Araştırma Makalesi
BibTex RIS Kaynak Göster

3B yazıcıda farklı yazdırma hızlarında ABS ve PLA malzeme ile üretilen çekme test numunelerinin mekanik özelliklerinin karşılaştırılması

Yıl 2022, Cilt: 37 Sayı: 3, 1197 - 1212, 28.02.2022
https://doi.org/10.17341/gazimmfd.961981

Öz

Bu çalışmada, Ultimaker 2 Extended 3 boyutu yazıcı ile farklı yazdırma hızlarında (20-40-60-80-100-120-140mm/s), ABS (acrylonitrile butadiene styrene) ve PLA (poly-lactic acid) malzeme kullanılarak çekme test numuneleri üretilmiştir. Yazdırma hızının, mekanik özellikler üzerindeki etkisi araştırılmıştır. Üretilen numunelerin kütleleri, sertlikleri ve yüzey pürüzlülükleri ölçülmüş, porozite değerleri hesaplanmış ve üretilen numunelere çekme testi yapılmıştır. Çekme testi sonrasında kopmuş numunelerin kopma bölgelerinden taramalı elektron mikroskobu (TEM) ile görüntüler alınmıştır. Her iki malzeme ile aynı parametrelerde üretilen numunelerin mekanik özellikleri kıyaslanmıştır. Sonuç olarak; PLA malzeme ile üretilen numunelerin çekme mukavemetlerinin ABS malzeme ile üretilen numunelerden daha yüksek olduğu, ABS malzeme ile üretilen numunelerin kopma uzaması değerlerinin de PLA malzeme ile üretilen numunelerden daha yüksek olduğu tespit edilmiştir.

Destekleyen Kurum

İnönü Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FDK-2020-2351

Teşekkür

Bu çalışma; İnönü Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FDK-2020-2351 nolu proje ile desteklenmiştir. Değerli katkılarından dolayı İnönü Üniversitesi’ne teşekkürlerimizi sunarız.

Kaynakça

  • Shunmugam M.S., Kanthababu M., Advances in Additive Manufacturing and Joining: Proceedings of AIMTDR 2018, Springer, 2020.
  • Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites, Part B, 143, 172-196, 2018.
  • Minetola P., Calignano F., Galati M., Comparing geometric tolerance capabilities of additive manufacturing systems for polymers, Addit. Manuf., 32(101103), 1-10, 2020.
  • Akhoundi B., Behravesh A.H., Effect of filling pattern on the tensile and flexural mechanical properties of fdm 3d printed products, Exp. Mech., 59, 883–897, 2019.
  • Duda T., Raghavan L.V., 3D metal printing technology, IFAC-PapersOnLine, 49(29), 103-110, 2016.
  • Rajpurohit S.R., Dave H.K., Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer, Int. J. Adv. Manuf. Technol., 101, 1525–1536, 2019.
  • Yaragatti N., Patnaik A., A review on additive manufacturing of polymers composites, Mater. Today:. Proc., 44(6), 4150-4157, 2021.
  • Szymczyk-Ziółkowska P., Łabowska M.B., Detyna J., Michalak I., Gruber P., A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques, Biocybern. Biomed. Eng., 40(2), 624-638, 2020.
  • Cailleaux S., Sanchez-Ballester N.M., Gueche Y.A., Bataille B., Soulairol I., Fused Deposition Modeling (FDM), the new asset for the production of tailored medicines, J. Controlled Release, 30, 821-841, 2021.
  • Rodríguez-Panes A., Claver J., Camacho A.M., The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis, Materials, 11(8), 1333, 2018.
  • Tanikella N.G., Wittbrodt B., Pearce J.M., Tensile strength of commercial polymer materials for fused filament fabrication 3D printing, Addit. Manuf., 15, 40-47, 2017.
  • Jayanth N., Senthil P., Prakash C., Effect of chemical treatment on tensile strength and surface roughness of 3D-printed ABS using the FDM process, Virtual Phys. Prototyping, 13(3), 155-163, 2018.
  • Weng Z., Wang J., Senthil T., Wu L., Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing, Mater. Des., 102, 276-283, 2016.
  • Samykano M., Selvamani S.K., Kadirgama K., Ngui W.K., Kanagaraj G., Sudhakar K., Mechanical property of FDM printed ABS: influence of printing parameters, Int. J. Adv. Manuf. Technol., 102, 2779-2796, 2019.
  • Baran E., Erbil H., Surface modification of 3D printed PLA objects by Fused Deposition Modeling: A Review, Colloids and Interfaces, 3(2), 43, 2019.
  • Fernandez-Vicente M., Calle W., Ferrandiz S., Conejero A., Effect of infill parameters on tensile mechanical behavior in desktop 3D printing, 3D Print. Addit. Manuf., 3(3), 183-192, 2016.
  • Uribe-Lam E., Treviño-Quintanilla C.D., Cuan-Urquizo E., Olvera-Silva O., Use of additive manufacturing for the fabrication of cellular and lattice materials: a review, Mater. Manuf. Processes, 36(3), 257-280, 2021.
  • Wittbrodt B., Pearce J.M., The effects of PLA color on material properties of 3-D printed components, Addit. Manuf., 8, 110-116, 2015.
  • Yaman U., Butt N., Sacks E., Hoffmann C., Slice coherence in a query-based architecture for 3D heterogeneous printing, Comput.-Aided Des., 75-76, 27-38, 2016.
  • Yilmaz O., Ugla A.A., Development of a cold wire-feed additive layer manufacturing system using shaped metal deposition method, J. Mech. Sci. Technol., 31, 1611–1620, 2017.
  • Solmaz M.Y., Çelik E., Investigation of compression test performances of honeycomb sandwich composites produced by 3d printing method, Firat University Journal of Engineering Sciences, 30(1), 277-286, 2018.
  • Uzun M., Gür Y., Usca Ü., Manufacturing of new type curvilinear tooth profiled involute gears using 3D printing, Balıkesir University Journal of the Institute of Science and Technology, 20(1), 278-286, 2018.
  • Yaman U., Shrinkage compensation of holes via shrinkage of interior structure in FDM process, Int. J. Adv. Manuf. Technol., 94, 2187–2197, 2018.
  • Dilberoglu U.M., Simsek S., Yaman U.,Shrinkage compensation approach proposed for ABS material in FDM process, Mater. Manuf. Processes, 34(9), 993-998, 2019.
  • Schirmeister C.G., Hees T., Licht E.H., Mülhaupt R., 3D printing of high density polyethylene by fused filament fabrication, Addit. Manuf., 28, 152-159, 2019.
  • Sezer H., Eren O., Börklü H., Özdemir V., Additive manufacturing of carbon fiber reinforced plastic composites by fused deposition modelling: effect of fiber content and process parameters on mechanical properties, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (2), 663-674, 2019.
  • Yaman U., Fabrication of topologically optimized parts via direct 3d printing, Gazi University Journal of Science Part C: Design and Technology, 7(1), 236-244, 2019.
  • Yaman U., Dolen M., Hoffmann C., Generation of patterned indentations for additive manufacturing technologies, IISE Trans., 51(2), 209-217, 2019.
  • Harris M., Potgieter J., Ray S., Archer R., Arif K.M., Preparation and characterization of thermally stable ABS/HDPE blend for fused filament fabrication, Mater. Manuf. Processes, 35(2), 230-240, 2020.
  • Uzun M., Erdoğdu Y.E., Investigation of the effect of using unreinforced and reinforced PLA in production by fused deposition modeling on mechanical properties, Igdır University Journal of the Institute of Science and Technology, 10(4), 2800-2808, 2020.
  • Gulcımen Cakan B., Ensarioglu C., Küçükakarsu V., Tekin İ., Çakır M., Experimental and numerical investigation of in-plane and out-of-plane impact behaviour of auxetic honeycomb boxes produced by material extrusion, Journal of the Faculty of Engineering and Architecture of Gazi University, 36(3), 1657-1668, 2021.
  • Kechagias J.D., Ninikas K., Petousis M., Vidakis N., Vaxevanidis N., An investigation of surface quality characteristics of 3D printed PLA plates cut by CO2 laser using experimental design, Mater. Manuf. Processes, 2021.
  • Quarto M., Carminati M., D’Urso G., Density and shrinkage evaluation of AISI 316L parts printed via FDM process, Mater. Manuf. Processes, 2021.
  • Aydin M., Yildirim F., Canti E., Investigation of the processing performance of PLA filament in different printing parameters, International Journal of 3D Printing Technologies and Digital Industry, 3(2), 102-115, 2019.
  • Gunay M., Modeling of tensile and bending strength for PLA parts produced by FDM, International Journal of 3D Printing Technologies and Digital Industry, 3(3), 204-211, 2019.
  • Tao Y., Li P., Pan L., Improving tensile properties of polylactic acid parts by adjusting printing parameters of open source 3D printers, Materials Science (Medžiagotyra), 26(1), 83-87, 2020.
  • Ultimaker. The Ultimaker 2 Extended specifications. https://support.ultimaker.com/hc/en-us/articles/360011987939-The-Ultimaker-2-Extended-specifications. Yayın tarihi Şubat 25, 2020. Erişim tarihi Şubat 06, 2021.
  • Ultimaker. The Ultimaker 2 Extended user manual. https://support.ultimaker.com/hc/en-us/articles/360011987819-The-Ultimaker-2-Extended-user-manual. Yayın tarihi Şubat 25, 2020. Erişim tarihi Şubat 06, 2021.
  • ASTM D638-14: Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA, www.astm.org, https://doi.org/10.1520/D0638-14, 2014.
  • Ultimaker. Ultimaker ABS SDS. https://support.ultimaker.com/hc/en-us/articles/360011962900-Ultimaker-ABS-SDS. Yayın tarihi Nisan 09, 2020. Erişim tarihi Şubat 15, 2021.
  • Ultimaker. Ultimaker ABS TDS. https://support.ultimaker.com/hc/en-us/articles/360012759139-Ultimaker-ABS-TDS. Yayın tarihi Nisan 09, 2020. Erişim tarihi Şubat 15, 2021.
  • Ultimaker. Ultimaker PLA SDS. https://support.ultimaker.com/hc/en-us/articles/360012759359-Ultimaker-PLA-SDS. Yayın tarihi Nisan 09, 2020. Erişim tarihi Şubat 15, 2021.
  • Ultimaker. Ultimaker PLA TDS. https://support.ultimaker.com/hc/en-us/articles/360011962720-Ultimaker-PLA-TDS. Yayın tarihi Nisan 09, 2020. Erişim tarihi Şubat 15, 2021.

Comparison of mechanical properties of tensile test specimens produced with ABS and PLA material at different printing speeds in 3D printer

Yıl 2022, Cilt: 37 Sayı: 3, 1197 - 1212, 28.02.2022
https://doi.org/10.17341/gazimmfd.961981

Öz

In this study, tensile test specimens have been produced using ABS (acrylonitrile butadiene styrene) and PLA (poly-lactic acid) material at different printing speeds (20-40-60-80-100-120-140mm/s) with Ultimaker 2 Extended 3D printer. The effect of printing speed on mechanical properties has been investigated. Masses, hardness and surface roughness of the produced samples have been measured, porosity values have been calculated and tensile test has been performed on the produced samples. After the tensile test, images have been taken by scanning electron microscopy (SEM) from the breaking regions of the broken samples. The mechanical properties of the samples produced with the same parameters with both materials have been compared. As a result; it has been determined that the tensile strength of the samples produced with PLA material are higher than the samples produced with ABS material, and the elongation at break values of the samples produced with ABS material are higher than the samples produced with PLA material.

Proje Numarası

FDK-2020-2351

Kaynakça

  • Shunmugam M.S., Kanthababu M., Advances in Additive Manufacturing and Joining: Proceedings of AIMTDR 2018, Springer, 2020.
  • Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites, Part B, 143, 172-196, 2018.
  • Minetola P., Calignano F., Galati M., Comparing geometric tolerance capabilities of additive manufacturing systems for polymers, Addit. Manuf., 32(101103), 1-10, 2020.
  • Akhoundi B., Behravesh A.H., Effect of filling pattern on the tensile and flexural mechanical properties of fdm 3d printed products, Exp. Mech., 59, 883–897, 2019.
  • Duda T., Raghavan L.V., 3D metal printing technology, IFAC-PapersOnLine, 49(29), 103-110, 2016.
  • Rajpurohit S.R., Dave H.K., Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer, Int. J. Adv. Manuf. Technol., 101, 1525–1536, 2019.
  • Yaragatti N., Patnaik A., A review on additive manufacturing of polymers composites, Mater. Today:. Proc., 44(6), 4150-4157, 2021.
  • Szymczyk-Ziółkowska P., Łabowska M.B., Detyna J., Michalak I., Gruber P., A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques, Biocybern. Biomed. Eng., 40(2), 624-638, 2020.
  • Cailleaux S., Sanchez-Ballester N.M., Gueche Y.A., Bataille B., Soulairol I., Fused Deposition Modeling (FDM), the new asset for the production of tailored medicines, J. Controlled Release, 30, 821-841, 2021.
  • Rodríguez-Panes A., Claver J., Camacho A.M., The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis, Materials, 11(8), 1333, 2018.
  • Tanikella N.G., Wittbrodt B., Pearce J.M., Tensile strength of commercial polymer materials for fused filament fabrication 3D printing, Addit. Manuf., 15, 40-47, 2017.
  • Jayanth N., Senthil P., Prakash C., Effect of chemical treatment on tensile strength and surface roughness of 3D-printed ABS using the FDM process, Virtual Phys. Prototyping, 13(3), 155-163, 2018.
  • Weng Z., Wang J., Senthil T., Wu L., Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing, Mater. Des., 102, 276-283, 2016.
  • Samykano M., Selvamani S.K., Kadirgama K., Ngui W.K., Kanagaraj G., Sudhakar K., Mechanical property of FDM printed ABS: influence of printing parameters, Int. J. Adv. Manuf. Technol., 102, 2779-2796, 2019.
  • Baran E., Erbil H., Surface modification of 3D printed PLA objects by Fused Deposition Modeling: A Review, Colloids and Interfaces, 3(2), 43, 2019.
  • Fernandez-Vicente M., Calle W., Ferrandiz S., Conejero A., Effect of infill parameters on tensile mechanical behavior in desktop 3D printing, 3D Print. Addit. Manuf., 3(3), 183-192, 2016.
  • Uribe-Lam E., Treviño-Quintanilla C.D., Cuan-Urquizo E., Olvera-Silva O., Use of additive manufacturing for the fabrication of cellular and lattice materials: a review, Mater. Manuf. Processes, 36(3), 257-280, 2021.
  • Wittbrodt B., Pearce J.M., The effects of PLA color on material properties of 3-D printed components, Addit. Manuf., 8, 110-116, 2015.
  • Yaman U., Butt N., Sacks E., Hoffmann C., Slice coherence in a query-based architecture for 3D heterogeneous printing, Comput.-Aided Des., 75-76, 27-38, 2016.
  • Yilmaz O., Ugla A.A., Development of a cold wire-feed additive layer manufacturing system using shaped metal deposition method, J. Mech. Sci. Technol., 31, 1611–1620, 2017.
