Araştırma Makalesi
BibTex RIS Kaynak Göster

Glass/Polypropylene Commingled Yarns for Damage Tolerant Thermoplastic Composites

Yıl 2017, Cilt: 1 Sayı: 3, 93 - 103, 12.09.2017
https://doi.org/10.26701/ems.334783

Öz

This work presents manufacturing of glass/polypropylene
commingled yarns and analysis of low velocity impact (15J, 25J, and 35J) and
compression after impact (CAI) performance of thermoset and thermoplastic composites
produced from the  hybrid commingled yarns.
Hybrid commingled yarns were produced through an air jet nozzle at different
air pressures. Results showed that commingled yarn tenacity and mixture quality
were highly affected by changing the air pressures. Impact
tests indicated that thermoplastic composites absorbed around 73-80% of the
impact energy while thermoset composites absorbed 39-41%. CAI tests presented
that thermoplastic composite had higher residual strength with a different
failure mechanism under compressive loading.

Kaynakça

  • [1] Boria, S., A. Scattina, and G. Belingardi, (2017).Impact behavior of a fully thermoplastic composite. Compos Struct, vol. 167, pp. 63-75.
  • [2] Sonnenfeld, C., H. Mendil-Jakani, R. Agogue, P. Nunez, and P. Beauchene, (2017).Thermoplastic/thermoset multilayer composites: A way to improve the impact damage tolerance of thermosetting resin matrix composites. Compos Struct, vol. 171, pp. 298-305.
  • [3] Vendramini, J., C. Bas, G. Merle, P. Boissonnat, and N. D. Alberola, (2000).Commingled poly(butylene terephthalate)/unidirectional glass fiber composites: Influence of the process conditions on the microstructure of poly(butylene terephthalate). Poly Compos, vol. 21, pp. 724-733.
  • [4] Bernet, N., V. Michaud, P. E. Bourban, and J. A. E. Månson, (2001).Commingled yarn composites for rapid processing of complex shapes. Compos Part A, vol. 32, pp. 1613-1626.
  • [5] Trudel-Boucher, D., B. Fisa, J. Denault, and P. Gagnon, (2006).Experimental investigation of stamp forming of unconsolidated commingled E-glass/polypropylene fabrics. Compos Sci Technol, vol. 66, pp. 555-570.
  • [6] Bar, M., A. Das, and R. Alagirusamy, (2017).Studies on flax-polypropylene based low-twist hybrid yarns for thermoplastic composite reinforcement. J of Reinf Plast and Compos, vol. 36, pp. 818-831.
  • [7] Schafer, J., O. Stolyarov, R. Ali, C. Greb, G. Seide, and T. Gries, (2015).Process-structure relationship of carbon/ polyphenylene sulfide commingled hybrid yarns used for thermoplastic composites. J of Ind Tex, vol. 45, pp. 1661-1673.
  • [8] Alagirusamy, R., R. Fangueiro, V. Ogale, and N. Padaki, (2006).Hybrid yarns and textile preforming for thermoplastic composites. Text Prog, vol. 38, pp. 1-71.
  • [9] Mader, E., C. Rothe, and S.-L. Gao, (2007).Commingled yarns of surface nanostructured glass and polypropylene filaments for effective composite properties. J of Mat Sci, vol. 42, pp. 8062-8070.
  • [10] Mader, E., J. Rausch, and N. Schmidt, (2008).Commingled yarns – processing aspects and tailored surfaces of polypropylene/glass composites. Compos Part A, vol. 39, pp. 612-623.
