in the aspect of economical to select the most proper soil that will be used in the superstructure of chip seals by taking care of the environment and conditions. In addition, Plaxis 2D modeling shows that a double-chip seal has less deformation and better bearing capacity than a single-chip seal.

Kaynakça

  • [1] M. Plessis-Fraissard, "Planning roads for rural communities," Transportation Research Record, vol. 1989, no. 1, pp. 1-8, 2007.
  • [2] A. Tunç, Kaplama mühendisliği ve uygulamaları. Asil Yayın Dağıtım, 2004.
  • [3] A. Tunç, Yol malzemeleri (agrega, asfalt, bitümlü karışımlar, beton, zemin) ve uygulamaları (kaplamalar ve zemin ıslahı-dizayn ve yapım metotları). Atlas-Nobel yayın dağıtım, 2001.
  • [4] M. M. Tanyıldızı and T. Geçkil, "Zemin taşıma gücünün rijit ve esnek üstyapıların kalınlıklarına ve maliyetlerine etkisi," Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 2, pp. 399-406, 2019. https://doi.org/10.35234/fumbd.521364.
  • [5] M. A. Önal and Z. Temren, "Comparison of flexible pavement designs of Turkey and some European countries," presented at the National Asphalt Symposium, 2004.
  • [6] D. Croney and P. Croney, The design and performance of road pavements. 1991.
  • [7] M. Tanyıldızı, "Joints in rigid pavements," Advanced Engineering Days (AED), vol. 4, pp. 67-70, 2022.
  • [8] E. Ağar, İ. Sütaş, and G. Öztaş, Beton yollar: rijit yol üstyapıları; malzeme-tasarım-üretim-yapım-bakım teknikleri. İstanbul Teknik Üniversitesi, 1998.
  • [9] M. Saltan and F. S. Fındık, "Stabilization of subbase layer materials with waste pumice in flexible pavement," Building and Environment, vol. 43, no. 4, pp. 415-421, 2008. https://doi.org/10.1016/j.buildenv.2007.01.007.
  • [10] M. V. Mohod and K. Kadam, "A comparative study on rigid and flexible pavement: A review," IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), vol. 13, no. 3, pp. 84-88, 2016.
  • [11] G. Taunk, "Rigid pavement vs. flexible pavement," Indian Highways, vol. 26, no. 2, 1998.
  • [12] A. Buss, M. Guirguis, and D. Gransberg, "Chip seal aggregate evaluation and successful roads preservation," Construction and Building Materials, vol. 180, pp. 396-404, 2018/08/20/ 2018. https://doi.org/10.1016/j.conbuildmat.2018.05.255.
  • [13] S. Shuler, "Chip seals for high traffic pavements," Transportation Research Record, vol. 1259, pp. 24-34, 1990.
  • [14] V. Uz, "Sathi kaplamalardaki kalıcı deformasyona etki eden parametrelerin incelenmesi," Doktora Tezi, Fen Bilimleri Enstitüsü, Süleyman Demirel Üniversitesi, Isparta, 2012.
  • [15] P. Cui, S. Wu, Y. Xiao, R. Hu, and T. Yang, "Environmental performance and functional analysis of chip seals with recycled basic oxygen furnace slag as aggregate," Journal of Hazardous Materials, vol. 405, p. 124441, 2021. https://doi.org/10.1016/j.jhazmat.2020.124441.
  • [16] İ. Gökalp, "Laboratory investigation of the effects of aggregates type, size and polishing level to skid resistance of surface coatings," Master Thesis, Graduate School of Natural and Applied Sciences, Department of Civil Engineering, Adana Science and Technology University, Adana, 2016.
  • [17] D. D. Gransberg and D. M. James, Chip seal best practices. Transportation Research Board, 2005.
  • [18] C. Gürer, B. E. Korkmaz, Ş. Yarcı, and M. B. Rahmany, "Sıcak agrega ile sathi kaplama uygulamasının araştırılması," Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol. 19, no. 2, pp. 401-409, 2019. https://doi.org/10.35414/akufemubid.543410.
  • [19] M. Karaşahin, C. Gürer, M. Saltan, M. V. Taciroğlu, and V. E. Uz, "Investigation of chip seal performance under cold climate conditions," Science and Engineering of composite materials, vol. 23, no. 6, pp. 649-658, 2016. https://doi.org/10.1515/secm-2014-0041.
  • [20] J. Lee, J. Lee, Y. R. Kim, and S. Mun, "A comparison study of friction measurements for chip seal," Journal of Testing and Evaluation, vol. 40, no. 4, pp. 603-611, 2012.
  • [21] I. Gökalp, V. E. Uz, and M. Saltan, "Comparative laboratory evaluation of macro texture depth of chip seal samples using sand patch and outflow meter test methods," in Bearing Capacity of Roads, Railways and Airfields: CRC Press, 2017, pp. 915-920.
  • [22] V. E. Uz and İ. Gökalp, "The effect of aggregate type, size and polishing levels to skid resistance of chip seals," Materials and Structures, vol. 50, pp. 1-14, 2017. https://doi.org/10.1617/s11527-017-0998-6.
  • [23] K. B. Akalın and M. Karacasu, "Çevresel atıklarla modifiye edilmiş sathi kaplamaların performansının agrega-bitüm İlişkisi bağlamında değerlendirilmesi," Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 1, pp. 127-136, 2020. https://doi.org/10.35234/fumbd.599096.
  • [24] Y. Abut, "Sathi kaplamalı üstyapı tasarımında mekanistik yaklaşım," 2022: 4th International Conference on Applied Engineering and Natural Sciences.
