Araştırma Makalesi
BibTex RIS Kaynak Göster

Ultra-low voltage VDBA design by using PMOS DTMOS transistors

Yıl 2017, Cilt: 17 Sayı: 2, 3463 - 3469, 27.07.2017

Öz

In this study, a new ultra-low voltage
and ultra-low power voltage differencing buffered amplifier (VDBA) based on
dynamic threshold voltage MOS transistors (DTMOS) is proposed. A voltage mode
filter configuration is also presented as an application for the proposed VDBA.
This filter employed two VDBA blocks and two passive components. The total power
consumption of VDBA block is found simply 6.22 nW at a 0.4 V supply voltage. The
simulation results by using LTSpice Program with 0.18 μm TSMC CMOS technology
model parameters are carried out to show the performance of the proposed active
device and its filter applications. 

Kaynakça

  • [1] Benini L, De Micheli G, Macii E. Designing low-power circuits: practical recipes. IEEE Circuits Syst Mag 2001;1:6–25. doi:10.1109/7384.928306.
  • [2] Annema A, Nauta B, van Langevelde R, Tuinhout H. Analog circuits in ultra-deep-submicron CMOS. IEEE J Solid-State Circuits 2005;40:132–43. doi:10.1109/JSSC.2004.837247.
  • [3] Biolek D, Senani R, Biolkova V, Kolka Z. Active elements for analog signal processing: Classification, review, and new proposals. Radioengineering 2008;17:15–32.
  • [4] Metin B, Cicekoglu O. Voltage mode all-pass filter with a single current differencing buffered amplifier. 2008 51st Midwest Symp Circuits Syst 2008:734–7. doi:10.1109/MWSCAS.2008.4616904.
  • [5] Acar C, Ozoguz S. A new versatile building block: current differencing buffered amplifier suitable for analog signal-processing filters. Microelectronics J 1999;30:157–60. doi:10.1016/S0026-2692(98)00102-5.
  • [6] Özcan S, Kuntman H. Cascadable Current Mode Multipurpose Filters Employing Current Differencing Buffered Amplifier ( CDBA ). Int J Electron Commun 2002;56:67–72.
  • [7] Horng JW. Voltage/current-mode universal biquadratic filter using single CCII+. Indian J Pure Appl Phys 2010;48:749–56.
  • [8] El Feki NB, Salem S Ben, Masmoudi DS, Derbel N. Optimization of a rail to rail low voltage CCII for active filter applications. Int. Conf. Des. Technol. Integr. Syst. Nanoscale Era, DTIS’08, 2008. doi:10.1109/DTIS.2008.4540232.
  • [9] Eldbib I, Musil V. Self-cascode current controlled CCII based-tunable band pass filter. Proc. 18th Int. Conf. Radioelektronika 2008, 2008. doi:10.1109/RADIOELEK.2008.4542706.
  • [10] Yucel F, Yuce E. CCII based more tunable voltage-mode all-pass filters and their quadrature oscillator applications. AEU - Int J Electron Commun 2014;68:1–9. doi:10.1016/j.aeue.2013.06.012.
  • [11] Saied A Ben, Salem S Ben, Masmoudi DS. Low voltage high frequency CCII based multifunction filters and chaos generator. Asian J Appl Sci 2011;4:603–17. doi:10.39231ajaps.2011.603.617.
  • [12] Jiang JJJ, He YHY, Wu JWJ. Universal current-mode filter with three inputs using CCII+/. ASICON 2001 2001 4th Int Conf ASIC Proc (Cat No01TH8549) 2001. doi:10.1109/ICASIC.2001.982563.
  • [13] Chen J, Sánchez-Sinencio E, Silva-Martinez J. Frequency-dependent harmonic-distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters. IEEE Trans Circuits Syst I Regul Pap 2006;53:499–510. doi:10.1109/TCSI.2005.859575.
  • [14] Zhang X, El-Masry EI. A novel CMOS OTA based on body-driven MOSFETs and its applications in OTA-C filters. IEEE Trans Circuits Syst I Regul Pap 2007;54:1204–12. doi:10.1109/TCSI.2007.897765.
  • [15] Thyagarajan S V., Pavan S, Sankar P. Active-RC filters using the Gm-assisted OTA-RC technique. IEEE J. Solid-State Circuits, vol. 46, 2011, p. 1522–33. doi:10.1109/JSSC.2011.2143590.
  • [16] Soliman AM. Active Circulator Circuits Using OA, CCII, CFOA and DVCC. J Circuits, Syst Comput 2009;18:629–45. doi:10.1142/S0218126609005162.
  • [17] Hassan TM, Mahmoud SA. New CMOS DVCC realization and applications to instrumentation amplifier and active-RC filters. AEU - Int J Electron Commun 2010;64:47–55. doi:10.1016/j.aeue.2008.11.002.
  • [18] Minaei S, Temizyurek C. Dual input all-pass filter using DVCC. SCS 2003 Int Symp Signals, Circuits Syst Proc (Cat No03EX720) 2003;2. doi:10.1109/SCS.2003.1227093.
  • [19] Khateb F, Biolek D. A Novel Current-Mode Full-Wave Rectifier Based on One CDTA and Two Diodes 2010;19:437–45.
  • [20] Kaçar F, Başak M. A New Mixed Mode Full-Wave Rectifier Realization With Current Differencing Transconductance Amplifier. J Circuits, Syst Comput 2014;23:15 pages. doi:10.1142/S0218126614501011.
  • [21] Tangsrirat W, Pukkalanun T, Mongkolwai P, Surakampontorn W. International Journal of Electronics and Communications ( AEÜ ) Simple current-mode analog multiplier , divider , square-rooter and squarer based on CDTAs. AEUE - Int J Electron Commun 2011;65:198–203. doi:10.1016/j.aeue.2010.02.017.
  • [22] Engineering E. A new , improved CMOS realization of CDTA and its 2011;19:631–42. doi:10.3906/elk-1003-467.
  • [23] Tanaphatsiri C, Jaikla W, Siripruchyanun M. A current-mode wheatstone bridge employing only single DO-CDTA. APCCAS 2008 - 2008 IEEE Asia Pacific Conf Circuits Syst 2008:1494–7. doi:10.1109/APCCAS.2008.4746315.
  • [24] Tangsrirat W, Pukkalanun T. Structural generation of two integrator loop filters using CDTAs and grounded capacitors 2011:31–45. doi:10.1002/cta.
  • [25] Biolkova V, Kolka Z, Biolek D. Fully balanced voltage differencing buffered amplifier and its applications. Midwest Symp. Circuits Syst., 2009, p. 45–8. doi:10.1109/MWSCAS.2009.5236157.
  • [26] Kacar F, Yesil A, Noori A. New CMOS realization of voltage differencing buffered amplifier and its biquad filter applications. Radioengineering 2012;21:333–9.
  • [27] Assaderaghi F, Sinitsky D, Parke S a., Bokor J, Ko PK. Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI. IEEE Trans Electron Devices 1997;44:414–22. doi:10.1109/16.556151.
  • [28] Assaderaghi F, Sinitsky D, Parke S, Bokor J, Ko PK. A dynamic threshold voltage MOSFET (DTMOS) for ultra-low voltage operation. Proc 1994 IEEE Int Electron Devices Meet 1994:809–12. doi:10.1109/IEDM.1994.383301.
  • [29] Assaderaghi F. DTMOS: its derivatives and variations, and their potential applications. ICM 2000 Proc 12th Int Conf Microelectron (IEEE Cat No00EX453) 2000:9–10. doi:10.1109/ICM.2000.916403.
  • [30] Uygur A, Kuntman H. VDTA Design and Its Application to EEG Data Processing. Radioengineering 2013;22:458–66.
Yıl 2017, Cilt: 17 Sayı: 2, 3463 - 3469, 27.07.2017

Öz

Kaynakça

  • [1] Benini L, De Micheli G, Macii E. Designing low-power circuits: practical recipes. IEEE Circuits Syst Mag 2001;1:6–25. doi:10.1109/7384.928306.
  • [2] Annema A, Nauta B, van Langevelde R, Tuinhout H. Analog circuits in ultra-deep-submicron CMOS. IEEE J Solid-State Circuits 2005;40:132–43. doi:10.1109/JSSC.2004.837247.
  • [3] Biolek D, Senani R, Biolkova V, Kolka Z. Active elements for analog signal processing: Classification, review, and new proposals. Radioengineering 2008;17:15–32.
  • [4] Metin B, Cicekoglu O. Voltage mode all-pass filter with a single current differencing buffered amplifier. 2008 51st Midwest Symp Circuits Syst 2008:734–7. doi:10.1109/MWSCAS.2008.4616904.
  • [5] Acar C, Ozoguz S. A new versatile building block: current differencing buffered amplifier suitable for analog signal-processing filters. Microelectronics J 1999;30:157–60. doi:10.1016/S0026-2692(98)00102-5.
  • [6] Özcan S, Kuntman H. Cascadable Current Mode Multipurpose Filters Employing Current Differencing Buffered Amplifier ( CDBA ). Int J Electron Commun 2002;56:67–72.
  • [7] Horng JW. Voltage/current-mode universal biquadratic filter using single CCII+. Indian J Pure Appl Phys 2010;48:749–56.
  • [8] El Feki NB, Salem S Ben, Masmoudi DS, Derbel N. Optimization of a rail to rail low voltage CCII for active filter applications. Int. Conf. Des. Technol. Integr. Syst. Nanoscale Era, DTIS’08, 2008. doi:10.1109/DTIS.2008.4540232.
  • [9] Eldbib I, Musil V. Self-cascode current controlled CCII based-tunable band pass filter. Proc. 18th Int. Conf. Radioelektronika 2008, 2008. doi:10.1109/RADIOELEK.2008.4542706.
  • [10] Yucel F, Yuce E. CCII based more tunable voltage-mode all-pass filters and their quadrature oscillator applications. AEU - Int J Electron Commun 2014;68:1–9. doi:10.1016/j.aeue.2013.06.012.
  • [11] Saied A Ben, Salem S Ben, Masmoudi DS. Low voltage high frequency CCII based multifunction filters and chaos generator. Asian J Appl Sci 2011;4:603–17. doi:10.39231ajaps.2011.603.617.
  • [12] Jiang JJJ, He YHY, Wu JWJ. Universal current-mode filter with three inputs using CCII+/. ASICON 2001 2001 4th Int Conf ASIC Proc (Cat No01TH8549) 2001. doi:10.1109/ICASIC.2001.982563.
  • [13] Chen J, Sánchez-Sinencio E, Silva-Martinez J. Frequency-dependent harmonic-distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters. IEEE Trans Circuits Syst I Regul Pap 2006;53:499–510. doi:10.1109/TCSI.2005.859575.
  • [14] Zhang X, El-Masry EI. A novel CMOS OTA based on body-driven MOSFETs and its applications in OTA-C filters. IEEE Trans Circuits Syst I Regul Pap 2007;54:1204–12. doi:10.1109/TCSI.2007.897765.
  • [15] Thyagarajan S V., Pavan S, Sankar P. Active-RC filters using the Gm-assisted OTA-RC technique. IEEE J. Solid-State Circuits, vol. 46, 2011, p. 1522–33. doi:10.1109/JSSC.2011.2143590.
  • [16] Soliman AM. Active Circulator Circuits Using OA, CCII, CFOA and DVCC. J Circuits, Syst Comput 2009;18:629–45. doi:10.1142/S0218126609005162.
  • [17] Hassan TM, Mahmoud SA. New CMOS DVCC realization and applications to instrumentation amplifier and active-RC filters. AEU - Int J Electron Commun 2010;64:47–55. doi:10.1016/j.aeue.2008.11.002.
  • [18] Minaei S, Temizyurek C. Dual input all-pass filter using DVCC. SCS 2003 Int Symp Signals, Circuits Syst Proc (Cat No03EX720) 2003;2. doi:10.1109/SCS.2003.1227093.
  • [19] Khateb F, Biolek D. A Novel Current-Mode Full-Wave Rectifier Based on One CDTA and Two Diodes 2010;19:437–45.
  • [20] Kaçar F, Başak M. A New Mixed Mode Full-Wave Rectifier Realization With Current Differencing Transconductance Amplifier. J Circuits, Syst Comput 2014;23:15 pages. doi:10.1142/S0218126614501011.
  • [21] Tangsrirat W, Pukkalanun T, Mongkolwai P, Surakampontorn W. International Journal of Electronics and Communications ( AEÜ ) Simple current-mode analog multiplier , divider , square-rooter and squarer based on CDTAs. AEUE - Int J Electron Commun 2011;65:198–203. doi:10.1016/j.aeue.2010.02.017.
  • [22] Engineering E. A new , improved CMOS realization of CDTA and its 2011;19:631–42. doi:10.3906/elk-1003-467.
  • [23] Tanaphatsiri C, Jaikla W, Siripruchyanun M. A current-mode wheatstone bridge employing only single DO-CDTA. APCCAS 2008 - 2008 IEEE Asia Pacific Conf Circuits Syst 2008:1494–7. doi:10.1109/APCCAS.2008.4746315.
  • [24] Tangsrirat W, Pukkalanun T. Structural generation of two integrator loop filters using CDTAs and grounded capacitors 2011:31–45. doi:10.1002/cta.
  • [25] Biolkova V, Kolka Z, Biolek D. Fully balanced voltage differencing buffered amplifier and its applications. Midwest Symp. Circuits Syst., 2009, p. 45–8. doi:10.1109/MWSCAS.2009.5236157.
  • [26] Kacar F, Yesil A, Noori A. New CMOS realization of voltage differencing buffered amplifier and its biquad filter applications. Radioengineering 2012;21:333–9.
  • [27] Assaderaghi F, Sinitsky D, Parke S a., Bokor J, Ko PK. Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI. IEEE Trans Electron Devices 1997;44:414–22. doi:10.1109/16.556151.
  • [28] Assaderaghi F, Sinitsky D, Parke S, Bokor J, Ko PK. A dynamic threshold voltage MOSFET (DTMOS) for ultra-low voltage operation. Proc 1994 IEEE Int Electron Devices Meet 1994:809–12. doi:10.1109/IEDM.1994.383301.
  • [29] Assaderaghi F. DTMOS: its derivatives and variations, and their potential applications. ICM 2000 Proc 12th Int Conf Microelectron (IEEE Cat No00EX453) 2000:9–10. doi:10.1109/ICM.2000.916403.
  • [30] Uygur A, Kuntman H. VDTA Design and Its Application to EEG Data Processing. Radioengineering 2013;22:458–66.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

Muhammed Emin Başak

Fırat Kaçar

Yayımlanma Tarihi 27 Temmuz 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 17 Sayı: 2

Kaynak Göster

APA Başak, M. E., & Kaçar, F. (2017). Ultra-low voltage VDBA design by using PMOS DTMOS transistors. IU-Journal of Electrical & Electronics Engineering, 17(2), 3463-3469.
AMA Başak ME, Kaçar F. Ultra-low voltage VDBA design by using PMOS DTMOS transistors. IU-Journal of Electrical & Electronics Engineering. Temmuz 2017;17(2):3463-3469.
Chicago Başak, Muhammed Emin, ve Fırat Kaçar. “Ultra-Low Voltage VDBA Design by Using PMOS DTMOS Transistors”. IU-Journal of Electrical & Electronics Engineering 17, sy. 2 (Temmuz 2017): 3463-69.
EndNote Başak ME, Kaçar F (01 Temmuz 2017) Ultra-low voltage VDBA design by using PMOS DTMOS transistors. IU-Journal of Electrical & Electronics Engineering 17 2 3463–3469.
IEEE M. E. Başak ve F. Kaçar, “Ultra-low voltage VDBA design by using PMOS DTMOS transistors”, IU-Journal of Electrical & Electronics Engineering, c. 17, sy. 2, ss. 3463–3469, 2017.
ISNAD Başak, Muhammed Emin - Kaçar, Fırat. “Ultra-Low Voltage VDBA Design by Using PMOS DTMOS Transistors”. IU-Journal of Electrical & Electronics Engineering 17/2 (Temmuz 2017), 3463-3469.
JAMA Başak ME, Kaçar F. Ultra-low voltage VDBA design by using PMOS DTMOS transistors. IU-Journal of Electrical & Electronics Engineering. 2017;17:3463–3469.
MLA Başak, Muhammed Emin ve Fırat Kaçar. “Ultra-Low Voltage VDBA Design by Using PMOS DTMOS Transistors”. IU-Journal of Electrical & Electronics Engineering, c. 17, sy. 2, 2017, ss. 3463-9.
Vancouver Başak ME, Kaçar F. Ultra-low voltage VDBA design by using PMOS DTMOS transistors. IU-Journal of Electrical & Electronics Engineering. 2017;17(2):3463-9.