  • [11] Legrand, X., C. Cochrane, and V. Koncar, (2016). A complex shaped-reinforced thermoplastic composite part made of commingled yarns with an integrated sensor. Smart Textiles and their Applications, V. Koncar, Oxford: Woodhead Publishing, pp. 353-374.
  • [12] Hufenbach, W., M. Gude, R. Böhm, and M. Zscheyge, (2011).The effect of temperature on mechanical properties and failure behaviour of hybrid yarn textile-reinforced thermoplastics. Mater Design, vol. 32, pp. 4278-4288.
  • [13] Long, A. C., C. E. Wilks, and C. D. Rudd, (2001).Experimental characterisation of the consolidation of a commingled glass/polypropylene composite. Compos Sci and Technol, vol. 61, pp. 1591-1603.
  • [14] Abounaim, M., O. Diestel, G. offmann, and C. Cherif, (2011).High performance thermoplastic composite from flat knitted multi-layer textile preform using hybrid yarn. Compos Sci and Technol, vol. 71, pp. 511-519.
  • [15] Wakeman, M. D., P. O. Hagstrand, F. Bonjour, P. E. Bourban, and J. A. E. Månson, (2002).Robotic tow placement for local reinforcement of glass mat thermoplastics (GMTs). Compos Part A, vol. 33, pp. 1199-1208.
  • [16] Lariviere, D., P. Krawczak, C. Tiberi, and P. Lucas, (2004).Interfacial properties in commingled yarn thermoplastic composites. Part I: Characterization of the fiber/matrix adhesion. Poly Compos, vol. 25, pp. 577-588.
  • [17] Lee, R. J., (1987).Compression strength of aligned carbon fibre-reinforced thermoplastic laminates. Composites, vol. 18, pp. 35-39.
  • [18] Chang, I. Y. and J. K. Lees, (1988).Recent development in thermoplastic composites: a review of matrix systems and processing methods. J Thermoplast Compos, vol. 1, pp. 277-296.
  • [19] Vieille, B., V. M. Casado, and C. Bouvet, (2013).About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic- and thermosetting-composites: A comparative study. Compos Struct, vol. 101, pp. 9-21.
  • [20] Touchard-Lagattu, F. and M. C. Lafarie-Frenot, (1996).Damage and inelastic deformation mechanisms in notched thermoset and thermoplastic laminates. Compos Sci and Technol, vol. 56, pp. 557-568.
  • [21] Erkendirci, Ö. F. and B. Z. Haque, (2012).Quasi-static penetration resistance behavior of glass fiber reinforced thermoplastic composites. Compos Part B, vol. 43, pp. 3391-3405.
  • [22] Adams, D. O. H. and M. W. Hyert, (1994).Effects of layer waviness on the compression fatigue performance of thermoplastic composite laminates. Inter J of Fatigue, vol. 16, pp. 385-391.
  • [23] Lachaud, F., B. Lorrain, L. Michel, and R. Barriol, (1998).Experimental and numerical study of delamination caused by local buckling of thermoplastic and thermoset composites. Compos Sci and Technol, vol. 58, pp. 727-733.
  • [24] Selver, E., P. Potluri, C. Soutis, and P. Hogg, (2015).Healing potential of hybrid materials for structural composites. Compos Struct vol. 122, pp. 57-66.
  • [25] Selver, E., P. Potluri, P. Hogg, and C. Soutis, (2016).Impact damage tolerance of thermoset composites reinforced with hybrid commingled yarns. Compos Part B, vol. 91, pp. 522-538.
Yıl 2017, Cilt: 1 Sayı: 3, 93 - 103, 12.09.2017
https://doi.org/10.26701/ems.334783

Öz

Kaynakça

  • [1] Boria, S., A. Scattina, and G. Belingardi, (2017).Impact behavior of a fully thermoplastic composite. Compos Struct, vol. 167, pp. 63-75.
  • [2] Sonnenfeld, C., H. Mendil-Jakani, R. Agogue, P. Nunez, and P. Beauchene, (2017).Thermoplastic/thermoset multilayer composites: A way to improve the impact damage tolerance of thermosetting resin matrix composites. Compos Struct, vol. 171, pp. 298-305.
  • [3] Vendramini, J., C. Bas, G. Merle, P. Boissonnat, and N. D. Alberola, (2000).Commingled poly(butylene terephthalate)/unidirectional glass fiber composites: Influence of the process conditions on the microstructure of poly(butylene terephthalate). Poly Compos, vol. 21, pp. 724-733.
  • [4] Bernet, N., V. Michaud, P. E. Bourban, and J. A. E. Månson, (2001).Commingled yarn composites for rapid processing of complex shapes. Compos Part A, vol. 32, pp. 1613-1626.
  • [5] Trudel-Boucher, D., B. Fisa, J. Denault, and P. Gagnon, (2006).Experimental investigation of stamp forming of unconsolidated commingled E-glass/polypropylene fabrics. Compos Sci Technol, vol. 66, pp. 555-570.
  • [6] Bar, M., A. Das, and R. Alagirusamy, (2017).Studies on flax-polypropylene based low-twist hybrid yarns for thermoplastic composite reinforcement. J of Reinf Plast and Compos, vol. 36, pp. 818-831.
  • [7] Schafer, J., O. Stolyarov, R. Ali, C. Greb, G. Seide, and T. Gries, (2015).Process-structure relationship of carbon/ polyphenylene sulfide commingled hybrid yarns used for thermoplastic composites. J of Ind Tex, vol. 45, pp. 1661-1673.
  • [8] Alagirusamy, R., R. Fangueiro, V. Ogale, and N. Padaki, (2006).Hybrid yarns and textile preforming for thermoplastic composites. Text Prog, vol. 38, pp. 1-71.
  • [9] Mader, E., C. Rothe, and S.-L. Gao, (2007).Commingled yarns of surface nanostructured glass and polypropylene filaments for effective composite properties. J of Mat Sci, vol. 42, pp. 8062-8070.
  • [10] Mader, E., J. Rausch, and N. Schmidt, (2008).Commingled yarns – processing aspects and tailored surfaces of polypropylene/glass composites. Compos Part A, vol. 39, pp. 612-623.
  • [11] Legrand, X., C. Cochrane, and V. Koncar, (2016). A complex shaped-reinforced thermoplastic composite part made of commingled yarns with an integrated sensor. Smart Textiles and their Applications, V. Koncar, Oxford: Woodhead Publishing, pp. 353-374.
  • [12] Hufenbach, W., M. Gude, R. Böhm, and M. Zscheyge, (2011).The effect of temperature on mechanical properties and failure behaviour of hybrid yarn textile-reinforced thermoplastics. Mater Design, vol. 32, pp. 4278-4288.
  • [13] Long, A. C., C. E. Wilks, and C. D. Rudd, (2001).Experimental characterisation of the consolidation of a commingled glass/polypropylene composite. Compos Sci and Technol, vol. 61, pp. 1591-1603.
  • [14] Abounaim, M., O. Diestel, G. offmann, and C. Cherif, (2011).High performance thermoplastic composite from flat knitted multi-layer textile preform using hybrid yarn. Compos Sci and Technol, vol. 71, pp. 511-519.
  • [15] Wakeman, M. D., P. O. Hagstrand, F. Bonjour, P. E. Bourban, and J. A. E. Månson, (2002).Robotic tow placement for local reinforcement of glass mat thermoplastics (GMTs). Compos Part A, vol. 33, pp. 1199-1208.
  • [16] Lariviere, D., P. Krawczak, C. Tiberi, and P. Lucas, (2004).Interfacial properties in commingled yarn thermoplastic composites. Part I: Characterization of the fiber/matrix adhesion. Poly Compos, vol. 25, pp. 577-588.
  • [17] Lee, R. J., (1987).Compression strength of aligned carbon fibre-reinforced thermoplastic laminates. Composites, vol. 18, pp. 35-39.
  • [18] Chang, I. Y. and J. K. Lees, (1988).Recent development in thermoplastic composites: a review of matrix systems and processing methods. J Thermoplast Compos, vol. 1, pp. 277-296.
  • [19] Vieille, B., V. M. Casado, and C. Bouvet, (2013).About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic- and thermosetting-composites: A comparative study. Compos Struct, vol. 101, pp. 9-21.
  • [20] Touchard-Lagattu, F. and M. C. Lafarie-Frenot, (1996).Damage and inelastic deformation mechanisms in notched thermoset and thermoplastic laminates. Compos Sci and Technol, vol. 56, pp. 557-568.
  • [21] Erkendirci, Ö. F. and B. Z. Haque, (2012).Quasi-static penetration resistance behavior of glass fiber reinforced thermoplastic composites. Compos Part B, vol. 43, pp. 3391-3405.
  • [22] Adams, D. O. H. and M. W. Hyert, (1994).Effects of layer waviness on the compression fatigue performance of thermoplastic composite laminates. Inter J of Fatigue, vol. 16, pp. 385-391.
  • [23] Lachaud, F., B. Lorrain, L. Michel, and R. Barriol, (1998).Experimental and numerical study of delamination caused by local buckling of thermoplastic and thermoset composites. Compos Sci and Technol, vol. 58, pp. 727-733.
  • [24] Selver, E., P. Potluri, C. Soutis, and P. Hogg, (2015).Healing potential of hybrid materials for structural composites. Compos Struct vol. 122, pp. 57-66.
  • [25] Selver, E., P. Potluri, P. Hogg, and C. Soutis, (2016).Impact damage tolerance of thermoset composites reinforced with hybrid commingled yarns. Compos Part B, vol. 91, pp. 522-538.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Konular Makine Mühendisliği
Bölüm Research Article
Yazarlar