  • [25] A. Güngör and A. Sağlık, "Karayolları esnek üst yapılar projelendirme rehberi," Karayolları Genel Müdürlüğü, Teknik Araştırma Dairesi Başkanlığı, Ankara, pp. 7-9, 2008.
  • [26] P. Garnica Anguas, N. Pérez García, and J. Gómez López, "Módulos de resilencia en suelos finos y materiales granulares," Publicación Técnica, no. 142, 2000.
  • [27] C. Plati and B. Cliatt, "A sustainability perspective for unbound reclaimed asphalt pavement (RAP) as a pavement base material," Sustainability, vol. 11, no. 1, p. 78, 2018. https://doi.org/10.3390/su11010078.
  • [28] H. B. Seed, C. K. Chan, and C. L. Monismith, "Effects of repeated loading on the strength and deformation of compacted clay," in Highway research board proceedings, 1955, vol. 34.
  • [29] C. H. Signes, P. M. Fernández, J. Garzón-Roca, M. E. G. de la Torre, and R. I. Franco, "An evaluation of the resilient modulus and permanent deformation of unbound mixtures of granular materials and rubber particles from scrap tyres to be used in subballast layers," Transportation Research Procedia, vol. 18, pp. 384-391, 2016. https://doi.org/10.1016/j.trpro.2016.12.050.
  • [30] R. Carmichael and E. Stuart, "Predicting resilient modulus: A study to determine the mechanical properties of subgrade soils (abridgment)," Transportation Research Record, no. 1043, 1985.
  • [31] E. Sadrossadat, B. Ghorbani, P. R. Oskooei, and M. H. M. Sheikhkanloo, "A new model for estimating the resilient modulus of silt-clay subgrade soils," presented at the International Conference on Modern Research in Civil Engineering, Architecture Urban Management and Environment, 2018.
  • [32] A. Sağlik and A. G. Gungor, "Resilient modulus of unbound and bituminous bound road materials," in 5th Eurasphalt & Eurobitume congress, 2012, pp. 455-463.
  • [33] W. Heukelom and A. Klomp, "Dynamic testing as a means of controlling pavements during and after construction," in International Conference on the Structural Design of Asphalt Pavements University of Michigan, Ann Arbor, vol. 203, no. 1, 1962 [34] J. L. Green and J. W. Hall, Nondestructive vibratory testing of airport pavements: Experimental test results and development of evaluation methodology and procedure. US Army Engineer Waterways Experiment Station, Soils and Pavements Laboratory, 1975 . [35] F. Ahmed, J. Thompson, D. Kim, N. Huynh, and E. Carroll, "Evaluation of pavement service life using AASHTO 1972 and mechanistic-empirical pavement design guides," International Journal of Transportation Science and Technology, 2021. https://doi.org/10.1016/j.ijtst.2021.11.004.
  • [36] R. L. E. de Carvalho, Mechanistic-empirical design of flexible pavements: a sensitivity study. University of Maryland, College Park, 2006.
  • [37] S. Ozcanan and M. Akpınar, "Determining the critical tire and axle configuration for flexible pavements based on mechanistic analysis," Teknik Dergi, vol. 25, no. 1, 2014.
  • [38] V. E. Uz, M. Saltan, and İ. Gökalp, "Feasibility of using 4th power law in design of plastic deformation resistant low volume roads," Procedia Engineering, vol. 143, pp. 961-970, 2016. https://doi.org/10.1016/j.proeng.2016.06.084.
  • [39] Ü. Karadoğan, G. Çevikbilen, and B. Teymur, "Deniz dibi tarama malzemelerinin yol dolgusu olarak kullanımı," Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 25, no. 2, pp. 1059-1070, 2020. https://doi.org/10.17482/uumfd.679700.
  • [40] O. Sarıoğlu and M. Saltan, "Sathi kaplamali yollarin yapisal performansinin değerlendirilmesi," Mühendislik Bilimleri ve Tasarım Dergisi, vol. 9, no. 2, pp. 463-475, 2021. https://doi.org/10.21923/jesd.884480.
  • [41] H. İ. Fedakar, "Poliüretan ile güçlendirilmiş balastın hareket eden tekerlek yükü altındaki deformasyon davranışının nümerik olarak İncelenmesi," Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, vol. 37, no. 1, pp. 79-91, 2022. https://doi.org/10.21605/cukurovaumfd.1094976.
  • [42] "2022 Yılı Yol, Köprü, Tünel, Bitümlü Kaplamalar, Bakim Ve Trafik İşlerine Ait Birim Fİyat Listesi." Karayolları Genel Müdürlüğü. https://www.kgm.gov.tr/SiteCollectionDocuments/KGMdocuments/MerkezBirimler/ProgramIzlemeDairesiBaskanligi/2022BirimFiyatListesi.pdf [Accessed: Oct.10, 2022].
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Muhammed Tanyıldızı 0000-0002-8507-2825

Muhammet Çınar 0000-0001-5475-7787

Erken Görünüm Tarihi 27 Haziran 2023
Yayımlanma Tarihi 27 Haziran 2023
Gönderilme Tarihi 2 Aralık 2022
Kabul Tarihi 23 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 2

Kaynak Göster

IEEE M. Tanyıldızı ve M. Çınar, “The Effect of The Bearing Capacity of Sub-Grade Soil on The Thickness and Cost of The Superstructure of Chip Seals”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 12, sy. 2, ss. 376–386, 2023, doi: 10.17798/bitlisfen.1213673.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr