Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effects of Reinforcement Ratio on Flexural Behavior in Hybrid (GFRP-Steel) Reinforced Concrete Beams

Yıl 2021, Cilt: 24 Sayı: 3, 1109 - 1119, 01.09.2021
https://doi.org/10.2339/politeknik.817398

Öz

In this study, flexural behavior of hybrid reinforced concrete beams were investigated theoretically and by the finite element method. Within the scope of the study, beams with identical geometry and concrete compressive strength; designed as having different reinforcement ratios. The results obtained from the theoretical work and finite element method were commentated by using load-displacement curves, load carrying capacities and strain indices. The effects of the fibrous polymer / steel ratio (Af / As) on the stiffness, strength and midpoint displacement of the beams were investigated. In addition, the effects of reinforcement ratio on load carrying capacity and deformability indexes were investigated.

Kaynakça

  • [1] Lau, D., Pam, H. J., “Experimental study of hybrid FRP reinforced concrete beams”. Engineering Structures, 32; 3857-3865, (2010).
  • [2] Yinghao, L., Yong, Y., “Arrangement of hybrid rebars on flexural behavior of HSC beams”. Composites: Part B, 45, 22-31, (2013).
  • [3] El Refai, A., Abed, F., Al-Rahmani, A., “Structural performance and serviceability of concrete beams reinforced with hybrid (GFRP and steel) bars”. Construction and Building Materials, 96; 518-529, (2015).
  • [4] Kara, İ. F., Ashour, A. F., Köroğlu, M. A., “Flexural behavior of hybrid FRP/steel reinforced concrete beams”. Composite Structures, 129, 111-121. (2015).
  • [5] Pang, L., Qu, W., Zhu, P., Xu, J., “Design Propositions for Hybrid FRP-Steel Reinforced Concrete Beams.” Journal of Composites for Construction, 20(4), (2016).
  • [6] Bencardino, F., Condello, A., Ombres, L., “Numerical and analytical modeling of concrete beams with steel reinforcements”. Composites Structures, 140; 53-65, (2016).
  • [7] Qin, R., Zhou, A., Lau, D., “Effect of reinforcement ratio on the flexural performance of hybrid FRP reinforced concrete beams”. Composites Part B, 108, 200-209, (2017).
  • [8] Fahmy, Mohamed F. M.; Abd-ElShafy, Zainab E.; Wu, Zhishen., “Experimental and numerical evaluation of the shear behavior of reinforced concrete T-beams with hybrid steel-FRP stirrups”. Journal of Composites For Construction, 21(4), 04017007, (2017).
  • [9] Araba, A. M., Ashour, A. F., “Flexural performance of hybrid GFRP-Steel reinforced concrete continuous beams”. Composites Part B, 154: 321–336, (2018).
  • [10] Xingyu, G., Yiqing, D., Jiwang, J., “Flexural behavior investigation of steel-GFRP hybrid-reinforced concrete beams based on experimental and numerical methods”. Engineering Structures, 206, 110117, (2020).
  • [11] Xiangjie, R., Chunhua, L., Ke, X., “Flexural behavior and serviceability of concrete beams hybrid-reinforced with GFRP bars and steel bars.” Composite Structures, 235, 111772, (2020).
  • [12] Maranan, G.B., Manalo, A.C., Benmokrane, B., Karunasena, W., Mendis, P., Nguyen, T. Q., “Flexural behavior of geopolymer-concrete beams longitudinally reinforced with GFRP and steel hybrid reinforcements”. Engineering Structures, 182: 141–152, (2019).
  • [13] Abdelkarima, O. I., Ahmeda, E. A., Mohameda, H. M., Benmokrane, B., “Flexural strength and serviceability evaluation of concrete beams reinforced with deformed GFRP bars”. Engineering Structures, 186: 282-296, (2019).
  • [14] Ge, W., Song, W., Ashour, A. F., Lu, W., Cao, D., “Flexural performance of FRP/steel hybrid reinforced engineered cementitious composite beams”. Journal of Building Engineering, 31: 101329, (2020).
  • [15] Buyukkaragoz A., Kalkan İ, Lee, J. H., “A numerıcal study of the flexural behavıor of concrete beams reınforced wıth afrp bars”. Strength of Materials, 45: 716-729, (2013).
  • [16] “ANSYS Mechanical APDL 14 Theory Guide”, Ansys Inc., (2015).
  • [17] Hognestad, E., “A study of combined bending and axial load in reinforced concrete members.” University of Illinois Bulletin. Vol. 49, no. 22., (1951).
  • [18] William, K. J., Warnke, E. D., “Constitutive model for the triaxial behavior of concrete”. International Association for Bridge and Structural Engineers Proceedings, Cilt 19, 174-203. (1975).
  • [19] TS-500, “Betonarme yapıların tasarım ve yapım kuralları”, (2000).
  • [20] ACI 440-R15, “Guide for the Design and Construction of Structural Concrete Reinforced with Fiber- Reinforced Polymer (FRP) Bars”. American Concrete Institute, Farmington Hills, MI. (2015).

Hibrit (GFRP-Çelik) Donatılı Kirişlerde Donatı Oranının Eğilme Davranışına Etkileri

Yıl 2021, Cilt: 24 Sayı: 3, 1109 - 1119, 01.09.2021
https://doi.org/10.2339/politeknik.817398

Öz

Bu çalışmada hibrit donatılı kirişlerin eğilme davranışları teorik olarak ve sonlu eleman yöntemi ile incelenmiştir. Çalışma kapsamında özdeş geometri ve beton basınç dayanımına sahip kirişler; farklı donatı oranına sahip olacak şekilde tasarlanmıştır. Teorik çalışma ve sonlu eleman yönteminden elde edilen sonuçlar yük-yer değiştirme eğrileri, yük taşıma kapasiteleri ve şekil değiştirme indeksleri kullanılarak yorumlanmıştır. Lifli polimer/çelik oranının (Af/As) kirişlerin rijitliği, dayanımı ve orta nokta deplasmanları üzerine yaptığı etkiler incelenmiştir. Ayrıca donatı oranının yük taşıma kapasitesi ve şekil değiştirme indeksleri üzerine etkileri araştırılmıştır.

Kaynakça

  • [1] Lau, D., Pam, H. J., “Experimental study of hybrid FRP reinforced concrete beams”. Engineering Structures, 32; 3857-3865, (2010).
  • [2] Yinghao, L., Yong, Y., “Arrangement of hybrid rebars on flexural behavior of HSC beams”. Composites: Part B, 45, 22-31, (2013).
  • [3] El Refai, A., Abed, F., Al-Rahmani, A., “Structural performance and serviceability of concrete beams reinforced with hybrid (GFRP and steel) bars”. Construction and Building Materials, 96; 518-529, (2015).
  • [4] Kara, İ. F., Ashour, A. F., Köroğlu, M. A., “Flexural behavior of hybrid FRP/steel reinforced concrete beams”. Composite Structures, 129, 111-121. (2015).
  • [5] Pang, L., Qu, W., Zhu, P., Xu, J., “Design Propositions for Hybrid FRP-Steel Reinforced Concrete Beams.” Journal of Composites for Construction, 20(4), (2016).
  • [6] Bencardino, F., Condello, A., Ombres, L., “Numerical and analytical modeling of concrete beams with steel reinforcements”. Composites Structures, 140; 53-65, (2016).
  • [7] Qin, R., Zhou, A., Lau, D., “Effect of reinforcement ratio on the flexural performance of hybrid FRP reinforced concrete beams”. Composites Part B, 108, 200-209, (2017).
  • [8] Fahmy, Mohamed F. M.; Abd-ElShafy, Zainab E.; Wu, Zhishen., “Experimental and numerical evaluation of the shear behavior of reinforced concrete T-beams with hybrid steel-FRP stirrups”. Journal of Composites For Construction, 21(4), 04017007, (2017).
  • [9] Araba, A. M., Ashour, A. F., “Flexural performance of hybrid GFRP-Steel reinforced concrete continuous beams”. Composites Part B, 154: 321–336, (2018).
  • [10] Xingyu, G., Yiqing, D., Jiwang, J., “Flexural behavior investigation of steel-GFRP hybrid-reinforced concrete beams based on experimental and numerical methods”. Engineering Structures, 206, 110117, (2020).
  • [11] Xiangjie, R., Chunhua, L., Ke, X., “Flexural behavior and serviceability of concrete beams hybrid-reinforced with GFRP bars and steel bars.” Composite Structures, 235, 111772, (2020).
  • [12] Maranan, G.B., Manalo, A.C., Benmokrane, B., Karunasena, W., Mendis, P., Nguyen, T. Q., “Flexural behavior of geopolymer-concrete beams longitudinally reinforced with GFRP and steel hybrid reinforcements”. Engineering Structures, 182: 141–152, (2019).
  • [13] Abdelkarima, O. I., Ahmeda, E. A., Mohameda, H. M., Benmokrane, B., “Flexural strength and serviceability evaluation of concrete beams reinforced with deformed GFRP bars”. Engineering Structures, 186: 282-296, (2019).
  • [14] Ge, W., Song, W., Ashour, A. F., Lu, W., Cao, D., “Flexural performance of FRP/steel hybrid reinforced engineered cementitious composite beams”. Journal of Building Engineering, 31: 101329, (2020).
  • [15] Buyukkaragoz A., Kalkan İ, Lee, J. H., “A numerıcal study of the flexural behavıor of concrete beams reınforced wıth afrp bars”. Strength of Materials, 45: 716-729, (2013).
  • [16] “ANSYS Mechanical APDL 14 Theory Guide”, Ansys Inc., (2015).
  • [17] Hognestad, E., “A study of combined bending and axial load in reinforced concrete members.” University of Illinois Bulletin. Vol. 49, no. 22., (1951).
  • [18] William, K. J., Warnke, E. D., “Constitutive model for the triaxial behavior of concrete”. International Association for Bridge and Structural Engineers Proceedings, Cilt 19, 174-203. (1975).
  • [19] TS-500, “Betonarme yapıların tasarım ve yapım kuralları”, (2000).
  • [20] ACI 440-R15, “Guide for the Design and Construction of Structural Concrete Reinforced with Fiber- Reinforced Polymer (FRP) Bars”. American Concrete Institute, Farmington Hills, MI. (2015).
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Nalan Kaya 0000-0002-6719-102X

Eda Avanoğlu Bu kişi benim 0000-0003-4154-6758

Şule Er 0000-0003-1021-3678

Yağmur Kopraman 0000-0001-9552-3039

Alper Büyükkaragoz 0000-0003-1074-7637

Yayımlanma Tarihi 1 Eylül 2021
Gönderilme Tarihi 28 Ekim 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 24 Sayı: 3

Kaynak Göster

APA Kaya, N., Avanoğlu, E., Er, Ş., Kopraman, Y., vd. (2021). Hibrit (GFRP-Çelik) Donatılı Kirişlerde Donatı Oranının Eğilme Davranışına Etkileri. Politeknik Dergisi, 24(3), 1109-1119. https://doi.org/10.2339/politeknik.817398
AMA Kaya N, Avanoğlu E, Er Ş, Kopraman Y, Büyükkaragoz A. Hibrit (GFRP-Çelik) Donatılı Kirişlerde Donatı Oranının Eğilme Davranışına Etkileri. Politeknik Dergisi. Eylül 2021;24(3):1109-1119. doi:10.2339/politeknik.817398
Chicago Kaya, Nalan, Eda Avanoğlu, Şule Er, Yağmur Kopraman, ve Alper Büyükkaragoz. “Hibrit (GFRP-Çelik) Donatılı Kirişlerde Donatı Oranının Eğilme Davranışına Etkileri”. Politeknik Dergisi 24, sy. 3 (Eylül 2021): 1109-19. https://doi.org/10.2339/politeknik.817398.
EndNote Kaya N, Avanoğlu E, Er Ş, Kopraman Y, Büyükkaragoz A (01 Eylül 2021) Hibrit (GFRP-Çelik) Donatılı Kirişlerde Donatı Oranının Eğilme Davranışına Etkileri. Politeknik Dergisi 24 3 1109–1119.
IEEE N. Kaya, E. Avanoğlu, Ş. Er, Y. Kopraman, ve A. Büyükkaragoz, “Hibrit (GFRP-Çelik) Donatılı Kirişlerde Donatı Oranının Eğilme Davranışına Etkileri”, Politeknik Dergisi, c. 24, sy. 3, ss. 1109–1119, 2021, doi: 10.2339/politeknik.817398.
ISNAD Kaya, Nalan vd. “Hibrit (GFRP-Çelik) Donatılı Kirişlerde Donatı Oranının Eğilme Davranışına Etkileri”. Politeknik Dergisi 24/3 (Eylül 2021), 1109-1119. https://doi.org/10.2339/politeknik.817398.
JAMA Kaya N, Avanoğlu E, Er Ş, Kopraman Y, Büyükkaragoz A. Hibrit (GFRP-Çelik) Donatılı Kirişlerde Donatı Oranının Eğilme Davranışına Etkileri. Politeknik Dergisi. 2021;24:1109–1119.
MLA Kaya, Nalan vd. “Hibrit (GFRP-Çelik) Donatılı Kirişlerde Donatı Oranının Eğilme Davranışına Etkileri”. Politeknik Dergisi, c. 24, sy. 3, 2021, ss. 1109-1, doi:10.2339/politeknik.817398.
Vancouver Kaya N, Avanoğlu E, Er Ş, Kopraman Y, Büyükkaragoz A. Hibrit (GFRP-Çelik) Donatılı Kirişlerde Donatı Oranının Eğilme Davranışına Etkileri. Politeknik Dergisi. 2021;24(3):1109-1.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.