Erdem Selver 0000-0003-0246-6878

Prasad Potluri Bu kişi benim

Yayımlanma Tarihi 12 Eylül 2017
Kabul Tarihi 12 Eylül 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 1 Sayı: 3

Kaynak Göster

APA Selver, E., & Potluri, P. (2017). Glass/Polypropylene Commingled Yarns for Damage Tolerant Thermoplastic Composites. European Mechanical Science, 1(3), 93-103. https://doi.org/10.26701/ems.334783
AMA Selver E, Potluri P. Glass/Polypropylene Commingled Yarns for Damage Tolerant Thermoplastic Composites. EMS. Ekim 2017;1(3):93-103. doi:10.26701/ems.334783
Chicago Selver, Erdem, ve Prasad Potluri. “Glass/Polypropylene Commingled Yarns for Damage Tolerant Thermoplastic Composites”. European Mechanical Science 1, sy. 3 (Ekim 2017): 93-103. https://doi.org/10.26701/ems.334783.
EndNote Selver E, Potluri P (01 Ekim 2017) Glass/Polypropylene Commingled Yarns for Damage Tolerant Thermoplastic Composites. European Mechanical Science 1 3 93–103.
IEEE E. Selver ve P. Potluri, “Glass/Polypropylene Commingled Yarns for Damage Tolerant Thermoplastic Composites”, EMS, c. 1, sy. 3, ss. 93–103, 2017, doi: 10.26701/ems.334783.
ISNAD Selver, Erdem - Potluri, Prasad. “Glass/Polypropylene Commingled Yarns for Damage Tolerant Thermoplastic Composites”. European Mechanical Science 1/3 (Ekim 2017), 93-103. https://doi.org/10.26701/ems.334783.
JAMA Selver E, Potluri P. Glass/Polypropylene Commingled Yarns for Damage Tolerant Thermoplastic Composites. EMS. 2017;1:93–103.
MLA Selver, Erdem ve Prasad Potluri. “Glass/Polypropylene Commingled Yarns for Damage Tolerant Thermoplastic Composites”. European Mechanical Science, c. 1, sy. 3, 2017, ss. 93-103, doi:10.26701/ems.334783.
Vancouver Selver E, Potluri P. Glass/Polypropylene Commingled Yarns for Damage Tolerant Thermoplastic Composites. EMS. 2017;1(3):93-103.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter