Araştırma Makalesi
BibTex RIS Kaynak Göster

Hazar Gölü’ndeki (Elazığ/Doğu Türkiye) çökellerin mühendislik özelliklerine ve sualtı kütle hareketlerine genel bir bakış

Yıl 2021, Cilt: 11 Sayı: 3, 1015 - 1035, 15.07.2021
https://doi.org/10.17714/gumusfenbil.895651

Öz

Bu çalışmanın amacı, Doğu Anadolu Fay Zonu içerisinde yer alan ve Türkiye’nin önemli tektonik göllerinden birisi olan Hazar Gölü yamaçlarındaki çökellerin ve yamaçlarda belirlenen su altı kütle hareketlerinin mühendislik özelliklerinin belirlenmesidir. Bu amaçla, gölde gerçekleştirilmiş olan yüksek çözünürlüklü sığ-sismik veriler kullanılarak belirlenen noktalardan alınan örselenmemiş zemin örneklerinde laboratuvar deneyleri gerçekleştirilmiştir. Deney sonuçlarına göre, akarsuların Hazar Gölü’ne boşaldığı alanlardaki zeminler inorganik iri silt (MLN), gölün orta kesimlerinde ise yüksek plastisiteli silt (MH)’dir. Zeminlerin doygun birim hacim ağırlık değerleri derinlikle artarken, porozite ve boşluk oranı değerleri ise azalmaktadır. MLN sınıfı zeminlerin dayanımı MH sınıfı zeminlere göre oldukça yüksektir. MH sınıfı zeminlerin dayanımı ise yeterince sıkılaşma olmadığından oldukça düşüktür. Hazar Gölü’ne ait sismik profillerde, eğimin dik olduğu yamaçlarda zemin kalınlığı maksimum 3 m civarında iken, eğimin daha az olduğu yamaçlarda zemin kalınlığı 10 m’ye kadar ulaşabilmektedir. Zemin kalınlığının fazla olduğu yamaçlarda, özellikle zeminin kendi ağırlığı ile gelişmiş su altı kütle hareketleri mevcuttur. Bu kütle hareketleri, plastik deformasyon izlerinin ve dairesel kayma yüzeylerinin açıkça görülebildiği slump tipi kaymalardır. Hazar Gölü yamaçlarındaki zeminlerin oldukça düşük dayanımlı olduğu göz önüne alınırsa, bu kütle hareketlerinin çökellerin kendi ağırlığının etkisiyle kayarak oluştuğunu ve Doğu Anadolu Fay Zonu (DAFZ)’nda meydana gelen depremlerin de bu kütle hareketlerini kolaylaştırdığı söylenebilir.

Destekleyen Kurum

Fırat Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi (FÜBAP)

Proje Numarası

MF.16.64

Teşekkür

Araştırma projesini maddi olarak destekleyen FÜBAP'a ve makalenin inceleme ve değerlendirme aşamasında yapmış oldukları katkılardan dolayı editör ve hakemlere teşekkür ederiz

Kaynakça

  • Ai, F., Förster, A., Stegmann, S. and Kopf, A. (2014). Geotechnical characteristics and slope stability analysis of the deeper slope of the Ligurian Margin, Southern France, Proceedings of the Beijing Landslide Forum, 549-555, https://doi.org/10.1007/978-3-319-04996-0_84.
  • Aksoy, E., İnceöz, M. ve Koçyiğit, A. (2007). Lake Hazar Basin: a negative flower structure on the East Anatolian Fault System (EAFS), SE Turkey, Turkish Journal of Earth Sciences, 16, 319-338.
  • Alpar, B. (1999). Underwater signatures of the Kocaeli earthquake of 17 August 1999 in Turkey, Turkish Journal of Marine Sciences, 5, 111-130.
  • Arpat, E. ve Şaroğlu, F. (1972). Doğu Anadolu Fayı ile ilgili gözlemler ve düşünceler, MTA Enstitüsü Dergisi, 78, 44-50, Ankara.
  • Aslan Y. (2013). Hazar Gölü (Elazığ) çökellerinin mühendislik özellikleri. Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ.
  • Assier-Rzadkiewicz, S., Heinrich, P., Sabatier, P.C., Savoye, B. and Bourillet, J.F. (2000). Numerical modelling of a landslide-generated tsunami: the 1979 Nice event, Pure Appl Geophys, 157, 1717-1727, https://doi.org/10.1007/PL00001057.
  • ASTM D 422-63 (2007). Standard Test Method for Particle-Size Analysis of Soils, West Conshohocken, PA.
  • ASTM D4531-86 (2010). Standard test methods for bulk density of peat and peat products, in Annual Book of ASTM Standards. West Conshohocken: ASTM International.
  • ASTM D3080/D3080M (2011). Standart Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, Annual Book of ASTM Standards; 04.08, West Conshohocken, 347-352.
  • ASTM D854-02 (2014). Standard Test Method for Specific Gravity of Soils, in: Annual Book of ASTM Standards, 04.08, West Conshohocken, 93-9.
  • ASTM 2487 (2017). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) In: Annual Book ASTM Standarts, 04.08, West Conshohocken.
  • ASTM D4318 (2017). Standard Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soils, In: Annual Book ASTM Standarts, 04.08, West Conshohocken, 582-595.
  • ASTM D2216 (2019). Standard test method for laboratory determination of water (moısture) content of soil and rock by mass obsolete.
  • Auffret, G.A., Auzende, J.M., Gennesseaux, M., Monti, S., Pastouret, L., Pautot and G. And Vanney, J. (1982). Recent mass wasting processes on the Provencal Margin (Western Mediterranean), Marine Slides and Other Mass Movements. Springer, New York, 53-58.
  • Bal Akkoca, D., Eriş, K.K., Çağatay, M.N. and Biltekin, D. (2019). The mineralogical and geochemical composition of Holocene sediments from Lake Hazar, Elazığ, Eastern Turkey: implications for weathering, paleoclimate, redox conditions, provenance, and tectonic setting, Turkish Journal of Earth Sciences, 28(5), 760-785, DOI: 10.3906/yer-1812-8.
  • Bardet, J.P. (1997). Experimental Soil Mechanics, Prentice-Hall, Inc., New Jersey, A.B.D.
  • Başaran, S. (2002). Marmara Denizi'nde kütle hareketi kökenli depoların sedimentolojik özellikleri. Yüksek Lisans Tezi, İstanbul Üniversitesi Deniz Bilimleri ve İşletmeciliği Enstitüsü, İstanbul.
  • Bea, R.G., Wright, S.G., Sircar, P. and Niedoroda, A. (1983). Wave-induced slides in south pass block 70, Mississippi Delta, J Geotech Eng, 109, 619-644, https://doi.org/10.1061/(ASCE)0733-9410(1983)109:4(619).
  • Berndt, C., Costa, S., Canals, M., Camerlenghi, A., De Mol, B. and Saunders, M. (2012). Repeated slope failure linked to fluid migration: the ANA submarine landslide complex, Eivissa channel, Western Mediterranean Sea, Earth Planetary Science Letters, 319-320, 65-74, https://doi.org/10.1016/j.epsl.2011.11.045.
  • Beuselinck, L., Govers, G., Poesen, J., Degraer, G. And Froyen, L. (1998). Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method, Catena, 32, 193-208.
  • Bondevik, S., Løvholt, F., Harbitz, C.B., Mangerud, J., Dawson, A. and Svendsen, J.I. (2005). The Storegga Slide tsunami-comparing field observations with numerical simulations, Marine and Petroleum Geology, 22(1-2), 195-208, https://doi.org/10.1016/j.marpetgeo.2004.10.003.
  • Bryn, P., Berg, K., Forsberg, C.F., Solheim, A. and Kvalstad, T.J. (2005). Explaining the Storegga Slide, Marine and Petroleum Geology, 22(1-2), 11-19, https://doi.org/10.1016/j.marpetgeo.2004.12.003.
  • Bugge, T., Befring, S., Belderson, R.H., Eidvin, T., Jansen, E., Kenyon, N., Holtedahl, H. and Sejrup, H.P. (1987). A giant three-stage submarine slide off Norway, Geo-Mar Lett 7(4), 191-198, https://doi.org/10.1007/BF02242771.
  • Bünz, S., Mienert, J., Bryn, P. and Berg, K. (2005). Fluid flow impact on slope failure from 3D seismic data: a case study in the Storegga Slide, Basin Res 17(1):109-122, https://doi.org/10.1111/j.1365-2117.2005.00256.x.
  • Canals, M., Lastras, G., Urgeles, R., Casamor, J.L., Mienert, J., Catdaneo, A., De Batist, M., Haflidason, H., Imbo, Y., Laberg, J.S., Locat, J., Long, D., Longva, O., Masson, D.G., Sultan, N., Trincardi, F. and Bryn, P. (2004). Slope failure dynamics and impacts from seafloor and shallow sub‐seafloor geophysical data: case studies from the COSTA Project, Marine Geology, 213(1‐4), 9‐72, https://doi.org/10.1016/j.margeo.2004.10.001.
  • Canpolat, Ö., Eriş, K.K., Akkoyun, E.Ö. (2020). Determining the concentration level of some elements caused by geological period in the sediments of Lake Hazar, Turkish Journal of Agriculture-Food Science and Technology, 8(4), 1001-1011, https://doi.org/10.24925/turjaf.v8i4.1001-1011.3319.
  • Carter. L., Milliman, J.D., Talling, P.J., Gavey, R. and Wynn, R.B. (2012). Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan, Geophysical Research Letters, 39, L12603, https://doi.org/10.1029/2012GL051172.
  • Cochonat, P., Bourillet, J.F., Savoye, B., Dodd, L. (1993). Geotechnical characteristics and instability of submarine slope sediments, the Nice slope (N-W Mediterranean Sea), Marine Georesources & Geotechnology, 11(2), 131-151, https://doi.org/10.1080/10641199309379912.
  • Collot, J-Y., Lewis, K., Lamarche, G. and Lallemand, S. (2001). The giant Ruatoria debris avalanche on thenorthern Hikurangi margin, New Zealand: result of oblique seamount subduction, J Geophys Res, 106(B9), 19271-19297, https://doi.org/10.1029/2001JB900004.
  • Çağatay, M.N., Algan, O., Sakinc, M., Eastoe, C., Tolun, L., Balkis, N., Ongan, D. and Caner, H. (1999). A Mid-Late Holocene sapropelik sediment unit from the southern Marmara shelf and its palaeoceanographic significance, Quaternary Geology Reviews,18, 531-540, https://doi.org/10.1016/S0277-3791(98)00094-8.
  • Çetin, H., Güneyli, H. ve Mayer, L. (2003). Paleoseismology of the Palu-Lake Hazar segment of the East Anatolian Fault Zone, Turkey, Tectonophysics, 374(3-4), 163-197, https://doi.org/10.1016/j.tecto.2003.08.003.
  • Dalla Valle, G., Gamberi, F., Rocchini, P., Minisini, D., Errera, A., Baglioni, L. and Trincardi, F. (2013). 3D seismic geomorphology of mass transport complexes in a foredeep basin: examples from the Pleistocene of the central adriatic basin (Mediterranean Sea), Sedimentary Geology 294, 127-141, https://doi.org/10.1016/j.sedgeo.2013.05.012.
  • Dan-Unterseh, G., Sultan, N., Savoye, B. (2007). The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling, Marine Geology, 245(1-4), 40-64, https://doi.org/10.1016/j.margeo.2007.06.011.
  • Dugan, B. and Flemings, P.B. (2000). Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps, Science 289(5477), 288-291, https://doi.org/10.1126/science.289.5477.288.
  • Duman, T.Y., Emre, Ö. (2013). The East Anatolian Fault: Geometry, Segmentation and Jog Characteristics, Geological Society, London, Special Publications published online, 372,495-529, https://doi.org/10.1144/SP372.14.
  • Dunne, L.A. and Hempton, M.R., (1984). Deltaic sedimentation in the Lake Hazar pull-apart basin, south-eastern Turkey, Sedimentology, 31(3), 401-412, https://doi.org/10.1111/j.1365-3091.1984.tb00868.x.
  • Elverhøi, A., Norem, H., Anderson, E.S., Dowdeswell, J.A., Fossen, I., Haflidason, H., Kenyon, N.H., Laberg, J.S., King, E.L., Sejrup, H.P., Solheim, A. and Vorren, T., (1997). On the origin and flow behavior of submarine slides on deep-sea fans along the orwegian-Barents Sea continental magrin, Geo-Marine Letters, 17, 119-125, https://doi.org/10.1007/s003670050016.
  • Eriş, K.K. (2013). Late Pleistocene-Holocene sedimentary records of climate and lake-level changes in Lake Hazar, eastern Anatolia, Turkey, Quaternary International, 302, 123-134, https://doi.org/10.1016/j.quaint.2012.12.024.
  • Eriş, K.K., Ryan, W.B.F., Çağatay, M.N., Sancar, U., Lericolais, G., Ménot, G. ve Bard, E. (2007). The timing and evolution of the post-glacial transgression across the Sea of Marmara shelf south of Istanbul, Marine Geology, 243(1-4), 57-76, https://doi.org/10.1016/j.margeo.2007.04.010.
  • Eriş, K.K., Akçer Ön, S., Çağatay, M.N.¸ Ülgen, U.B., Ön, Z.B., Gürocak, Z., Arslan, T.N., Bal Akkoca, D., Damcı, E., İnceöz, M. and Öztekin Okan, Ö. (2018a). Late Pleistocene to Holocene paleoenvironmental evolution of Lake Hazar, Eastern Anatolia, Turkey, Quaternary International, 436, 4-16, https://doi.org/10.1016/j.quaint.2017.09.027.
  • Eriş, K.K., Arslan, T.N. and Sabuncu, A. (2018b). Influences of climate and tectonic on the middle to late Holocene deltaic sedimentation in Lake Hazar, Eastern Turkey, Arabian Journal for Science and Engineering, 43, 3685-3697, https://doi.org/10.1007/s13369-017-3021-1.
  • Förster, A. (2011). Geotechnical measurements to characterise slope sediments and to identify landslide mechanisms and their impact on ecosystems, Doctoral Thesis, Faculty of Geosciences of Bremen University.
  • Förster, A., Stegmann, S., Meyer, M., Strozyk, F., Krastel, S. and Kopf, A. (2007). Geotechnical investigations to characterise landslide-prone slope sediments in the Cretan Sea (Northern Crete), International Conference and 97th Annual Meeting of the Geologische Vereinigung eV.,Bremen, Germany.
  • Förster, A., Strasser, M., Strozyk, F., Spagnoli, G., Stegmann, S. and Kopf, A. (2008). Characterization of landslide-prone slope sediments in the Cretan sea (eastern Mediterranean), 33rd International Geological Congress, Oslo, Norway.
  • Förster, A., Spieß, V., Kopf, A.J. and Dennielou, B., (2010a). Mass wasting dynamics at the deeper slope of the Ligurian Margin (Southern France). In: Mosher, DC., Shipp, C., Moscardelli, L., Chaytor, J., Baxter, C., Lee, H., and Urgeles, R. (eds.), Submarine Mass movements and their consequences IV. Advances in Natural and Technological Hazards Research,28, Springer, 67-77, https://doi.org/10.1007/978-90-481-3071-9_6.
  • Förster, A., Ellis, R.G., Henrich, R., Krastel, S. and Kopf, A.J. (2010b). Geotechnical characterization and strain analyses of sediment in the Mauritania Slide Complex, NW-Africa, Marine and Petroleum Geology, 27(6), 1175-1189, https://doi.org/10.1016/j.marpetgeo.2010.02.013.
  • Frey-Martínez, J., Cartwright, J. and James, D. (2006). Frontally confined versus frontally emergent submarine landslides: a 3D seismic characterisation, Marine and Petroleum Geology, 23(5), 585-604, https://doi.org/10.1016/j.marpetgeo.2006.04.002.
  • Gazioglu, C., Yucel, Z.Y., Dogan, E., (2005). Morphological features of major submarine landslides of Marmara Sea using multibeam data, Journal of Coastal Research, 21(4), 664-673, https://doi.org/10.2112/03-0060.1.
  • Gee, M., Uy H.S., Warren, J.K., Morley, C.K. and Lambiase, J.J. (2007). The Brunei slide: a giant submarine landslide on the North West borneo margin revealed by 3D seismic data, Marine Geology, 246(1), 9-23, https://doi.org/10.1016/j.margeo.2007.07.009
  • Gokceoglu, C., Tunusluoglu, M.C., Gorum, T., Tur, H., Gokasan, E., Tekkeli, A.B., Batuk, F. and Alp, H. (2009). Description of dynamics of the Tuzla Landslide and its implications for further landslides in the northern slope and shelf of the Cinarcik Basin (Marmara Sea, Turkey), Engineering Geology, 106(3-4), 133-153, https://doi.org/10.1016/j.enggeo.2009.02.007.
  • Gorur, N., Ozeren, M.S., Cagatay, M.N. and Sengor, A.M.C. (2008). Northern margin of the Cinarcik Basin: An unstable submarine fault scarp prone to mass movements. 61th Geological Congress of Turkiye, Ankara, Abstract Book, 219-220.
  • Gürocak, Z. (1993). Sivrice (Elazığ) Çevresinin Jeolojisi, Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ.
  • Hampton, M.A., Lee, H.J. and Locat, J. (1996). Submarine landslides, Reviews of Geophysics, 34(1), 33-59, https://doi.org/10.1029/95RG03287.
  • Hempton, M.R. (1984). Results of detailed mapping near Lake Hazar (Eastern Taurus Mountains), Geology of Taurus Belts, 229-235.
  • Hempton, M.R. (1985). Structure and deformation history of the Bitlis Suture Zone near Lake Hazar southeastern Turkey, Geol. Soc. Amer. Bull., 96(2), 233-243, https://doi.org/10.1130/0016-7606(1985)96<233:SADHOT>2.0.CO;2.
  • Hempton, M.R., Dunne, L.A., Dewey, J.F. (1983). Sedimentation in an active strike-slip basin, South-eastern Turkey, Journal of Geology, 91(4), 401-412, https://doi.org/10.1086/628786.
  • Herece, E. ve Akay, E. (1992). Karlıova-Çelikhan arasında Doğu Anadolu Fayı, Türkiye 9. Petrol Kongresi Bildirileri, 361-372.
  • Huntington, E. (1902). The valley of the upper Euphrates River and its people, Geological Society of America Bulletin, 34, 301-318.
  • Hühnerbach, V. and Masson, D.G. (2004). Landslides in the North Atlantic and its adjacent seas:an analysis of theirmorphology, setting and behaviour, Marine Geology, 213(1-4), 343-362, https://doi.org/10.1016/j.margeo.2004.10.013.
  • Imran, J., Harff, P. and Parker, G. (2001a). A numerical model of submarine debris flow with graphical user interface. Computers & Geosciences, 27(6), 717-729, https://doi.org/10.1016/S0098-3004(00)00124-2.
  • Imran, J., Parker, G., Locat, J. and Lee, H. (2001b). 1D Numerical model of muddy subaqueous and subaerial debris flows, Journal of Hydraulic Engineering, 127(11), 959-968, https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(959).
  • Ioualalen, M., Migeon, S. and Sardoux, O. (2010). Landslide tsunami vulnerability in the Ligurian Sea: case study of the 1979 October 16 Nice international airport submarine landslide and of identified geological mass failures, Geophysical Journal International, 181(2), 724-740, https://doi.org/10.1111/j.1365-246X.2010.04572.x.
  • Jackson, J.A. and McKenzie, D. (1984). Active tectonic of the Alpine-Himalayan belt between western Turkey and Pakistan, Geophysical Journal of the Royal Astronomical Society, 77, 185-264.
  • Kaya, A. (1993). Gezin-Maden (Elazığ) çevresinde jeolojik araştırmalar, Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ.
  • Kaya, A. (2004). Gezin (Maden-Elazığ) çevresinin jeolojisi, Pamukkale Ünv. Mühendislik Bilimleri Dergisi, 10 (1), 41-50.
  • Kaymakci, N., Inceöz, M. and Ertepinar, P. (2006). 3D architecture and neogene evolution of the Malatya basin: inferences for the kinematics of the Malatya and Ovacik fault zones, Turkish Journal of Earth Sciences 15, 123-154.
  • Kaymakci, N., Inceöz, M., Ertepinar, P. and Koc, A. (2010). Late cretaceous to recent kinematics of SE Anatolia (Turkey), In: Sosson, M., Kaymakci, N., Stephenson, R., Starostenko, V., Bergerat, F. (Eds.), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform, Geological Society London Special Publications, 340, 409-435, http://dx.doi.org/10.1144/SP340.18.
  • Kennett, J.P., Cannariato, K.G., Hendy, I.L. and Behl, R.J. (2003). Methane hydrates in quaternary climate change: the Clathrate Gun Hypothesis, Am Geophys Union Spec Publ, 54, 216, http://dx.doi.org/10.1029/054SP. Ketin, İ. (1966). Anadolu'nun tektonik birlikleri, MTA Derg, 66, 20-34.
  • Kim, G.Y. and Kim, D.C. (2001). Comparison and correlation of physical properties from the plain and slope sediments in the Ulleung Basin, East Sea (Sea of Japan), Journal of Asian Earth Sciences, 19(5), 669-681, https://doi.org/10.1016/S1367-9120(00)00062-6.
  • Koçyiğit, A., Aksoy, E. and İnceöz, M. (2003). Basic Neotectonic Characteristics of the Sivrice Fault Zone in the Sivrice-Palu area, East Anatolian Fault System (EAFS), Turkey, Excursion Guide Book, International Workshop on the North Anatolian, East Anatolian and Dead Sea Fault Systems: Recent Progress in Tectonics and Palaeoseismology, METU (Ankara, Turkey).
  • Kokum, M., and Inceoz, M. (2018). Structural analysis of the northern part of the East Anatolian Fault System, Journal of Structural Geology, 114, 55-63, https://doi.org/10.1016/j.jsg.2018.06.016.
  • Kopf, A.J., Stegmann S., Garziglia, S., Henry, P., Dennielou, B., Haas, S. and Weber, K.C. (2016). Soft sediment deformation in the shallow submarine slope off Nice (France) as a result of a variably charged Pliocene aquifer and mass wasting processes, Sedimentary Geology, 344, 290-309, https://doi.org/10.1016/j.sedgeo.2016.05.014.
  • Korup, O. (2012). Earth’s portfolio of extreme sediment transport events, Earth Sciences Review, 112(3-4), 115-125, https://doi.org/10.1016/j.earscirev.2012.02.006.
  • Kuscu, I., Okamura, M., Matsuoka, H., Yamamori, K., Awata, Y. and Özalp, S. (2009). Recognition of active faults and stepover geometry in Gemlik Bay, Sea of Marmara, NW Turkey, Marine Geology, 260(1-4), 90-101, https://doi.org/10.1016/j.margeo.2009.02.003.
  • Lee, C., Yun, T.S., Lee, J.S., Bahk, J.J. and Santamarina, J.C. (2011). Geotechnical characterization of marine sediments in the Ulleung Basin, East Sea, Engineering Geology, 117(1-2), 151-158, https://doi.org/10.1016/j.enggeo.2010.10.014.
  • Lee, H.J. (2009). Timing of occurrence of large submarine landslides on the Atlantic Ocean margin, Marine Geology, 264(1-2), 53-64, https://doi.org/10.1016/j.margeo.2008.09.009.
  • Lee, H.J., Chun, S.S., Yoon, S.H. and Kim, S.R. (1993). Slope stability and geotechnical properties of sediment of the southern margin of Ulleung Basin, East Sea (Sea of Japan), Marine Geology, 110(1-2), 31-45, https://doi.org/10.1016/0025-3227(93)90103-3.
  • Lipman, P.W., Normark, W.R., Moore, J.G., Wilson, J.B. and Guatmacher, C.E. (1988). The giant submarine Alika debris slide, Mauna Loa. Hawaii, Journal of Geophysical Research Atmospheres, 93(B5), 4279-4299, https://doi.org/10.1029/JB093iB05p04279.
  • Locat, J. (2001). Instabilities along ocean margins: a geomorphological and geotechnical perspective, Marine and Petroleum Geology, 18(4), 503-512, https://doi.org/10.1016/S0264-8172(00)00076-3.
  • Locat, J. and Lee, H.J. (2002). Submarine landslides: advances and challenges, Canadian Geotechnical Journal, 39, 191-212, https://doi.org/10.1139/t01-089.
  • Locat, J., Leroueil, S., Locat, A. and Lee, H. (2014). Weak layers: their definition and classification from a geotechnical perspective, In: Krastel S, Berhmann JH, Volker D, Stipp M, Berndt C, Urgeles R, Chaytor JD, Huhn K, Strasser M, Harbitz CB (eds) Submarine mass movements and their consequences, Switzerland: Springer International Publishing.
  • Lu, N., Ristow, G.H. and Likos, W.J. (2000). The accuracy of hydrometer analysis for fine-grained clay particles, Geotechnical Testing Journal, 23(4), 487-495, https://doi.org/10.1520/GTJ11069J.
  • Lyberis, N., Tekin, Y., Chorowicz, J., Kasapoğlu, E. and Gündoğdu, N. (1992). The East Anatolian Fault: an oblique collisional belt, Tectonophysics, 204(1-2), 1-15, https://doi.org/10.1016/0040-1951(92)90265-8
  • Ma, Z., Merkus, H.G., de Smet, J.G.A.E., Heffels, C., Scarlett, B. (2000). New developments in particle characterization by laser diffraction: size and shape, Powder Technology, 111(1-2), 66-78, https://doi.org/10.1016/S0032-5910(00)00242-4.
  • Maltman, A. (1994). The geological deformation of sediments, Cambridge, Chapman & Hall, University Press, https://doi.org/10.1007/978-94-011-0731-0.
  • Maslin, M., Owen, M., Day, S. and Long, D. (2004). Linking continental slope failures and climate change: testing the clathrate gun hypothesis, Geology, 32(1), 53-56, https://doi.org/10.1130/G20114.1.
  • Masson, D.G. (1996). Catastrophic collapse of the volcanic island of Hierro 15 ka ago and the history of landslides in the Canary Islands. Geology, 24(3), 231-234, https://doi.org/10.1130/0091-7613(1996)024<0231:CCOTVI>2.3.CO;2.
  • Masson, D.G., Harbitz, C.B., Wynn, R.B., Pedersen, G. and Løvholt, F. (2006). Submarine landslides: processes, triggers and hazard prediction. Philosophical Transactions of the Royal Societya, 364(1845), 2009-2039, https://doi.org/10.1098/rsta.2006.1810.
  • McAdoo, B.G., Pratson, L.F., Orange, D.L. (2000). Submarine landslide geomorphology, US continental slope, Marine Geology, 169(1-2), 103-136, https://doi.org/10.1016/S0025-3227(00)00050-5.
  • Middleton, G.V. and Hampton, M.A. (1973). Sediment gravity flows: Mechanics of flow and deposition, In: Middleton, G.V., Bouma, A.H. (Eds), Turbidites and Deep-water Sedimentation. Pacific Section SEPM, Los Angeles, CA, 1-38.
  • Moreno, D.G., Ferrari, A.H., Moernaut, J., Fraser, J.G., Boes, X., Van Daele, M., Avsar, U., Çagatay, N. and De Batist, M. (2011). Structure and recent evolution of the Hazar basin: a strike-slip basin on the east Anatolian Fault, Eastern Turkey. Basin Research, 23,191-207, https://doi.org/10.1111/j.1365-2117.2010.00476.x.
  • Moscardelli, L. and Wood, L. (2016). Morphometry of mass-transport deposits as a predictive tool, GSA Bulletin, 128(1-2), 47-80, https://doi.org/10.1130/B31221.1.
  • Mountjoy, J. and Micallef, A. (2018). Submarine Geomorphology, Chapter: Landslides, Springer International Publishing, https://doi.org/10.1007/978-3-319-57852-1_13.
  • MTA, (2008). DAF boyu jeoloji haritası, Palu ve Şiro Bölütü, Maden Tetkik Arama, Ankara.
  • MTA, (2012). 1/250000 Ölçekli Türkiye diri fay harita serisi, Elazığ Paftası, Seri No: 45, Maden Tetkik Arama, Ankara.
  • Mulder, T., Tisot, J.-P., Cochonat, P. and Bourillet, J.-F. (1994). Regional assessment of mass failure events in the Baie des Anges, Mediterranean Sea, Marine Geology, 122(1-2), 29-45, https://doi.org/10.1016/0025-3227(94)90203-8.
  • Mulder, T. and Moran, K. (1995). Relationship among submarine instabilities, sea level variations and the presence of an ice shett on the continental shelf: an example from the Verrill Canyon area, Scotian Shelf, Palaeogeography and Paleoclimatology, 10(1), 137-154, https://doi.org/10.1029/94PA02352.
  • Mulder, T. and Alexander, J. (2001). The physical character of subaqueous sedimentary density flows and their deposits, Sedimentology, 48(2), 269-299, https://doi.org/10.1046/j.1365-3091.2001.00360.x.
  • Nalbant, S.S., McClosky, J., Steacy, S., Barka, A.A., (2002). Stres accumulation and increased seismic risk in Eastern Turkey, Earth Planetary Science Letters, 195, 291-298.
  • Nardin, T.R., Hein, F.J., Gorsline, D.S. and Edwards, B.D. (1979). A review of mass movement processes, sediment and acoustic characteristics, and contrasts in slope and base-of-slope systems versus canyon-fan-basin floor systems, In: Doyle, L.J., Pilkey, O. H. (Eds.), Geology of continental slopes, SEPM Special Publication, 27, 61-73.
  • Orange, D.L. and Breen, N.A. (1992). The effects of fluid escape on accretionary wedges 2. Seepage force, slope failure, headless submarine canyons and vents, Journal of Geophysical Research, 97(B6), 9277-9295, https://doi.org/10.1029/92JB00460.
  • Prakash, K. and Sridharan, A. (2012). Classification of Non-Plastic Soils, Indian Geotechnical Journal, 42(2):118-123, https://doi.org/0.1007/s40098-012-0007-5.
  • Perinçek, D. (1979a). Palu-Karabegan-Elazığ-Sivrice-Malatya alanının jeolojisi ve petrol imkanları: TPAO arşiv no:1361.
  • Perinçek, D. (1979b). The geology of Hazro-Korudağ-Çüngüş-Maden-Ergani-Hazar-Elazığ-Malatya Region. Guid book, Geol. Soc. of Turkey, Spec. Publ., 33.
  • Piper, D.J.W., Cochonat, P. and Morrison, M.L. (1999). The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity currents inferred from sidescan sonar, Sedimentology, 46 (1), 79-97, https://doi.org/10.1046/j.1365-3091.1999.00204.x.
  • Prior, D.B., Bornhold, B.D., Coleman, J.M. and Bryant, W.R. (1982a). Morphology of a submarine slide, Kitimat Arm. Brit Columbia, Geology, 10(11), 588-592, https://doi.org/10.1130/0091-7613(1982)10<588:MOASSK>2.0.CO;2
  • Rajasekaran, G. (2006). Influence of microfossils and pyrites on the behaviour of oceanbed sediments, Ocean Engineering, 33(3-4), 517-529, https://doi.org/10.1016/j.oceaneng.2005.02.015.
  • Sarı, E. and Çağatay, M.N. (2001). Distributions of heavy metals in the surface sediments of the Gulf of Saros, NE Aegean Sea, Environment International, 26(3), 169-173, https://doi.org/10.1016/S0160-4120(00)00097-0.
  • Sarı, E. and Çağatay, M.N. (2006). Turbidites and their association with past earthquakes in the deep Çınarcık Basin of the Marmara Sea, GeoMarine Letters, 26, 69-76, https://doi.org/10.1007/s00367-006-0017-3.
  • Shanmugam, G. (2000). 50 years of the turbidite paradigm (1950s-1990s): deep-water processes and facies models - a critical perspective, Marine and Petroleum Geology, 17(2), 285-342, https://doi.org/10.1016/S0264-8172(99)00011-2.
  • Stegmann, S. (2007). Design of a free-fall penetrometer for geotechnical characterisation of saturated sediments and its geological application, Doctoral Thesis, Faculty of Geosciences of Bremen University, Germany.
  • Stegmann, S. and Kopf, AJ. (2017). Marine deep-water free-fall Cpt measurements for landslide characterisation off crete, Greece (Eastern Mediterranean Sea) Part 1: A New 4000M Cone Penetrometer, Submarine Mass Movements and Their Consequences, Publishing Springer, 171-177, https://doi.org/10.1007/978-1-4020-6512-5_18.
  • Stegmann, S., Mörz, T. and Kopf, A.J. (2006). Initial results of a new Free Fall-Cone Penetrometer (FF-CPT) for geotechnical in situ characterisation of soft marine sediments, Norwegian Journal of Geology 86(3), 199-208.
  • Strozky, F., Strasser, M., Förster, A., Kopf, A. ve Huhn, K., (2010). Slope failure repetition in active magrin environments-constraints from submarine landslides in the Hellenic forearc, eastern Mediterranean, Journal of Geophysical Research, 115(B8), 103, https://doi.org/10.1029/2009JB006841.
  • Sungurlu, O., Perinçek, D., Kurt, G., Tuna, E., Dülger, S., Çelikdemir, E. ve Naz, H. (1985). Elazığ-Palu Alanının Jeolojisi, T.C. Pet. İşl. Gn. Md. Derg., 29, 83-190.
  • Şaroğlu, F., Emre, O. and Kuşçu, I. (1992). The East Anatolian fault zone of Turkey, Ann. Tect., 6, 99-125.
  • Şengör, A.M.C., Görür, N. and Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, In: Strike-slip Faulting and Basin Formation (Ed. By K.T. Biddle ve N. Christie-Blick), soc. Econom. Paleontol. Mineral., Spec. Publ., 227-267.
  • Talling, P.J., Clare, M., Urlaub, M., Pope, E., Hunt, J.E. and Watt, S.F.L. (2014). Large submarine landslides on continental slopes: geohazards, methane release, and climate change, Oceanography, 27(2), 32-45, https://doi.org/10.5670/oceanog.2014.38.
  • Tappin, D.R., Grilli, S.T., Harris, J.C., Geller, R.J., Masterlark, T., Kirby, J.T. Shi, F., Ma, G., Thingbaijam, K.K.S. and Mai, P.M. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology, 357, 344-361, https://doi.org/10.1016/j.margeo.2014.09.043.
  • Tolun, L., Çagatay, N. and Carrigan, W.J. (2002). Organic geochemistry and origin of Late Glacial-Holocene sapropelic layers and associated sediments in Marmara Sea, Marine Geology, 190(1-2), 47-60, https://doi.org/10.1016/S0025-3227(02)00342-0.
  • TUBİTAK, (2014). Hazar Gölü’nde (Elazığ) Pleyistosen-Holosen dönemi yüksek çözünürlüklü iklim ve su seviyesi değişimleri, Proje No: 111Y045.
  • Urlaub, M., Talling, P.J. and Masson, D.G. (2013). Timing and frequency of large submarine landslides: implicatinos for understanding triggers and future geohazard, Quaternary Science Reviews, 72, 63-82, https://doi.org/10.1016/j.quascirev.2013.04.020.
  • Vanneste, M., Forsberg, C.H., Glimsdal, S., Harbitz, C.B., Issler, D., Kvalstad, T.J., Løvholt, F. and Nadim, F. (2006). Submarine landslides and their consequences: What do we know, what can we do? The Second World Landslide Forum, Proceedings,1-11, https://doi.org/10.1007/978-3-642-31427-8-1.
  • Vitton, S.J and Sadler, L.Y. (1997). Particle size analysis of soils using laser light scattering and X-Ray absorption technology, Geotechnical Testing Journal, 20(1), 63-73, https://doi.org/10.1520/GTJ11421J.
  • Wen, B., Aydın, A., Aydın-Duzgoren, N.S. (2002). A comparative study of particle size analysis by sieve-hydrometer and laser diffraction methods, Geotechnical Testing Journal, 25(4), 434-442, https://doi.org/10.1520/GTJ11289J.
  • Westaway, R. (2003). Kinematics of the Middle East and eastern mediterranean updated, Turkish Journal of Earth Sciences, 12(1), 5-46.
  • Winters, W.J., Dugan, B. and Collett, T.S. (2008). Physical properties of sediments from Keathley Canyon and Atwater Valley, JIP Gulf of Mexico gas hydrate drilling program, Marine and Petroleum Geology, 25, 896-905, https://doi.org/10.1016/j.marpetgeo.2008.01.018.
  • Yazgan, E. (1984). Geodynamics Evolution of the Southern Taurides in the Regio In: O. Tekeli and M. C. Göncüoğlu (Eds.), Geology of the Taurus Belt, Int. Symp., Proceedings, 199-208.
  • Yılmaz, H., Över, S. and Özden, S. (2006). Kinematics of the East Anatolian Fault zone between Turkoglu (Kahramanmaras) and Celikhan (Adiyaman). Eastern Turkey Earth Planets Space, 58, 1463–1473, https://doi.org/10.1186/BF03352645.
  • Yun, T.S., Narsilio, G.A. and Santamarina, J.C. (2006). Physical characterization of core samples recovered from Gulf of Mexico, Marine and Petroleum Geology, 23(9-10), 893-900, https://doi.org/10.1016/j.marpetgeo.2006.08.002.
  • Zhang, Z. and Tumay, M.T. (1995). Granulometric evaluation of particle size using suspension pressure during sedimentation, Geotechnical Testing Journal, 18 (1), 121-129, https://doi.org/10.1520/GTJ10129J.

An overview engineering properties of sediments and submarine mass movements in the Hazar Lake (Elazığ/Eastern Turkey)

Yıl 2021, Cilt: 11 Sayı: 3, 1015 - 1035, 15.07.2021
https://doi.org/10.17714/gumusfenbil.895651

Öz

The aim of this study is to determine the engineering properties of the sediments and the submarine mass movements that are formed in the one of the most important tectonic lake of Turkey, Hazar Lake, located in the East Anatolian Fault Zone. For this purpose, laboratory experiments were carried out on undisturbed soil samples taken from the points that were determined by using high-resolution seismic data of the lake. According to the results of the experiments, the soils at the areas where streams discharge into Hazar Lake are Non-Plastic Course Silt (MLN), and around the mid-parts of the lake is High Plastic Silt (MH). Dry unit weight values of soils increase with depth, while porosity and void ratio values decrease. The strength value of MLN is much higher than MH type soils. The strength of MH type soil is quite low since it is not tightened enough. In the seismic profiles of Hazar Lake, the soil thickness is about maximum 3 m on steep slopes, while the soil thickness can reach up to 10 m on slopes having lower dips. On the slopes where the soil thickness is higher, submarine mass movements developed by the own weight of the soil especially. These types of mass movements are slump-type slides in which traces of plastic deformation and circular failure surfaces are clearly visible. Considering that the soil strength on the slopes of Hazar Lake are very low, it can be said that these mass movements were formed by the weight of the sediments and, the earthquakes that took place in the Eastern Anatolian Fault Zone (DAFZ) also catalyze these mass movements to occur.

Proje Numarası

MF.16.64

Kaynakça

  • Ai, F., Förster, A., Stegmann, S. and Kopf, A. (2014). Geotechnical characteristics and slope stability analysis of the deeper slope of the Ligurian Margin, Southern France, Proceedings of the Beijing Landslide Forum, 549-555, https://doi.org/10.1007/978-3-319-04996-0_84.
  • Aksoy, E., İnceöz, M. ve Koçyiğit, A. (2007). Lake Hazar Basin: a negative flower structure on the East Anatolian Fault System (EAFS), SE Turkey, Turkish Journal of Earth Sciences, 16, 319-338.
  • Alpar, B. (1999). Underwater signatures of the Kocaeli earthquake of 17 August 1999 in Turkey, Turkish Journal of Marine Sciences, 5, 111-130.
  • Arpat, E. ve Şaroğlu, F. (1972). Doğu Anadolu Fayı ile ilgili gözlemler ve düşünceler, MTA Enstitüsü Dergisi, 78, 44-50, Ankara.
  • Aslan Y. (2013). Hazar Gölü (Elazığ) çökellerinin mühendislik özellikleri. Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ.
  • Assier-Rzadkiewicz, S., Heinrich, P., Sabatier, P.C., Savoye, B. and Bourillet, J.F. (2000). Numerical modelling of a landslide-generated tsunami: the 1979 Nice event, Pure Appl Geophys, 157, 1717-1727, https://doi.org/10.1007/PL00001057.
  • ASTM D 422-63 (2007). Standard Test Method for Particle-Size Analysis of Soils, West Conshohocken, PA.
  • ASTM D4531-86 (2010). Standard test methods for bulk density of peat and peat products, in Annual Book of ASTM Standards. West Conshohocken: ASTM International.
  • ASTM D3080/D3080M (2011). Standart Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, Annual Book of ASTM Standards; 04.08, West Conshohocken, 347-352.
  • ASTM D854-02 (2014). Standard Test Method for Specific Gravity of Soils, in: Annual Book of ASTM Standards, 04.08, West Conshohocken, 93-9.
  • ASTM 2487 (2017). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) In: Annual Book ASTM Standarts, 04.08, West Conshohocken.
  • ASTM D4318 (2017). Standard Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soils, In: Annual Book ASTM Standarts, 04.08, West Conshohocken, 582-595.
  • ASTM D2216 (2019). Standard test method for laboratory determination of water (moısture) content of soil and rock by mass obsolete.
  • Auffret, G.A., Auzende, J.M., Gennesseaux, M., Monti, S., Pastouret, L., Pautot and G. And Vanney, J. (1982). Recent mass wasting processes on the Provencal Margin (Western Mediterranean), Marine Slides and Other Mass Movements. Springer, New York, 53-58.
  • Bal Akkoca, D., Eriş, K.K., Çağatay, M.N. and Biltekin, D. (2019). The mineralogical and geochemical composition of Holocene sediments from Lake Hazar, Elazığ, Eastern Turkey: implications for weathering, paleoclimate, redox conditions, provenance, and tectonic setting, Turkish Journal of Earth Sciences, 28(5), 760-785, DOI: 10.3906/yer-1812-8.
  • Bardet, J.P. (1997). Experimental Soil Mechanics, Prentice-Hall, Inc., New Jersey, A.B.D.
  • Başaran, S. (2002). Marmara Denizi'nde kütle hareketi kökenli depoların sedimentolojik özellikleri. Yüksek Lisans Tezi, İstanbul Üniversitesi Deniz Bilimleri ve İşletmeciliği Enstitüsü, İstanbul.
  • Bea, R.G., Wright, S.G., Sircar, P. and Niedoroda, A. (1983). Wave-induced slides in south pass block 70, Mississippi Delta, J Geotech Eng, 109, 619-644, https://doi.org/10.1061/(ASCE)0733-9410(1983)109:4(619).
  • Berndt, C., Costa, S., Canals, M., Camerlenghi, A., De Mol, B. and Saunders, M. (2012). Repeated slope failure linked to fluid migration: the ANA submarine landslide complex, Eivissa channel, Western Mediterranean Sea, Earth Planetary Science Letters, 319-320, 65-74, https://doi.org/10.1016/j.epsl.2011.11.045.
  • Beuselinck, L., Govers, G., Poesen, J., Degraer, G. And Froyen, L. (1998). Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method, Catena, 32, 193-208.
  • Bondevik, S., Løvholt, F., Harbitz, C.B., Mangerud, J., Dawson, A. and Svendsen, J.I. (2005). The Storegga Slide tsunami-comparing field observations with numerical simulations, Marine and Petroleum Geology, 22(1-2), 195-208, https://doi.org/10.1016/j.marpetgeo.2004.10.003.
  • Bryn, P., Berg, K., Forsberg, C.F., Solheim, A. and Kvalstad, T.J. (2005). Explaining the Storegga Slide, Marine and Petroleum Geology, 22(1-2), 11-19, https://doi.org/10.1016/j.marpetgeo.2004.12.003.
  • Bugge, T., Befring, S., Belderson, R.H., Eidvin, T., Jansen, E., Kenyon, N., Holtedahl, H. and Sejrup, H.P. (1987). A giant three-stage submarine slide off Norway, Geo-Mar Lett 7(4), 191-198, https://doi.org/10.1007/BF02242771.
  • Bünz, S., Mienert, J., Bryn, P. and Berg, K. (2005). Fluid flow impact on slope failure from 3D seismic data: a case study in the Storegga Slide, Basin Res 17(1):109-122, https://doi.org/10.1111/j.1365-2117.2005.00256.x.
  • Canals, M., Lastras, G., Urgeles, R., Casamor, J.L., Mienert, J., Catdaneo, A., De Batist, M., Haflidason, H., Imbo, Y., Laberg, J.S., Locat, J., Long, D., Longva, O., Masson, D.G., Sultan, N., Trincardi, F. and Bryn, P. (2004). Slope failure dynamics and impacts from seafloor and shallow sub‐seafloor geophysical data: case studies from the COSTA Project, Marine Geology, 213(1‐4), 9‐72, https://doi.org/10.1016/j.margeo.2004.10.001.
  • Canpolat, Ö., Eriş, K.K., Akkoyun, E.Ö. (2020). Determining the concentration level of some elements caused by geological period in the sediments of Lake Hazar, Turkish Journal of Agriculture-Food Science and Technology, 8(4), 1001-1011, https://doi.org/10.24925/turjaf.v8i4.1001-1011.3319.
  • Carter. L., Milliman, J.D., Talling, P.J., Gavey, R. and Wynn, R.B. (2012). Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan, Geophysical Research Letters, 39, L12603, https://doi.org/10.1029/2012GL051172.
  • Cochonat, P., Bourillet, J.F., Savoye, B., Dodd, L. (1993). Geotechnical characteristics and instability of submarine slope sediments, the Nice slope (N-W Mediterranean Sea), Marine Georesources & Geotechnology, 11(2), 131-151, https://doi.org/10.1080/10641199309379912.
  • Collot, J-Y., Lewis, K., Lamarche, G. and Lallemand, S. (2001). The giant Ruatoria debris avalanche on thenorthern Hikurangi margin, New Zealand: result of oblique seamount subduction, J Geophys Res, 106(B9), 19271-19297, https://doi.org/10.1029/2001JB900004.
  • Çağatay, M.N., Algan, O., Sakinc, M., Eastoe, C., Tolun, L., Balkis, N., Ongan, D. and Caner, H. (1999). A Mid-Late Holocene sapropelik sediment unit from the southern Marmara shelf and its palaeoceanographic significance, Quaternary Geology Reviews,18, 531-540, https://doi.org/10.1016/S0277-3791(98)00094-8.
  • Çetin, H., Güneyli, H. ve Mayer, L. (2003). Paleoseismology of the Palu-Lake Hazar segment of the East Anatolian Fault Zone, Turkey, Tectonophysics, 374(3-4), 163-197, https://doi.org/10.1016/j.tecto.2003.08.003.
  • Dalla Valle, G., Gamberi, F., Rocchini, P., Minisini, D., Errera, A., Baglioni, L. and Trincardi, F. (2013). 3D seismic geomorphology of mass transport complexes in a foredeep basin: examples from the Pleistocene of the central adriatic basin (Mediterranean Sea), Sedimentary Geology 294, 127-141, https://doi.org/10.1016/j.sedgeo.2013.05.012.
  • Dan-Unterseh, G., Sultan, N., Savoye, B. (2007). The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling, Marine Geology, 245(1-4), 40-64, https://doi.org/10.1016/j.margeo.2007.06.011.
  • Dugan, B. and Flemings, P.B. (2000). Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps, Science 289(5477), 288-291, https://doi.org/10.1126/science.289.5477.288.
  • Duman, T.Y., Emre, Ö. (2013). The East Anatolian Fault: Geometry, Segmentation and Jog Characteristics, Geological Society, London, Special Publications published online, 372,495-529, https://doi.org/10.1144/SP372.14.
  • Dunne, L.A. and Hempton, M.R., (1984). Deltaic sedimentation in the Lake Hazar pull-apart basin, south-eastern Turkey, Sedimentology, 31(3), 401-412, https://doi.org/10.1111/j.1365-3091.1984.tb00868.x.
  • Elverhøi, A., Norem, H., Anderson, E.S., Dowdeswell, J.A., Fossen, I., Haflidason, H., Kenyon, N.H., Laberg, J.S., King, E.L., Sejrup, H.P., Solheim, A. and Vorren, T., (1997). On the origin and flow behavior of submarine slides on deep-sea fans along the orwegian-Barents Sea continental magrin, Geo-Marine Letters, 17, 119-125, https://doi.org/10.1007/s003670050016.
  • Eriş, K.K. (2013). Late Pleistocene-Holocene sedimentary records of climate and lake-level changes in Lake Hazar, eastern Anatolia, Turkey, Quaternary International, 302, 123-134, https://doi.org/10.1016/j.quaint.2012.12.024.
  • Eriş, K.K., Ryan, W.B.F., Çağatay, M.N., Sancar, U., Lericolais, G., Ménot, G. ve Bard, E. (2007). The timing and evolution of the post-glacial transgression across the Sea of Marmara shelf south of Istanbul, Marine Geology, 243(1-4), 57-76, https://doi.org/10.1016/j.margeo.2007.04.010.
  • Eriş, K.K., Akçer Ön, S., Çağatay, M.N.¸ Ülgen, U.B., Ön, Z.B., Gürocak, Z., Arslan, T.N., Bal Akkoca, D., Damcı, E., İnceöz, M. and Öztekin Okan, Ö. (2018a). Late Pleistocene to Holocene paleoenvironmental evolution of Lake Hazar, Eastern Anatolia, Turkey, Quaternary International, 436, 4-16, https://doi.org/10.1016/j.quaint.2017.09.027.
  • Eriş, K.K., Arslan, T.N. and Sabuncu, A. (2018b). Influences of climate and tectonic on the middle to late Holocene deltaic sedimentation in Lake Hazar, Eastern Turkey, Arabian Journal for Science and Engineering, 43, 3685-3697, https://doi.org/10.1007/s13369-017-3021-1.
  • Förster, A. (2011). Geotechnical measurements to characterise slope sediments and to identify landslide mechanisms and their impact on ecosystems, Doctoral Thesis, Faculty of Geosciences of Bremen University.
  • Förster, A., Stegmann, S., Meyer, M., Strozyk, F., Krastel, S. and Kopf, A. (2007). Geotechnical investigations to characterise landslide-prone slope sediments in the Cretan Sea (Northern Crete), International Conference and 97th Annual Meeting of the Geologische Vereinigung eV.,Bremen, Germany.
  • Förster, A., Strasser, M., Strozyk, F., Spagnoli, G., Stegmann, S. and Kopf, A. (2008). Characterization of landslide-prone slope sediments in the Cretan sea (eastern Mediterranean), 33rd International Geological Congress, Oslo, Norway.
  • Förster, A., Spieß, V., Kopf, A.J. and Dennielou, B., (2010a). Mass wasting dynamics at the deeper slope of the Ligurian Margin (Southern France). In: Mosher, DC., Shipp, C., Moscardelli, L., Chaytor, J., Baxter, C., Lee, H., and Urgeles, R. (eds.), Submarine Mass movements and their consequences IV. Advances in Natural and Technological Hazards Research,28, Springer, 67-77, https://doi.org/10.1007/978-90-481-3071-9_6.
  • Förster, A., Ellis, R.G., Henrich, R., Krastel, S. and Kopf, A.J. (2010b). Geotechnical characterization and strain analyses of sediment in the Mauritania Slide Complex, NW-Africa, Marine and Petroleum Geology, 27(6), 1175-1189, https://doi.org/10.1016/j.marpetgeo.2010.02.013.
  • Frey-Martínez, J., Cartwright, J. and James, D. (2006). Frontally confined versus frontally emergent submarine landslides: a 3D seismic characterisation, Marine and Petroleum Geology, 23(5), 585-604, https://doi.org/10.1016/j.marpetgeo.2006.04.002.
  • Gazioglu, C., Yucel, Z.Y., Dogan, E., (2005). Morphological features of major submarine landslides of Marmara Sea using multibeam data, Journal of Coastal Research, 21(4), 664-673, https://doi.org/10.2112/03-0060.1.
  • Gee, M., Uy H.S., Warren, J.K., Morley, C.K. and Lambiase, J.J. (2007). The Brunei slide: a giant submarine landslide on the North West borneo margin revealed by 3D seismic data, Marine Geology, 246(1), 9-23, https://doi.org/10.1016/j.margeo.2007.07.009
  • Gokceoglu, C., Tunusluoglu, M.C., Gorum, T., Tur, H., Gokasan, E., Tekkeli, A.B., Batuk, F. and Alp, H. (2009). Description of dynamics of the Tuzla Landslide and its implications for further landslides in the northern slope and shelf of the Cinarcik Basin (Marmara Sea, Turkey), Engineering Geology, 106(3-4), 133-153, https://doi.org/10.1016/j.enggeo.2009.02.007.
  • Gorur, N., Ozeren, M.S., Cagatay, M.N. and Sengor, A.M.C. (2008). Northern margin of the Cinarcik Basin: An unstable submarine fault scarp prone to mass movements. 61th Geological Congress of Turkiye, Ankara, Abstract Book, 219-220.
  • Gürocak, Z. (1993). Sivrice (Elazığ) Çevresinin Jeolojisi, Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ.
  • Hampton, M.A., Lee, H.J. and Locat, J. (1996). Submarine landslides, Reviews of Geophysics, 34(1), 33-59, https://doi.org/10.1029/95RG03287.
  • Hempton, M.R. (1984). Results of detailed mapping near Lake Hazar (Eastern Taurus Mountains), Geology of Taurus Belts, 229-235.
  • Hempton, M.R. (1985). Structure and deformation history of the Bitlis Suture Zone near Lake Hazar southeastern Turkey, Geol. Soc. Amer. Bull., 96(2), 233-243, https://doi.org/10.1130/0016-7606(1985)96<233:SADHOT>2.0.CO;2.
  • Hempton, M.R., Dunne, L.A., Dewey, J.F. (1983). Sedimentation in an active strike-slip basin, South-eastern Turkey, Journal of Geology, 91(4), 401-412, https://doi.org/10.1086/628786.
  • Herece, E. ve Akay, E. (1992). Karlıova-Çelikhan arasında Doğu Anadolu Fayı, Türkiye 9. Petrol Kongresi Bildirileri, 361-372.
  • Huntington, E. (1902). The valley of the upper Euphrates River and its people, Geological Society of America Bulletin, 34, 301-318.
  • Hühnerbach, V. and Masson, D.G. (2004). Landslides in the North Atlantic and its adjacent seas:an analysis of theirmorphology, setting and behaviour, Marine Geology, 213(1-4), 343-362, https://doi.org/10.1016/j.margeo.2004.10.013.
  • Imran, J., Harff, P. and Parker, G. (2001a). A numerical model of submarine debris flow with graphical user interface. Computers & Geosciences, 27(6), 717-729, https://doi.org/10.1016/S0098-3004(00)00124-2.
  • Imran, J., Parker, G., Locat, J. and Lee, H. (2001b). 1D Numerical model of muddy subaqueous and subaerial debris flows, Journal of Hydraulic Engineering, 127(11), 959-968, https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(959).
  • Ioualalen, M., Migeon, S. and Sardoux, O. (2010). Landslide tsunami vulnerability in the Ligurian Sea: case study of the 1979 October 16 Nice international airport submarine landslide and of identified geological mass failures, Geophysical Journal International, 181(2), 724-740, https://doi.org/10.1111/j.1365-246X.2010.04572.x.
  • Jackson, J.A. and McKenzie, D. (1984). Active tectonic of the Alpine-Himalayan belt between western Turkey and Pakistan, Geophysical Journal of the Royal Astronomical Society, 77, 185-264.
  • Kaya, A. (1993). Gezin-Maden (Elazığ) çevresinde jeolojik araştırmalar, Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ.
  • Kaya, A. (2004). Gezin (Maden-Elazığ) çevresinin jeolojisi, Pamukkale Ünv. Mühendislik Bilimleri Dergisi, 10 (1), 41-50.
  • Kaymakci, N., Inceöz, M. and Ertepinar, P. (2006). 3D architecture and neogene evolution of the Malatya basin: inferences for the kinematics of the Malatya and Ovacik fault zones, Turkish Journal of Earth Sciences 15, 123-154.
  • Kaymakci, N., Inceöz, M., Ertepinar, P. and Koc, A. (2010). Late cretaceous to recent kinematics of SE Anatolia (Turkey), In: Sosson, M., Kaymakci, N., Stephenson, R., Starostenko, V., Bergerat, F. (Eds.), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform, Geological Society London Special Publications, 340, 409-435, http://dx.doi.org/10.1144/SP340.18.
  • Kennett, J.P., Cannariato, K.G., Hendy, I.L. and Behl, R.J. (2003). Methane hydrates in quaternary climate change: the Clathrate Gun Hypothesis, Am Geophys Union Spec Publ, 54, 216, http://dx.doi.org/10.1029/054SP. Ketin, İ. (1966). Anadolu'nun tektonik birlikleri, MTA Derg, 66, 20-34.
  • Kim, G.Y. and Kim, D.C. (2001). Comparison and correlation of physical properties from the plain and slope sediments in the Ulleung Basin, East Sea (Sea of Japan), Journal of Asian Earth Sciences, 19(5), 669-681, https://doi.org/10.1016/S1367-9120(00)00062-6.
  • Koçyiğit, A., Aksoy, E. and İnceöz, M. (2003). Basic Neotectonic Characteristics of the Sivrice Fault Zone in the Sivrice-Palu area, East Anatolian Fault System (EAFS), Turkey, Excursion Guide Book, International Workshop on the North Anatolian, East Anatolian and Dead Sea Fault Systems: Recent Progress in Tectonics and Palaeoseismology, METU (Ankara, Turkey).
  • Kokum, M., and Inceoz, M. (2018). Structural analysis of the northern part of the East Anatolian Fault System, Journal of Structural Geology, 114, 55-63, https://doi.org/10.1016/j.jsg.2018.06.016.
  • Kopf, A.J., Stegmann S., Garziglia, S., Henry, P., Dennielou, B., Haas, S. and Weber, K.C. (2016). Soft sediment deformation in the shallow submarine slope off Nice (France) as a result of a variably charged Pliocene aquifer and mass wasting processes, Sedimentary Geology, 344, 290-309, https://doi.org/10.1016/j.sedgeo.2016.05.014.
  • Korup, O. (2012). Earth’s portfolio of extreme sediment transport events, Earth Sciences Review, 112(3-4), 115-125, https://doi.org/10.1016/j.earscirev.2012.02.006.
  • Kuscu, I., Okamura, M., Matsuoka, H., Yamamori, K., Awata, Y. and Özalp, S. (2009). Recognition of active faults and stepover geometry in Gemlik Bay, Sea of Marmara, NW Turkey, Marine Geology, 260(1-4), 90-101, https://doi.org/10.1016/j.margeo.2009.02.003.
  • Lee, C., Yun, T.S., Lee, J.S., Bahk, J.J. and Santamarina, J.C. (2011). Geotechnical characterization of marine sediments in the Ulleung Basin, East Sea, Engineering Geology, 117(1-2), 151-158, https://doi.org/10.1016/j.enggeo.2010.10.014.
  • Lee, H.J. (2009). Timing of occurrence of large submarine landslides on the Atlantic Ocean margin, Marine Geology, 264(1-2), 53-64, https://doi.org/10.1016/j.margeo.2008.09.009.
  • Lee, H.J., Chun, S.S., Yoon, S.H. and Kim, S.R. (1993). Slope stability and geotechnical properties of sediment of the southern margin of Ulleung Basin, East Sea (Sea of Japan), Marine Geology, 110(1-2), 31-45, https://doi.org/10.1016/0025-3227(93)90103-3.
  • Lipman, P.W., Normark, W.R., Moore, J.G., Wilson, J.B. and Guatmacher, C.E. (1988). The giant submarine Alika debris slide, Mauna Loa. Hawaii, Journal of Geophysical Research Atmospheres, 93(B5), 4279-4299, https://doi.org/10.1029/JB093iB05p04279.
  • Locat, J. (2001). Instabilities along ocean margins: a geomorphological and geotechnical perspective, Marine and Petroleum Geology, 18(4), 503-512, https://doi.org/10.1016/S0264-8172(00)00076-3.
  • Locat, J. and Lee, H.J. (2002). Submarine landslides: advances and challenges, Canadian Geotechnical Journal, 39, 191-212, https://doi.org/10.1139/t01-089.
  • Locat, J., Leroueil, S., Locat, A. and Lee, H. (2014). Weak layers: their definition and classification from a geotechnical perspective, In: Krastel S, Berhmann JH, Volker D, Stipp M, Berndt C, Urgeles R, Chaytor JD, Huhn K, Strasser M, Harbitz CB (eds) Submarine mass movements and their consequences, Switzerland: Springer International Publishing.
  • Lu, N., Ristow, G.H. and Likos, W.J. (2000). The accuracy of hydrometer analysis for fine-grained clay particles, Geotechnical Testing Journal, 23(4), 487-495, https://doi.org/10.1520/GTJ11069J.
  • Lyberis, N., Tekin, Y., Chorowicz, J., Kasapoğlu, E. and Gündoğdu, N. (1992). The East Anatolian Fault: an oblique collisional belt, Tectonophysics, 204(1-2), 1-15, https://doi.org/10.1016/0040-1951(92)90265-8
  • Ma, Z., Merkus, H.G., de Smet, J.G.A.E., Heffels, C., Scarlett, B. (2000). New developments in particle characterization by laser diffraction: size and shape, Powder Technology, 111(1-2), 66-78, https://doi.org/10.1016/S0032-5910(00)00242-4.
  • Maltman, A. (1994). The geological deformation of sediments, Cambridge, Chapman & Hall, University Press, https://doi.org/10.1007/978-94-011-0731-0.
  • Maslin, M., Owen, M., Day, S. and Long, D. (2004). Linking continental slope failures and climate change: testing the clathrate gun hypothesis, Geology, 32(1), 53-56, https://doi.org/10.1130/G20114.1.
  • Masson, D.G. (1996). Catastrophic collapse of the volcanic island of Hierro 15 ka ago and the history of landslides in the Canary Islands. Geology, 24(3), 231-234, https://doi.org/10.1130/0091-7613(1996)024<0231:CCOTVI>2.3.CO;2.
  • Masson, D.G., Harbitz, C.B., Wynn, R.B., Pedersen, G. and Løvholt, F. (2006). Submarine landslides: processes, triggers and hazard prediction. Philosophical Transactions of the Royal Societya, 364(1845), 2009-2039, https://doi.org/10.1098/rsta.2006.1810.
  • McAdoo, B.G., Pratson, L.F., Orange, D.L. (2000). Submarine landslide geomorphology, US continental slope, Marine Geology, 169(1-2), 103-136, https://doi.org/10.1016/S0025-3227(00)00050-5.
  • Middleton, G.V. and Hampton, M.A. (1973). Sediment gravity flows: Mechanics of flow and deposition, In: Middleton, G.V., Bouma, A.H. (Eds), Turbidites and Deep-water Sedimentation. Pacific Section SEPM, Los Angeles, CA, 1-38.
  • Moreno, D.G., Ferrari, A.H., Moernaut, J., Fraser, J.G., Boes, X., Van Daele, M., Avsar, U., Çagatay, N. and De Batist, M. (2011). Structure and recent evolution of the Hazar basin: a strike-slip basin on the east Anatolian Fault, Eastern Turkey. Basin Research, 23,191-207, https://doi.org/10.1111/j.1365-2117.2010.00476.x.
  • Moscardelli, L. and Wood, L. (2016). Morphometry of mass-transport deposits as a predictive tool, GSA Bulletin, 128(1-2), 47-80, https://doi.org/10.1130/B31221.1.
  • Mountjoy, J. and Micallef, A. (2018). Submarine Geomorphology, Chapter: Landslides, Springer International Publishing, https://doi.org/10.1007/978-3-319-57852-1_13.
  • MTA, (2008). DAF boyu jeoloji haritası, Palu ve Şiro Bölütü, Maden Tetkik Arama, Ankara.
  • MTA, (2012). 1/250000 Ölçekli Türkiye diri fay harita serisi, Elazığ Paftası, Seri No: 45, Maden Tetkik Arama, Ankara.
  • Mulder, T., Tisot, J.-P., Cochonat, P. and Bourillet, J.-F. (1994). Regional assessment of mass failure events in the Baie des Anges, Mediterranean Sea, Marine Geology, 122(1-2), 29-45, https://doi.org/10.1016/0025-3227(94)90203-8.
  • Mulder, T. and Moran, K. (1995). Relationship among submarine instabilities, sea level variations and the presence of an ice shett on the continental shelf: an example from the Verrill Canyon area, Scotian Shelf, Palaeogeography and Paleoclimatology, 10(1), 137-154, https://doi.org/10.1029/94PA02352.
  • Mulder, T. and Alexander, J. (2001). The physical character of subaqueous sedimentary density flows and their deposits, Sedimentology, 48(2), 269-299, https://doi.org/10.1046/j.1365-3091.2001.00360.x.
  • Nalbant, S.S., McClosky, J., Steacy, S., Barka, A.A., (2002). Stres accumulation and increased seismic risk in Eastern Turkey, Earth Planetary Science Letters, 195, 291-298.
  • Nardin, T.R., Hein, F.J., Gorsline, D.S. and Edwards, B.D. (1979). A review of mass movement processes, sediment and acoustic characteristics, and contrasts in slope and base-of-slope systems versus canyon-fan-basin floor systems, In: Doyle, L.J., Pilkey, O. H. (Eds.), Geology of continental slopes, SEPM Special Publication, 27, 61-73.
  • Orange, D.L. and Breen, N.A. (1992). The effects of fluid escape on accretionary wedges 2. Seepage force, slope failure, headless submarine canyons and vents, Journal of Geophysical Research, 97(B6), 9277-9295, https://doi.org/10.1029/92JB00460.
  • Prakash, K. and Sridharan, A. (2012). Classification of Non-Plastic Soils, Indian Geotechnical Journal, 42(2):118-123, https://doi.org/0.1007/s40098-012-0007-5.
  • Perinçek, D. (1979a). Palu-Karabegan-Elazığ-Sivrice-Malatya alanının jeolojisi ve petrol imkanları: TPAO arşiv no:1361.
  • Perinçek, D. (1979b). The geology of Hazro-Korudağ-Çüngüş-Maden-Ergani-Hazar-Elazığ-Malatya Region. Guid book, Geol. Soc. of Turkey, Spec. Publ., 33.
  • Piper, D.J.W., Cochonat, P. and Morrison, M.L. (1999). The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity currents inferred from sidescan sonar, Sedimentology, 46 (1), 79-97, https://doi.org/10.1046/j.1365-3091.1999.00204.x.
  • Prior, D.B., Bornhold, B.D., Coleman, J.M. and Bryant, W.R. (1982a). Morphology of a submarine slide, Kitimat Arm. Brit Columbia, Geology, 10(11), 588-592, https://doi.org/10.1130/0091-7613(1982)10<588:MOASSK>2.0.CO;2
  • Rajasekaran, G. (2006). Influence of microfossils and pyrites on the behaviour of oceanbed sediments, Ocean Engineering, 33(3-4), 517-529, https://doi.org/10.1016/j.oceaneng.2005.02.015.
  • Sarı, E. and Çağatay, M.N. (2001). Distributions of heavy metals in the surface sediments of the Gulf of Saros, NE Aegean Sea, Environment International, 26(3), 169-173, https://doi.org/10.1016/S0160-4120(00)00097-0.
  • Sarı, E. and Çağatay, M.N. (2006). Turbidites and their association with past earthquakes in the deep Çınarcık Basin of the Marmara Sea, GeoMarine Letters, 26, 69-76, https://doi.org/10.1007/s00367-006-0017-3.
  • Shanmugam, G. (2000). 50 years of the turbidite paradigm (1950s-1990s): deep-water processes and facies models - a critical perspective, Marine and Petroleum Geology, 17(2), 285-342, https://doi.org/10.1016/S0264-8172(99)00011-2.
  • Stegmann, S. (2007). Design of a free-fall penetrometer for geotechnical characterisation of saturated sediments and its geological application, Doctoral Thesis, Faculty of Geosciences of Bremen University, Germany.
  • Stegmann, S. and Kopf, AJ. (2017). Marine deep-water free-fall Cpt measurements for landslide characterisation off crete, Greece (Eastern Mediterranean Sea) Part 1: A New 4000M Cone Penetrometer, Submarine Mass Movements and Their Consequences, Publishing Springer, 171-177, https://doi.org/10.1007/978-1-4020-6512-5_18.
  • Stegmann, S., Mörz, T. and Kopf, A.J. (2006). Initial results of a new Free Fall-Cone Penetrometer (FF-CPT) for geotechnical in situ characterisation of soft marine sediments, Norwegian Journal of Geology 86(3), 199-208.
  • Strozky, F., Strasser, M., Förster, A., Kopf, A. ve Huhn, K., (2010). Slope failure repetition in active magrin environments-constraints from submarine landslides in the Hellenic forearc, eastern Mediterranean, Journal of Geophysical Research, 115(B8), 103, https://doi.org/10.1029/2009JB006841.
  • Sungurlu, O., Perinçek, D., Kurt, G., Tuna, E., Dülger, S., Çelikdemir, E. ve Naz, H. (1985). Elazığ-Palu Alanının Jeolojisi, T.C. Pet. İşl. Gn. Md. Derg., 29, 83-190.
  • Şaroğlu, F., Emre, O. and Kuşçu, I. (1992). The East Anatolian fault zone of Turkey, Ann. Tect., 6, 99-125.
  • Şengör, A.M.C., Görür, N. and Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, In: Strike-slip Faulting and Basin Formation (Ed. By K.T. Biddle ve N. Christie-Blick), soc. Econom. Paleontol. Mineral., Spec. Publ., 227-267.
  • Talling, P.J., Clare, M., Urlaub, M., Pope, E., Hunt, J.E. and Watt, S.F.L. (2014). Large submarine landslides on continental slopes: geohazards, methane release, and climate change, Oceanography, 27(2), 32-45, https://doi.org/10.5670/oceanog.2014.38.
  • Tappin, D.R., Grilli, S.T., Harris, J.C., Geller, R.J., Masterlark, T., Kirby, J.T. Shi, F., Ma, G., Thingbaijam, K.K.S. and Mai, P.M. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology, 357, 344-361, https://doi.org/10.1016/j.margeo.2014.09.043.
  • Tolun, L., Çagatay, N. and Carrigan, W.J. (2002). Organic geochemistry and origin of Late Glacial-Holocene sapropelic layers and associated sediments in Marmara Sea, Marine Geology, 190(1-2), 47-60, https://doi.org/10.1016/S0025-3227(02)00342-0.
  • TUBİTAK, (2014). Hazar Gölü’nde (Elazığ) Pleyistosen-Holosen dönemi yüksek çözünürlüklü iklim ve su seviyesi değişimleri, Proje No: 111Y045.
  • Urlaub, M., Talling, P.J. and Masson, D.G. (2013). Timing and frequency of large submarine landslides: implicatinos for understanding triggers and future geohazard, Quaternary Science Reviews, 72, 63-82, https://doi.org/10.1016/j.quascirev.2013.04.020.
  • Vanneste, M., Forsberg, C.H., Glimsdal, S., Harbitz, C.B., Issler, D., Kvalstad, T.J., Løvholt, F. and Nadim, F. (2006). Submarine landslides and their consequences: What do we know, what can we do? The Second World Landslide Forum, Proceedings,1-11, https://doi.org/10.1007/978-3-642-31427-8-1.
  • Vitton, S.J and Sadler, L.Y. (1997). Particle size analysis of soils using laser light scattering and X-Ray absorption technology, Geotechnical Testing Journal, 20(1), 63-73, https://doi.org/10.1520/GTJ11421J.
  • Wen, B., Aydın, A., Aydın-Duzgoren, N.S. (2002). A comparative study of particle size analysis by sieve-hydrometer and laser diffraction methods, Geotechnical Testing Journal, 25(4), 434-442, https://doi.org/10.1520/GTJ11289J.
  • Westaway, R. (2003). Kinematics of the Middle East and eastern mediterranean updated, Turkish Journal of Earth Sciences, 12(1), 5-46.
  • Winters, W.J., Dugan, B. and Collett, T.S. (2008). Physical properties of sediments from Keathley Canyon and Atwater Valley, JIP Gulf of Mexico gas hydrate drilling program, Marine and Petroleum Geology, 25, 896-905, https://doi.org/10.1016/j.marpetgeo.2008.01.018.
  • Yazgan, E. (1984). Geodynamics Evolution of the Southern Taurides in the Regio In: O. Tekeli and M. C. Göncüoğlu (Eds.), Geology of the Taurus Belt, Int. Symp., Proceedings, 199-208.
  • Yılmaz, H., Över, S. and Özden, S. (2006). Kinematics of the East Anatolian Fault zone between Turkoglu (Kahramanmaras) and Celikhan (Adiyaman). Eastern Turkey Earth Planets Space, 58, 1463–1473, https://doi.org/10.1186/BF03352645.
  • Yun, T.S., Narsilio, G.A. and Santamarina, J.C. (2006). Physical characterization of core samples recovered from Gulf of Mexico, Marine and Petroleum Geology, 23(9-10), 893-900, https://doi.org/10.1016/j.marpetgeo.2006.08.002.
  • Zhang, Z. and Tumay, M.T. (1995). Granulometric evaluation of particle size using suspension pressure during sedimentation, Geotechnical Testing Journal, 18 (1), 121-129, https://doi.org/10.1520/GTJ10129J.
Toplam 131 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yasemin Aslan 0000-0002-3135-5926

Zülfü Gürocak 0000-0002-1049-8346

Proje Numarası MF.16.64
Yayımlanma Tarihi 15 Temmuz 2021
Gönderilme Tarihi 12 Mart 2021
Kabul Tarihi 17 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 3

Kaynak Göster

APA Aslan, Y., & Gürocak, Z. (2021). Hazar Gölü’ndeki (Elazığ/Doğu Türkiye) çökellerin mühendislik özelliklerine ve sualtı kütle hareketlerine genel bir bakış. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(3), 1015-1035. https://doi.org/10.17714/gumusfenbil.895651