Araştırma Makalesi
BibTex RIS Kaynak Göster

Study of using Calcium Carbide Slag to Prepare Calcium Oxide Briquettes by Molding and Calcination Processes through Taguchi Method

Yıl 2018, Cilt: 33 Sayı: 1, 179 - 188, 15.03.2018
https://doi.org/10.21605/cukurovaummfd.420705

Öz

As the disposal of calcium carbide slag (CCS) obtained a by-product during an acetylene gas process creates an environmental problem, this study aimed to use of CCS to prepare calcium oxide (CaO) briquettes for re-use in the production of calcium carbide (CaC2). The influence of binder types (phosphoric acid (H3PO4), molasses, and corn syrup), binder amount (1, 3, and 5%), briquetting pressure (20, 28, and 36 MPa), calcination temperature (800, 900, and 1000 oC), and calcination time (30, 45, and 60 min) on the strength value of CaO briquettes was investigated using the Taguchi approach. The highest compressive strength value of CaO briquettes was found to be 4.05 MPa. The stability and friability values of the final product were 92% and 8%, respectively. ANOVA analysis revealed that the contribution rate of production parameters on the strength value of CaO briquettes were as follows: (i) binder amount, (ii) binder type, (iii) briquetting pressure, (iv) calcination temperature, and (v) calcination time. The optimal production conditions were determined as follows: the amount of binder: 5%, briquetting pressure: 28 MPa, calcination temperature: 900 oC, and calcination time: 60 min. The obtained CaO briquettes provide a required strength value for re-use in the production of CaC2.

Kaynakça

  • 1. Kılıç, Ö., Anıl, M., 2005. Farklı Kalsinasyon Ortamlarının Kireç Üretimi Üzerindeki Etkilerinin Araştırılması, Madencilik, 44(4), 19-28, (in Turkish).
  • 2. Kılıç, Ö., 2013. Impact of Physical Properties and Chemical Composition of Limestone on Decomposition Activation Energy. Asian Journal of Chemistry, 25 (14), 8116-8120.
  • 3. Horpibulsuk, S., Phetchuay, C., Chinkulkijniwat, A., 2011. Soil Stabilization by Calcium Carbide Residue and Fly Ash. Journal of Materials in Civil Engineering, 24, 184-193.
  • 4. Krammart, P., Tangtermsirikul, S., 2004. Properties of Cement Made by Partially Replacing Cement Raw Materials with Municipal Solid Waste Ashes and Calcium Carbide Waste. Construction and Building Materials, 18, 579-583.
  • 5. Phetchuay, C., Horpibulsuk, S., Suksiripattanapong, C., Chinkulkijniwat, A., Arulrajah, A., Disfani, M.M., 2014. Calcium Carbide Residue: Alkaline Activator for Clay–Fly Ash Geopolymer. Construction and Building Materials, 69, 285-294.
  • 6. Horpibulsuk, S., Munsrakest, V., Udomchai, A., Chinkulkijniwat, A., Arulrajah, A., 2014. Strength of Sustainable Non-Bearing Masonry Units Manufactured from Calcium Carbide Residue and Fly Ash. Construction and Building Materials, 71, 210-215.
  • 7. Namarak, C., Satching, P., Tangchirapat, W., Jaturapitakkul, C., 2017. Improving the Compressive Strength of Mortar from a Binder of Fly Ash-Calcium Carbide Residue. Construction and Building Materials, 147, 713-719.
  • 8. Liu, X., Zhu, B., Zhou, W., Hu, S., Chen, D., Griffy-Brown, C., 2011. CO2 Emissions in Calcium Carbide Industry: an Analysis of China's Mitigation Potential. International Journal of Greenhouse Gas Control, 5, 1240-1249.
  • 9. Cao, J., Liu, F., Lin, Q., Zhang, Y., 2008. Hydrothermal Synthesis of Xonotlite from Carbide Slag. Progress in Natural Science, 18,1147-1153.
  • 10. Liu, F., Wang, X., Cao, J., 2012. Effect of Ultrasonic Process on Carbide Slag Activity and Synthesized Xonotlite. Physics Procedia, 25, 56-62.
  • 11. Cao, J.X., Liu, F., Lin, Q., Zhang, Y., Dong, Y.G., Zeng, L.K., 2008. Effect of Calcination Temperature on Mineral Composition of Carbide Slag, Lime Activity and Synthesized Xonotlite. Key Engineering Materials, Trans Tech Publ, 1545-1547.
  • 12. Tan, Y., Li, T, Zeng, G. M., 2005. Promotion Effect of Additives on Sulfur Capture during Coal Combustion with Carbide Slag. Journal of Fuel Chemistry and Technology, 33 767-770.
  • 13. Li, Y., Sun, R., Liu, C., Liu, H., Lu, C., 2012. CO2 Capture by Carbide Slag from Chlor-Alkali Plant in Calcination/Carbonation Cycles. International Journal of Greenhouse Gas Control, 9, 117-123.
  • 14. Li, Y., Liu, H., Sun, R., Wu, S., Lu, C., 2012. Thermal Analysis of Cyclic Carbonation Behavior of CaO Derived from Carbide Slag at High Temperature. Journal of Thermal Analysis and Calorimetry, 110, 685-694.
  • 15. Bo, W., Huilan, S., Shiwen, B., 2010. Effect of Carbide Slag on High Pressure Digestion Properties of Diaspore. Light Metals, TMS (The Minerals, Metals & Materials Society) Edited by John. A. Johnson.
  • 16. Zhang, S., Gong, X., Wang, Z., Cao, J., Guo, Z., 2014. Preparation of Block CaO from Carbide Slag and Its Compressive Strength Improved by H3PO4, International Journal of Mineral Processing, 129, 6-11.
  • 17. Zhong, Q., Yang, Y., Li, Q., Xu, B., Jiang, T., 2017. Coal Tar Pitch and Molasses Blended Binder for Production of Formed Coal Briquettes from High Volatile Coal, Fuel Processing Technology, 157, 12-19.
  • 18. ASTM D440–86, 2002. Standard Test Method of Drop Shatter Test for Coal, ASTM International, West Conshohoken, PA, USA.
  • 19. Düzyol S., 2016. Taguchi Deneysel Tasarım Metodu Kullanılarak Karadon (Zonguldak) Kömürünün Yağ Aglomerasyonu Davranışının İncelenmesi, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 31(2), 77-84, (in Turkish).

Taguchi Metodu ile Kalsiyum Karpit Cürufundan Kalıplama ve Kalsinasyon Yöntemleri Uygulanarak Kalsiyum Oksit Briketlerinin Hazırlanması

Yıl 2018, Cilt: 33 Sayı: 1, 179 - 188, 15.03.2018
https://doi.org/10.21605/cukurovaummfd.420705

Öz

Asetilen gazı üretimi sırasında elde edilen kalsiyum karpit cürufunun (KKC) depolanması çevre açısından sorun yaratması nedeniyle, bu çalışmada KKC’den üretilen kalsiyum oksit (CaO) briketlerinin tekrar kalsiyum karpit (CaC2) üretiminde kullanılması amaçlanmıştır. Taguchi yaklaşımı ile bağlayıcı tipinin (fosforik asit (H3PO4), melas ve mısır şurubu), bağlayıcı miktarının (%1, %3 ve %5), briketleme basıncının (20, 28 ve 36 MPa), kalsinasyon sıcaklığının (800, 900 ve 1000 oC) ve kalsinasyon süresinin (30, 45 ve 60 dk) üretilen CaO briketlerinin dayanımına olan etkileri araştırılmıştır. En yüksek dayanım değeri 4,05 MPa olarak bulunmuştur. En yüksek dayanıma sahip briketin dayanıklık ve kırılganlık değerleri sırasıyla %92 ve %8 olarak belirlenmiştir. ANOVA analizine göre, üretim parametrelerinin CaO dayanımına olan etkisi sırasıyla (i) bağlayıcı miktarı, (ii) bağlayıcı tipi, (iii) briketleme basıncı, (iv) kalsinasyon sıcaklığı ve (v) kalsinasyon süresi olarak belirlenmiştir. Elde edilen optimum deney şartları ise; %5 bağlayıcı miktarı, 28 MPa briketleme basıncı, 900 oC kalsinasyon sıcaklığı ve 60 dakika kalsinasyon süresi olarak belirlenmiştir. Elde edilen CaO briketleri CaC2 üretiminde tekrar kullanılabilecek dayanımı değerini sağlamaktadır.

Kaynakça

  • 1. Kılıç, Ö., Anıl, M., 2005. Farklı Kalsinasyon Ortamlarının Kireç Üretimi Üzerindeki Etkilerinin Araştırılması, Madencilik, 44(4), 19-28, (in Turkish).
  • 2. Kılıç, Ö., 2013. Impact of Physical Properties and Chemical Composition of Limestone on Decomposition Activation Energy. Asian Journal of Chemistry, 25 (14), 8116-8120.
  • 3. Horpibulsuk, S., Phetchuay, C., Chinkulkijniwat, A., 2011. Soil Stabilization by Calcium Carbide Residue and Fly Ash. Journal of Materials in Civil Engineering, 24, 184-193.
  • 4. Krammart, P., Tangtermsirikul, S., 2004. Properties of Cement Made by Partially Replacing Cement Raw Materials with Municipal Solid Waste Ashes and Calcium Carbide Waste. Construction and Building Materials, 18, 579-583.
  • 5. Phetchuay, C., Horpibulsuk, S., Suksiripattanapong, C., Chinkulkijniwat, A., Arulrajah, A., Disfani, M.M., 2014. Calcium Carbide Residue: Alkaline Activator for Clay–Fly Ash Geopolymer. Construction and Building Materials, 69, 285-294.
  • 6. Horpibulsuk, S., Munsrakest, V., Udomchai, A., Chinkulkijniwat, A., Arulrajah, A., 2014. Strength of Sustainable Non-Bearing Masonry Units Manufactured from Calcium Carbide Residue and Fly Ash. Construction and Building Materials, 71, 210-215.
  • 7. Namarak, C., Satching, P., Tangchirapat, W., Jaturapitakkul, C., 2017. Improving the Compressive Strength of Mortar from a Binder of Fly Ash-Calcium Carbide Residue. Construction and Building Materials, 147, 713-719.
  • 8. Liu, X., Zhu, B., Zhou, W., Hu, S., Chen, D., Griffy-Brown, C., 2011. CO2 Emissions in Calcium Carbide Industry: an Analysis of China's Mitigation Potential. International Journal of Greenhouse Gas Control, 5, 1240-1249.
  • 9. Cao, J., Liu, F., Lin, Q., Zhang, Y., 2008. Hydrothermal Synthesis of Xonotlite from Carbide Slag. Progress in Natural Science, 18,1147-1153.
  • 10. Liu, F., Wang, X., Cao, J., 2012. Effect of Ultrasonic Process on Carbide Slag Activity and Synthesized Xonotlite. Physics Procedia, 25, 56-62.
  • 11. Cao, J.X., Liu, F., Lin, Q., Zhang, Y., Dong, Y.G., Zeng, L.K., 2008. Effect of Calcination Temperature on Mineral Composition of Carbide Slag, Lime Activity and Synthesized Xonotlite. Key Engineering Materials, Trans Tech Publ, 1545-1547.
  • 12. Tan, Y., Li, T, Zeng, G. M., 2005. Promotion Effect of Additives on Sulfur Capture during Coal Combustion with Carbide Slag. Journal of Fuel Chemistry and Technology, 33 767-770.
  • 13. Li, Y., Sun, R., Liu, C., Liu, H., Lu, C., 2012. CO2 Capture by Carbide Slag from Chlor-Alkali Plant in Calcination/Carbonation Cycles. International Journal of Greenhouse Gas Control, 9, 117-123.
  • 14. Li, Y., Liu, H., Sun, R., Wu, S., Lu, C., 2012. Thermal Analysis of Cyclic Carbonation Behavior of CaO Derived from Carbide Slag at High Temperature. Journal of Thermal Analysis and Calorimetry, 110, 685-694.
  • 15. Bo, W., Huilan, S., Shiwen, B., 2010. Effect of Carbide Slag on High Pressure Digestion Properties of Diaspore. Light Metals, TMS (The Minerals, Metals & Materials Society) Edited by John. A. Johnson.
  • 16. Zhang, S., Gong, X., Wang, Z., Cao, J., Guo, Z., 2014. Preparation of Block CaO from Carbide Slag and Its Compressive Strength Improved by H3PO4, International Journal of Mineral Processing, 129, 6-11.
  • 17. Zhong, Q., Yang, Y., Li, Q., Xu, B., Jiang, T., 2017. Coal Tar Pitch and Molasses Blended Binder for Production of Formed Coal Briquettes from High Volatile Coal, Fuel Processing Technology, 157, 12-19.
  • 18. ASTM D440–86, 2002. Standard Test Method of Drop Shatter Test for Coal, ASTM International, West Conshohoken, PA, USA.
  • 19. Düzyol S., 2016. Taguchi Deneysel Tasarım Metodu Kullanılarak Karadon (Zonguldak) Kömürünün Yağ Aglomerasyonu Davranışının İncelenmesi, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 31(2), 77-84, (in Turkish).
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Mahmut Altıner

Yayımlanma Tarihi 15 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 33 Sayı: 1

Kaynak Göster

APA Altıner, M. (2018). Study of using Calcium Carbide Slag to Prepare Calcium Oxide Briquettes by Molding and Calcination Processes through Taguchi Method. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(1), 179-188. https://doi.org/10.21605/cukurovaummfd.420705
AMA Altıner M. Study of using Calcium Carbide Slag to Prepare Calcium Oxide Briquettes by Molding and Calcination Processes through Taguchi Method. cukurovaummfd. Mart 2018;33(1):179-188. doi:10.21605/cukurovaummfd.420705
Chicago Altıner, Mahmut. “Study of Using Calcium Carbide Slag to Prepare Calcium Oxide Briquettes by Molding and Calcination Processes through Taguchi Method”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33, sy. 1 (Mart 2018): 179-88. https://doi.org/10.21605/cukurovaummfd.420705.
EndNote Altıner M (01 Mart 2018) Study of using Calcium Carbide Slag to Prepare Calcium Oxide Briquettes by Molding and Calcination Processes through Taguchi Method. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33 1 179–188.
IEEE M. Altıner, “Study of using Calcium Carbide Slag to Prepare Calcium Oxide Briquettes by Molding and Calcination Processes through Taguchi Method”, cukurovaummfd, c. 33, sy. 1, ss. 179–188, 2018, doi: 10.21605/cukurovaummfd.420705.
ISNAD Altıner, Mahmut. “Study of Using Calcium Carbide Slag to Prepare Calcium Oxide Briquettes by Molding and Calcination Processes through Taguchi Method”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33/1 (Mart 2018), 179-188. https://doi.org/10.21605/cukurovaummfd.420705.
JAMA Altıner M. Study of using Calcium Carbide Slag to Prepare Calcium Oxide Briquettes by Molding and Calcination Processes through Taguchi Method. cukurovaummfd. 2018;33:179–188.
MLA Altıner, Mahmut. “Study of Using Calcium Carbide Slag to Prepare Calcium Oxide Briquettes by Molding and Calcination Processes through Taguchi Method”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 33, sy. 1, 2018, ss. 179-88, doi:10.21605/cukurovaummfd.420705.
Vancouver Altıner M. Study of using Calcium Carbide Slag to Prepare Calcium Oxide Briquettes by Molding and Calcination Processes through Taguchi Method. cukurovaummfd. 2018;33(1):179-88.