  • Solmaz M.Y., Çelik E., Investigation of compression test performances of honeycomb sandwich composites produced by 3d printing method, Firat University Journal of Engineering Sciences, 30(1), 277-286, 2018.
  • Uzun M., Gür Y., Usca Ü., Manufacturing of new type curvilinear tooth profiled involute gears using 3D printing, Balıkesir University Journal of the Institute of Science and Technology, 20(1), 278-286, 2018.
  • Yaman U., Shrinkage compensation of holes via shrinkage of interior structure in FDM process, Int. J. Adv. Manuf. Technol., 94, 2187–2197, 2018.
  • Dilberoglu U.M., Simsek S., Yaman U.,Shrinkage compensation approach proposed for ABS material in FDM process, Mater. Manuf. Processes, 34(9), 993-998, 2019.
  • Schirmeister C.G., Hees T., Licht E.H., Mülhaupt R., 3D printing of high density polyethylene by fused filament fabrication, Addit. Manuf., 28, 152-159, 2019.
  • Sezer H., Eren O., Börklü H., Özdemir V., Additive manufacturing of carbon fiber reinforced plastic composites by fused deposition modelling: effect of fiber content and process parameters on mechanical properties, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (2), 663-674, 2019.
  • Yaman U., Fabrication of topologically optimized parts via direct 3d printing, Gazi University Journal of Science Part C: Design and Technology, 7(1), 236-244, 2019.
  • Yaman U., Dolen M., Hoffmann C., Generation of patterned indentations for additive manufacturing technologies, IISE Trans., 51(2), 209-217, 2019.
  • Harris M., Potgieter J., Ray S., Archer R., Arif K.M., Preparation and characterization of thermally stable ABS/HDPE blend for fused filament fabrication, Mater. Manuf. Processes, 35(2), 230-240, 2020.
  • Uzun M., Erdoğdu Y.E., Investigation of the effect of using unreinforced and reinforced PLA in production by fused deposition modeling on mechanical properties, Igdır University Journal of the Institute of Science and Technology, 10(4), 2800-2808, 2020.
  • Gulcımen Cakan B., Ensarioglu C., Küçükakarsu V., Tekin İ., Çakır M., Experimental and numerical investigation of in-plane and out-of-plane impact behaviour of auxetic honeycomb boxes produced by material extrusion, Journal of the Faculty of Engineering and Architecture of Gazi University, 36(3), 1657-1668, 2021.
  • Kechagias J.D., Ninikas K., Petousis M., Vidakis N., Vaxevanidis N., An investigation of surface quality characteristics of 3D printed PLA plates cut by CO2 laser using experimental design, Mater. Manuf. Processes, 2021.
  • Quarto M., Carminati M., D’Urso G., Density and shrinkage evaluation of AISI 316L parts printed via FDM process, Mater. Manuf. Processes, 2021.
  • Aydin M., Yildirim F., Canti E., Investigation of the processing performance of PLA filament in different printing parameters, International Journal of 3D Printing Technologies and Digital Industry, 3(2), 102-115, 2019.
  • Gunay M., Modeling of tensile and bending strength for PLA parts produced by FDM, International Journal of 3D Printing Technologies and Digital Industry, 3(3), 204-211, 2019.
  • Tao Y., Li P., Pan L., Improving tensile properties of polylactic acid parts by adjusting printing parameters of open source 3D printers, Materials Science (Medžiagotyra), 26(1), 83-87, 2020.
  • Ultimaker. The Ultimaker 2 Extended specifications. https://support.ultimaker.com/hc/en-us/articles/360011987939-The-Ultimaker-2-Extended-specifications. Yayın tarihi Şubat 25, 2020. Erişim tarihi Şubat 06, 2021.
  • Ultimaker. The Ultimaker 2 Extended user manual. https://support.ultimaker.com/hc/en-us/articles/360011987819-The-Ultimaker-2-Extended-user-manual. Yayın tarihi Şubat 25, 2020. Erişim tarihi Şubat 06, 2021.
  • ASTM D638-14: Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA, www.astm.org, https://doi.org/10.1520/D0638-14, 2014.
  • Ultimaker. Ultimaker ABS SDS. https://support.ultimaker.com/hc/en-us/articles/360011962900-Ultimaker-ABS-SDS. Yayın tarihi Nisan 09, 2020. Erişim tarihi Şubat 15, 2021.
  • Ultimaker. Ultimaker ABS TDS. https://support.ultimaker.com/hc/en-us/articles/360012759139-Ultimaker-ABS-TDS. Yayın tarihi Nisan 09, 2020. Erişim tarihi Şubat 15, 2021.
  • Ultimaker. Ultimaker PLA SDS. https://support.ultimaker.com/hc/en-us/articles/360012759359-Ultimaker-PLA-SDS. Yayın tarihi Nisan 09, 2020. Erişim tarihi Şubat 15, 2021.
  • Ultimaker. Ultimaker PLA TDS. https://support.ultimaker.com/hc/en-us/articles/360011962720-Ultimaker-PLA-TDS. Yayın tarihi Nisan 09, 2020. Erişim tarihi Şubat 15, 2021.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Muhammed Safa Kamer 0000-0003-3852-1031

Şemsettin Temiz 0000-0002-6737-3720

Dr. Hakan Yaykaşlı 0000-0001-5729-9662

Ahmet Kaya 0000-0001-9197-3542

Orhan Akay 0000-0002-2369-1399

Proje Numarası FDK-2020-2351
Yayımlanma Tarihi 28 Şubat 2022
Gönderilme Tarihi 3 Temmuz 2021
Kabul Tarihi 12 Eylül 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 3

Kaynak Göster

APA Kamer, M. S., Temiz, Ş., Yaykaşlı, D. H., Kaya, A., vd. (2022). 3B yazıcıda farklı yazdırma hızlarında ABS ve PLA malzeme ile üretilen çekme test numunelerinin mekanik özelliklerinin karşılaştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1197-1212. https://doi.org/10.17341/gazimmfd.961981
AMA Kamer MS, Temiz Ş, Yaykaşlı DH, Kaya A, Akay O. 3B yazıcıda farklı yazdırma hızlarında ABS ve PLA malzeme ile üretilen çekme test numunelerinin mekanik özelliklerinin karşılaştırılması. GUMMFD. Şubat 2022;37(3):1197-1212. doi:10.17341/gazimmfd.961981
Chicago Kamer, Muhammed Safa, Şemsettin Temiz, Dr. Hakan Yaykaşlı, Ahmet Kaya, ve Orhan Akay. “3B yazıcıda Farklı yazdırma hızlarında ABS Ve PLA Malzeme Ile üretilen çekme Test Numunelerinin Mekanik özelliklerinin karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, sy. 3 (Şubat 2022): 1197-1212. https://doi.org/10.17341/gazimmfd.961981.
EndNote Kamer MS, Temiz Ş, Yaykaşlı DH, Kaya A, Akay O (01 Şubat 2022) 3B yazıcıda farklı yazdırma hızlarında ABS ve PLA malzeme ile üretilen çekme test numunelerinin mekanik özelliklerinin karşılaştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 3 1197–1212.
IEEE M. S. Kamer, Ş. Temiz, D. H. Yaykaşlı, A. Kaya, ve O. Akay, “3B yazıcıda farklı yazdırma hızlarında ABS ve PLA malzeme ile üretilen çekme test numunelerinin mekanik özelliklerinin karşılaştırılması”, GUMMFD, c. 37, sy. 3, ss. 1197–1212, 2022, doi: 10.17341/gazimmfd.961981.
ISNAD Kamer, Muhammed Safa vd. “3B yazıcıda Farklı yazdırma hızlarında ABS Ve PLA Malzeme Ile üretilen çekme Test Numunelerinin Mekanik özelliklerinin karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/3 (Şubat 2022), 1197-1212. https://doi.org/10.17341/gazimmfd.961981.
JAMA Kamer MS, Temiz Ş, Yaykaşlı DH, Kaya A, Akay O. 3B yazıcıda farklı yazdırma hızlarında ABS ve PLA malzeme ile üretilen çekme test numunelerinin mekanik özelliklerinin karşılaştırılması. GUMMFD. 2022;37:1197–1212.
MLA Kamer, Muhammed Safa vd. “3B yazıcıda Farklı yazdırma hızlarında ABS Ve PLA Malzeme Ile üretilen çekme Test Numunelerinin Mekanik özelliklerinin karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 37, sy. 3, 2022, ss. 1197-12, doi:10.17341/gazimmfd.961981.
Vancouver Kamer MS, Temiz Ş, Yaykaşlı DH, Kaya A, Akay O. 3B yazıcıda farklı yazdırma hızlarında ABS ve PLA malzeme ile üretilen çekme test numunelerinin mekanik özelliklerinin karşılaştırılması. GUMMFD. 2022;37(3):1197-212.

Cited By