PİR AZOL TÜREVI BİR BILEŞİĞİN KURAMSAL HESAPLAMALARI VE HİRSHFELD YÜZEY ANALİZİ

THEORETICAL CALCULATIONS AND HIRSHFELD SURFACE ANALYSIS OF A PYROZOLE-DERIVED COMPOUND

Gonca ÖZDEMİR TARI¹ (ORCID: 0000-0001-5919-1778)

¹Ondokuz Mayıs Üniversitesi, Vezirköprü Meslek Yüksekokulu, 55900, Samsun, Türkiye

*Sorumlu Yazar / Corresponding Author: Gonca Özdemir Tari, gozdemir@omu.edu.tr

ÖZET

Anahtar Kelimeler: Doğrusal Olmayan Optik Özellikler, Hirshfeld Yüzey Analizi, Pirazol Türevi Bileşikler, Yoğunluk Fonksiyonel Kuramı.

ABSTRACT
The basis of this study is based on theoretical calculations of a pyrazole group compound. Theoretical calculations of the compound, whose molecular structure was previously illuminated with X-rays (Wang et al., 2005), were made and compared with experimental results. In order to reach the lowest energy stable state of the compound, the molecule was optimized with the Hartree Fock (HF) method and Density Function Theory (DFT)/B3LYP and B3PW91 methods and 6-311(d,p) and 6-311++(d,p) basis sets. It was determined that the molecular structure had the lowest energy state by the B3LYP method, one of these methods. In order to determine the regions where the molecule is reactive, molecular electrostatic potential maps, charge analyzes and Fukui functions were determined and the results were compared. Additionally, Hirshfeld surface analysis was performed to determine the interactions in the molecule and the results were discussed.

Keywords: Nonlinear Optical Properties, Hirshfeld Surface Analysis, Pyrazole Derivative Compounds, Density Functional Theory.

GİRİŞ

MATERIAL VE METOT

 Yapılan hesaplamaların tümü Gaussian 03W (Frisch vd., 2004) programı kullanılarak yapılmış ve elde edilen sonuçların gorselleri GaussView (Dennigton vd., 2007) programı kullanılarak gösterilmiştir. Teorik çalışmalar, HF ve YFK’nın, B3LYP/B3PW91 yöntemleri ve 6-311(d,p) ve 6-311++(d,p) baz setleri kullanılarak yapılmıştır. Molekülle ait elektrofilik ve nükleofilik bölgeleri belirleyebilmek için sınır orbitalleri (HOMO ve LUMO) ve yük analizlerine ilaveten Moleküler Elektrostatik Potansiyel (MEP) haritaları belirlenmiştir. Tüm baz setleri ile elde edilen enerji değerlerini karşılaştırarak, HF yöntemiyle kuramsal hesaplarını içermektedir. Molekül daha önce x-ışınları kırınımı yöntemiyle yapısını kırınmış olan, 1-[5-(4-Hydroxy-3-methoxyphenyl)-3-methyl-4,5-dihydro-1H-pyrazol-1-yl]ethanone, C_{13}H_{16}N_{2}O_{3}, molekülünün hesaplamalı kimya yöntemleri kurasızı hesaplamaları içermektedir. Molekül daha önce x-ışınları kırınımı yöntemiyle yapısal olarak aydınlattılmış (Wang vd., 2005) ve sonuçlar elde edilen yeni sonuçlarla karşılaştırılmıştır. Hesaplamalar, Yönlügün Fonksiyonel Kütle (YFK) ve Hartree Fock (HF) yöntemleri ve 6-311(d,p) ve 6-311++(d,p) baz setleriyle yapılmış olup ilk olarak molekülün minimum enerjili olan en kararlı yapısı belirlenmiştir. Molekülün en düşük enerjilerini sırasıyla 6-311(d,p) baz seti için; HF için -835.25516131 a.u., B3LYP için -840.38399581 a.u., ve B3PW91 yöntemi için -840.05673767 a.u. olarak bulunmaktadır. Bu enerji değerlerinin 6-311++(d,p) baz seti için değerleri ise aynı sırayla -835.26952090 a.u., -840.40166114 a.u. ve -840.07263242 a.u. olarak elde edilmiştir. Elde edilen enerji değerleri arasında en çok durumun B3LYP yönteminde elde edildiği ve deneysel verilerle en iyi uyumun bu yöntemle olduğu sonucuna varılmıştır.

BULGULAR VE TARTIŞMA

Optimize Yapıldı

Seçil 1’de x-ışınlarından elde edilmiş moleküller yapı (Wang vd., 2005) ile teorik hesaplamalardan elde edilmiş şekiller verilmektedir. Optimize edilmiş molekülün bağı uzunlukları, bağı açıları ve dihedral açılara bakıldığında deneysel olarak elde edilmiş parametrelerle büyük bir uyum içinde olduğu söylenebilir. Pirazol halkasına ait seçilen bağı uzunlukları 1.2763(18) Å (Wang vd., 2005) bulunmaktadır. Bu enerji değerlerinin 6-311(d,p) baz seti için değerleri ise 1.2807 Å değerlerini elde edilen geometrik parametrelerde Tablo 1’de raporlanmıştır. N1-C7, N2-C9 bağı uzunlukları deneysel olarak 1.2284(18) Å (Wang vd., 2005) olarak bulunmuşken aynı bağı uzunluklarını sırasıyla 1.2183 Å olarak hesaplanmıştır ve iyi deneysel verilerle uyumlu olduğu gözlemlenmiştir.6-311++(d,p) baz seti ile elde edilen geometrik parametrelerde Tablo 1’de rapor edilmştir. Optimizasyonda kullanılan yöntemlerin güvenilirliğini belirlemek için KOK (atomik parametreler arasındaki farkların karelerinin ortalamasının karekökü) hesaplamaları yapılmış ve Tablo 1’de verilmiştir. Elde edilen bağı uzunlukları için hata değerleri sırasıyla; HF/6-311G(d,p) için 0.0176 6-311++G(d,p) için 0.0178; B3LYP/6-311G(d,p) için 0.0132 ve 6-311++G(d,p) için 0.0125, B3PW91/6-311G(d,p) için 0.0139 ve 6-311++G(d,p) için 0.0133 olarak bulunmuştur. Hata değerleri incelendiğinde deneysel parametrelerle en iyi uyumu sağlayan optimize yapının B3LYP yöntemi ve 6-311++G(d,p) baz seti ile hesaplanan yapı olduğu ve sistem moleküler ve elektriksel özellikleri hesaplanırken temel setlere ilave edilen difüze ve polarize fonksiyonların doğruluğunu ve verimi artırdığı gözlenmektedir. Diğer taraftan Tablo 1’de verilen molekülün sahip olduğu dihedral açılardan C2-C1-C7-N1 açısı, molekülün düzlemesin bir yapıya sahip olmadığını göstermektedir.

<table>
<thead>
<tr>
<th>Bagı Zanıluğu</th>
<th>Deneysel (Wang vd., 2005)</th>
<th>IF</th>
<th>6-31(d,p)</th>
<th>6-31+1(d,p)</th>
<th>YKF/ B3LYP 6-31(d,p)</th>
<th>6-31+1(d,p)</th>
<th>B3PW11 6-31(d,p)</th>
<th>6-31+1(d,p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1-C1</td>
<td>1.3443 (18)</td>
<td>1.3605</td>
<td>1.3610</td>
<td>1.37810</td>
<td>1.37675</td>
<td>1.37427</td>
<td>1.37349</td>
<td></td>
</tr>
<tr>
<td>N2-C2</td>
<td>1.4655 (16)</td>
<td>1.3779</td>
<td>1.3785</td>
<td>1.38380</td>
<td>1.38740</td>
<td>1.37385</td>
<td>1.37604</td>
<td></td>
</tr>
<tr>
<td>C1-C7</td>
<td>1.4869 (18)</td>
<td>1.4604</td>
<td>1.4604</td>
<td>1.48639</td>
<td>1.48372</td>
<td>1.47744</td>
<td>1.47660</td>
<td></td>
</tr>
<tr>
<td>C1-C7</td>
<td>1.3670 (16)</td>
<td>1.3493</td>
<td>1.3497</td>
<td>1.36407</td>
<td>1.36589</td>
<td>1.35850</td>
<td>1.35992</td>
<td></td>
</tr>
<tr>
<td>N2-C9</td>
<td>1.2763 (18)</td>
<td>1.2506</td>
<td>1.24495</td>
<td>1.28097</td>
<td>1.28146</td>
<td>1.28073</td>
<td>1.28100</td>
<td></td>
</tr>
<tr>
<td>C3-C11</td>
<td>1.2285 (18)</td>
<td>1.1941</td>
<td>1.19705</td>
<td>1.21838</td>
<td>1.22123</td>
<td>1.21677</td>
<td>1.21901</td>
<td></td>
</tr>
<tr>
<td>C1-C5</td>
<td>1.3730 (2)</td>
<td>1.3709</td>
<td>1.37208</td>
<td>1.38965</td>
<td>1.38577</td>
<td>1.38541</td>
<td>1.38857</td>
<td></td>
</tr>
<tr>
<td>C2-C3</td>
<td>1.4009 (19)</td>
<td>1.40587</td>
<td>1.40429</td>
<td>1.41336</td>
<td>1.41128</td>
<td>1.41134</td>
<td>1.40970</td>
<td></td>
</tr>
<tr>
<td>C2-C3</td>
<td>1.3711 (18)</td>
<td>1.3400</td>
<td>1.34321</td>
<td>1.36098</td>
<td>1.36052</td>
<td>1.35517</td>
<td>1.35484</td>
<td></td>
</tr>
<tr>
<td>O2-C2-C3</td>
<td>1.4900 (2)</td>
<td>1.3970</td>
<td>1.39760</td>
<td>1.41858</td>
<td>1.42003</td>
<td>1.41100</td>
<td>1.41214</td>
<td></td>
</tr>
<tr>
<td>C4-C5</td>
<td>1.3939 (2)</td>
<td>1.39513</td>
<td>1.39451</td>
<td>1.39724</td>
<td>1.39699</td>
<td>1.39689</td>
<td>1.39492</td>
<td></td>
</tr>
<tr>
<td>C4-C5</td>
<td>1.3782 (19)</td>
<td>1.37070</td>
<td>1.37250</td>
<td>1.38659</td>
<td>1.38867</td>
<td>1.38457</td>
<td>1.38576</td>
<td></td>
</tr>
<tr>
<td>C5-C6</td>
<td>1.4686 (18)</td>
<td>1.49456</td>
<td>1.49447</td>
<td>1.49222</td>
<td>1.49228</td>
<td>1.48710</td>
<td>1.48709</td>
<td></td>
</tr>
<tr>
<td>C5-C6</td>
<td>1.4920 (2)</td>
<td>1.50949</td>
<td>1.50951</td>
<td>1.51436</td>
<td>1.51363</td>
<td>1.50895</td>
<td>1.50835</td>
<td></td>
</tr>
<tr>
<td>C7-C8</td>
<td>1.3545 (18)</td>
<td>1.5467</td>
<td>1.54666</td>
<td>1.55315</td>
<td>1.55375</td>
<td>1.54660</td>
<td>1.54761</td>
<td></td>
</tr>
<tr>
<td>C11-C12</td>
<td>1.4990 (2)</td>
<td>1.50941</td>
<td>1.50944</td>
<td>1.51463</td>
<td>1.51463</td>
<td>1.50874</td>
<td>1.50796</td>
<td></td>
</tr>
<tr>
<td>Makro fark</td>
<td>0.03049</td>
<td>0.03145</td>
<td>0.0338</td>
<td>0.03245</td>
<td>0.03165</td>
<td>0.0294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOK</td>
<td>0.0176</td>
<td>0.0178</td>
<td>0.0123</td>
<td>0.0025</td>
<td>0.0019</td>
<td>0.0013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maks fark</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Deneysel</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>KOK</td>
<td>0.0176</td>
<td>0.0178</td>
<td>0.0123</td>
<td>0.0025</td>
<td>0.0019</td>
<td>0.0013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maks fark</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Deneysel</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>KOK</td>
<td>0.0176</td>
<td>0.0178</td>
<td>0.0123</td>
<td>0.0025</td>
<td>0.0019</td>
<td>0.0013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maks fark</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Deneysel</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>KOK</td>
<td>0.0176</td>
<td>0.0178</td>
<td>0.0123</td>
<td>0.0025</td>
<td>0.0019</td>
<td>0.0013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maks fark</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Deneysel</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>KOK</td>
<td>0.0176</td>
<td>0.0178</td>
<td>0.0123</td>
<td>0.0025</td>
<td>0.0019</td>
<td>0.0013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maks fark</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Deneysel</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>KOK</td>
<td>0.0176</td>
<td>0.0178</td>
<td>0.0123</td>
<td>0.0025</td>
<td>0.0019</td>
<td>0.0013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maks fark</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Deneysel</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>KOK</td>
<td>0.0176</td>
<td>0.0178</td>
<td>0.0123</td>
<td>0.0025</td>
<td>0.0019</td>
<td>0.0013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maks fark</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Deneysel</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>KOK</td>
<td>0.0176</td>
<td>0.0178</td>
<td>0.0123</td>
<td>0.0025</td>
<td>0.0019</td>
<td>0.0013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maks fark</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Deneysel</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>KOK</td>
<td>0.0176</td>
<td>0.0178</td>
<td>0.0123</td>
<td>0.0025</td>
<td>0.0019</td>
<td>0.0013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maks fark</td>
<td>0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>
Elde edilen sonuçların x-ışını kırımından elde edilen verilerle uyum sağlaması hem optimizasyon işleminin hem de seçilen yöntemlerin uygulanıp-uğun ve de güvenirlüğünü ortaya koymaktadır. Teorik çalışma ile deneySEL veriLERIN sonuçlarında gözlenen küçük farklılıklar ise, teorik çalışmaların gaz form ve etkileşimli ortamda hesaplanması ile açıklanabilir.

Moleküler Elektrostatik Potansiyel Haritaları

Molekül yüzeyindeki değişken olan yük bölgelerinin ve bu bölgelerin molekülün elektrofilik ve nükleofilik bölgelerini belirlemeyi hedeflemektedir. Kırmızıdan maviye doğru renk geçişleri ile yorumlanan haritalarda, kırmızı ile belirtilen bölgeler en negatif bölgeleri temsil ederken, mavi ile belirtilen bölgeler en pozitif bölgeleri temsil etmektedir. Ayrıca bu haritalar, molekülde tepkilerin gerçekleşeceği alanların belirlenmesinde ve molekül içi oluşan hidrojen bağlarının tahmininde bize önemli bilgiler sunmaktadır. Şekil 2’de molekül ait en negatif bölgelerin oksijen atomları üzerinde en pozitif bölgelerin ise hidrojenler üzerinde yerel olduğu söylenebilir. Benzer şekilde MEP haritalarındaki sonuçları karşılaştırmak için molekülün yük analizleri sonucu nükleofilik ve elektrofilik bölge tayinleri yapılmıştır. Moleküler yapaya ait en negatif yük değerleri ise O3 atomu için -0.061474, O2 atomu için -0.0551615, O1 atomu içinse -0.0571782 olarak gözlemiştir, en pozitif değer ise O1 atomuna bağlı hidrojen gözlemiş olup değeri +0.05827832 dır ve elde edilen değerler molekül içi hidrojen bağını destekler niteliktedir.

![Şekil 2: Molekül Ait Moleküler Elektrostatik Potansiyel Haritası.](image-url)

Yük Analizi ve Fukui Fonksiyonları

Bu analizler ile molekülde meydana gelen kimyasal reaksiyonların anlaşılması ve elektro-nükleofilik bölgelerin belirlenmesi sağlanmaktadır. Mulliken ve doğal yük analizleri tüm hesaplama yöntemleri ile elde edilmiş ve sonuçlar Tablo 2’de verilmiştir. B3LYP yönteminde ve Mulliken yük analizine göre elde edilen sonuçlara bakıldığında en negatif yükler O3>O2>N1>N2>O1>C1>C5 iken doğal yük analizine göre ise C12>O1>O3>C10>O2>C8>N1>N2>C2>C5>C1>C7>C1 olarak bulunmuştur. Benzer şekilde pozitif yükler Mulliken yük analizine göre sıralanacak olursa C11>C13>C3>C4>C10>C19>C12>C9>C8>C6>C2 şeklinde, doğal yük analizine göre sıralanacak olursa C11>C4>C3>C9 şeklinde sonuçlar elde edilmektedir.
Tablo 2. Moleküle Ait Yük Analizi Sonuçları.

<table>
<thead>
<tr>
<th>NPA</th>
<th>HF</th>
<th>B3LYP</th>
<th>B3PW91</th>
<th>Mulliken HF</th>
<th>B3LYP</th>
<th>B3PW91</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>-0,03645</td>
<td>-0,04459</td>
<td>-0,04683</td>
<td>C1</td>
<td>-0,076288</td>
<td>-0,064816</td>
</tr>
<tr>
<td>C2</td>
<td>-0,28226</td>
<td>-0,29118</td>
<td>-0,29951</td>
<td>C2</td>
<td>-0,007315</td>
<td>0,019285</td>
</tr>
<tr>
<td>C3</td>
<td>0,34139</td>
<td>0,29313</td>
<td>0,28921</td>
<td>C3</td>
<td>0,282347</td>
<td>0,173326</td>
</tr>
<tr>
<td>C4</td>
<td>0,34323</td>
<td>0,30475</td>
<td>0,29982</td>
<td>C4</td>
<td>0,211252</td>
<td>0,144958</td>
</tr>
<tr>
<td>C5</td>
<td>-0,25638</td>
<td>-0,26992</td>
<td>-0,27624</td>
<td>C5</td>
<td>-0,011984</td>
<td>-0,028874</td>
</tr>
<tr>
<td>C6</td>
<td>-0,18678</td>
<td>-0,19701</td>
<td>-0,20364</td>
<td>C6</td>
<td>0,003399</td>
<td>0,037775</td>
</tr>
<tr>
<td>C7</td>
<td>0,02901</td>
<td>-0,02566</td>
<td>-0,03569</td>
<td>C7</td>
<td>0,200365</td>
<td>0,125350</td>
</tr>
<tr>
<td>C8</td>
<td>-0,39295</td>
<td>-0,44262</td>
<td>-0,45385</td>
<td>C8</td>
<td>0,060626</td>
<td>0,045082</td>
</tr>
<tr>
<td>C9</td>
<td>0,31994</td>
<td>0,26574</td>
<td>0,26076</td>
<td>C9</td>
<td>0,129284</td>
<td>0,081973</td>
</tr>
<tr>
<td>C10</td>
<td>-0,53424</td>
<td>-0,60797</td>
<td>-0,62160</td>
<td>C10</td>
<td>0,132133</td>
<td>0,108864</td>
</tr>
<tr>
<td>C11</td>
<td>0,85361</td>
<td>0,70780</td>
<td>0,70074</td>
<td>C11</td>
<td>0,498581</td>
<td>0,342333</td>
</tr>
<tr>
<td>C12</td>
<td>-0,59004</td>
<td>-0,65822</td>
<td>-0,67420</td>
<td>C12</td>
<td>0,107460</td>
<td>0,079576</td>
</tr>
<tr>
<td>C13</td>
<td>-0,08398</td>
<td>-0,19615</td>
<td>-0,21035</td>
<td>C13</td>
<td>0,254837</td>
<td>0,214705</td>
</tr>
<tr>
<td>O1</td>
<td>-0,70653</td>
<td>-0,65862</td>
<td>-0,65432</td>
<td>O1</td>
<td>-0,187759</td>
<td>-0,104142</td>
</tr>
<tr>
<td>O2</td>
<td>-0,58434</td>
<td>-0,51316</td>
<td>-0,50439</td>
<td>O2</td>
<td>-0,452819</td>
<td>-0,336913</td>
</tr>
<tr>
<td>O3</td>
<td>-0,70658</td>
<td>-0,61411</td>
<td>-0,61012</td>
<td>O3</td>
<td>-0,480573</td>
<td>-0,361609</td>
</tr>
<tr>
<td>N1</td>
<td>-0,40035</td>
<td>-0,31036</td>
<td>-0,30418</td>
<td>N1</td>
<td>-0,427173</td>
<td>-0,301773</td>
</tr>
<tr>
<td>N2</td>
<td>-0,30894</td>
<td>-0,27807</td>
<td>-0,27613</td>
<td>N2</td>
<td>-0,236337</td>
<td>-0,175100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>q₀</th>
<th>q₊</th>
<th>q₋</th>
<th>fₓ⁺</th>
<th>fₓ₋</th>
<th>Δf(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>-0,65862</td>
<td>-0,34663</td>
<td>-0,33817</td>
<td>0,31199</td>
<td>-0,32045</td>
<td>0,63244</td>
</tr>
<tr>
<td>O2</td>
<td>-0,51316</td>
<td>-0,28468</td>
<td>-0,26618</td>
<td>0,22848</td>
<td>-0,24698</td>
<td>0,47546</td>
</tr>
<tr>
<td>O3</td>
<td>-0,61411</td>
<td>0,06616</td>
<td>-0,31394</td>
<td>0,68027</td>
<td>-0,30017</td>
<td>0,98044</td>
</tr>
<tr>
<td>N1</td>
<td>-0,31036</td>
<td>0,41822</td>
<td>-0,16464</td>
<td>0,72858</td>
<td>-0,14572</td>
<td>0,87430</td>
</tr>
<tr>
<td>N2</td>
<td>-0,27807</td>
<td>-0,25381</td>
<td>-0,10698</td>
<td>0,02426</td>
<td>-0,17109</td>
<td>0,19535</td>
</tr>
<tr>
<td>C1</td>
<td>-0,04459</td>
<td>-0,02530</td>
<td>0,00314</td>
<td>0,01929</td>
<td>-0,04773</td>
<td>0,06702</td>
</tr>
<tr>
<td>C2</td>
<td>-0,29118</td>
<td>-0,15424</td>
<td>-0,11013</td>
<td>0,13694</td>
<td>-0,18105</td>
<td>0,31799</td>
</tr>
<tr>
<td>C3</td>
<td>0,29313</td>
<td>0,18477</td>
<td>0,13100</td>
<td>-0,10836</td>
<td>0,16213</td>
<td>-0,27049</td>
</tr>
<tr>
<td>C4</td>
<td>0,30475</td>
<td>0,18308</td>
<td>0,17146</td>
<td>-0,12167</td>
<td>0,13329</td>
<td>-0,25496</td>
</tr>
<tr>
<td>C5</td>
<td>-0,26992</td>
<td>-0,11818</td>
<td>-0,12777</td>
<td>0,15174</td>
<td>-0,14215</td>
<td>0,29389</td>
</tr>
<tr>
<td>C6</td>
<td>-0,19701</td>
<td>-0,09028</td>
<td>-0,11023</td>
<td>0,10673</td>
<td>-0,08678</td>
<td>0,19351</td>
</tr>
<tr>
<td>C7</td>
<td>-0,02566</td>
<td>-0,03509</td>
<td>-0,00847</td>
<td>-0,00943</td>
<td>-0,01719</td>
<td>0,00776</td>
</tr>
<tr>
<td>C8</td>
<td>-0,44262</td>
<td>-0,21599</td>
<td>-0,21761</td>
<td>0,22663</td>
<td>-0,22501</td>
<td>0,45164</td>
</tr>
<tr>
<td>C9</td>
<td>0,26574</td>
<td>0,38169</td>
<td>0,18678</td>
<td>0,11595</td>
<td>0,07896</td>
<td>0,03699</td>
</tr>
<tr>
<td>C10</td>
<td>-0,60797</td>
<td>-0,29746</td>
<td>-0,30176</td>
<td>0,31051</td>
<td>-0,30621</td>
<td>0,61672</td>
</tr>
<tr>
<td>C11</td>
<td>0,70780</td>
<td>0,12629</td>
<td>-0,11023</td>
<td>-0,58151</td>
<td>0,81803</td>
<td>-1,39954</td>
</tr>
</tbody>
</table>
HOMO-LUMO ve Kimyasal Aktivite Parametreleri

HOMO, moleküldeki en yüksek enerjili dolu orbitalı LUMO ise, moleküldeki en düşük boş orbitalı temsil etmektedir ki bu orbitallere sınır orbitalleri denilmektedir ve molekülün en kararlı olduğu durumuna ait orbitaller Şekil 3’de verilmiştir. HOMO orbitallarının fenil halkası üzerinde konumlandığı, LUMO orbitallarının ise pirazol halkası üzerinde konumlandığı görülülmektedir. Sınır orbitallarının belirlenmesi, molekülün kimyasal kararlılığını belirlemenmesinde oldukça önem taşımaktadır. HOMO-LUMO aralığının küçük olması bu orbitaller arası etkileşimin ve reaksiyonların daha kolay olacağı anlamına gelmektedir.

\[
\begin{align*}
|f_k^+(r)| & = q_k(r)(N + 1) - q_k(r)(N) \quad \text{ve} \quad |f_k^-(r)| = q_k(r)(N) - q_k(r)(N - 1).
\end{align*}
\]

Tablo 4’teki molekülün en kararlı olduğu halı üzerinden sınır orbitalleri ve bunlardan türetilmiş nicelikler verilmektedir. Tablodaki değerlerde göre B3LYP yönteminden elde edilen \(n=2.5983\) değeri ile yüksek sertlik ve \(S=0.1924\) değeriyle ile düşük yumuşaklık değerine sahip olduğunu ve bu durumun ise molekülün düşük kimyasal aktivitesiyle kararlı bir yapıya sahip olduğunu sonucuna ulaşabiliriz.

\[
\begin{align*}
I & = -E_{\text{HOMO}}, \quad A = -E_{\text{LUMO}}, \quad \Delta E = \left|E_{\text{HOMO}} - E_{\text{LUMO}}\right|, \\
\chi & = \frac{I + A}{2}, \quad \eta = \frac{I - A}{2}, \quad S = \frac{1}{2\eta}, \quad \omega = \frac{\chi^2}{2\eta}
\end{align*}
\]

Moleküle Ait Doğrusal Olmayan Optik Özellikler

Tablo 5. Molekül Ait Optik Özellik Hesaplamaları ve Bileşenleri.

<table>
<thead>
<tr>
<th>6-311G(d,p) Dipol Moment (Debye)</th>
<th>Doğrusal kutuplanabilirlik, Yönelleme bağlı kutuplanabilirlik (esu)</th>
<th>1. mertebeden kutuplanabilirlik (esu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>[(\alpha_{xx}) 168.53138, (\beta_{xx}) 202.9924624, (\alpha_{xy}) 12.1360036, (\beta_{xy}) 30.6260309, (\alpha_{xz}) 147.441023, (\beta_{xz}) 97.0704712, (\alpha_{yz}) 0.7294252, (\beta_{yz}) 57.1760482, (\alpha_{zz}) 8.6315885, (\beta_{zz}) 72.5935859, (\alpha) 22.3280, (\Delta\alpha) 36.9716, (\Delta \alpha) 36.9716]</td>
<td></td>
</tr>
<tr>
<td>B3LYP</td>
<td>[(\alpha_{xx}) 188.9995875, (\beta_{xx}) 325.92611, (\alpha_{xy}) 15.7151304, (\beta_{xy}) 59.720389, (\alpha_{xz}) 170.9027615, (\beta_{xz}) 166.1337673, (\alpha_{yz}) 0.1359049, (\beta_{yz}) 107.748209, (\alpha_{zz}) 7.7792799, (\beta_{zz}) -127.4224469, (\alpha) 24.8986, (\Delta\alpha) 53.0650, (\Delta \alpha) 53.0650]</td>
<td></td>
</tr>
<tr>
<td>B3PW91</td>
<td>[(\alpha_{xx}) 186.7422707, (\beta_{xx}) 314.4736652, (\alpha_{xy}) 15.1111070, (\beta_{xy}) 53.6877921, (\alpha_{xz}) 169.0522344, (\beta_{xz}) 156.9056944, (\alpha_{yz}) 0.24741370, (\beta_{yz}) 101.2537389, (\alpha_{zz}) 7.57021770, (\beta_{zz}) -125.6129266, (\alpha) 24.7284, (\Delta\alpha) 49.3288, (\Delta \alpha) 49.3288]</td>
<td></td>
</tr>
</tbody>
</table>

Molekülün Termodinamik Özellikleri

Entropi, ısı kapasitesi ve entalpi gibi değişkenler termodinamik fonksiyonlar olarak adlandırılır. Birçok termodinamik fonksiyon belirlenirken değişkenlerin birbirlerine göre değişimleri incelenir. Termodinamik fonksiyonlardan, molekülün toplam enerjisine gelen katkular (öteleme, elektronik, dönme ve titreşim) belirlenerek tablo verilmiştir. Tablo 6 incelendiğinde, elektronik için 0.000, öteleme ve dönme için 0.889 titreşim için 193.953 ve toplam enerji için 195.730 değerleri elde edilmiştir. Termal enerjije en büyük katkı nöron titreşim enerjisinden geldiği gözükmektedir.

Tablo 6. Molekül Ait Termodinamik Fonksiyonlar ve Bileşenleri.
<table>
<thead>
<tr>
<th></th>
<th>HF</th>
<th>B3LYP</th>
<th>B3PW91</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termal, E (cal/mol K)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektronik</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Öteleme</td>
<td>0.889</td>
<td>0.889</td>
<td>0.889</td>
</tr>
<tr>
<td>Dönme</td>
<td>0.889</td>
<td>0.889</td>
<td>0.889</td>
</tr>
<tr>
<td>Titreşim</td>
<td>193.953</td>
<td>181.947</td>
<td>182.512</td>
</tr>
<tr>
<td>Toplam</td>
<td>195.730</td>
<td>183.724</td>
<td>184.289</td>
</tr>
<tr>
<td>İst kapasitesi, Cv (cal/mol K)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektronik</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Öteleme</td>
<td>2.981</td>
<td>2.981</td>
<td>2.981</td>
</tr>
<tr>
<td>Dönme</td>
<td>2.981</td>
<td>2.981</td>
<td>2.981</td>
</tr>
<tr>
<td>Titreşim</td>
<td>56.336</td>
<td>60.739</td>
<td>60.583</td>
</tr>
<tr>
<td>Toplam</td>
<td>62.298</td>
<td>66.701</td>
<td>66.544</td>
</tr>
<tr>
<td>Entropi, S (cal/mol K)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektronik</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Öteleme</td>
<td>42.427</td>
<td>42.427</td>
<td>42.427</td>
</tr>
<tr>
<td>Dönme</td>
<td>33.320</td>
<td>33.341</td>
<td>33.307</td>
</tr>
<tr>
<td>Titreşim</td>
<td>59.697</td>
<td>63.698</td>
<td>63.433</td>
</tr>
<tr>
<td>Toplam</td>
<td>135.444</td>
<td>139.466</td>
<td>139.166</td>
</tr>
<tr>
<td>Dönme Sıcaklıkları (Kelvin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.02959</td>
<td>0.02890</td>
<td>0.02895</td>
</tr>
<tr>
<td>B</td>
<td>0.01286</td>
<td>0.01312</td>
<td>0.01329</td>
</tr>
<tr>
<td>C</td>
<td>0.01200</td>
<td>0.01179</td>
<td>0.01203</td>
</tr>
<tr>
<td>Dönme sabitleri (GHz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.61661</td>
<td>0.60228</td>
<td>0.60328</td>
</tr>
<tr>
<td>B</td>
<td>0.26794</td>
<td>0.27328</td>
<td>0.27682</td>
</tr>
<tr>
<td>C</td>
<td>0.24997</td>
<td>0.24557</td>
<td>0.25059</td>
</tr>
<tr>
<td>Sıfır-nokta titreşim enerjisi (kcal/mol)</td>
<td>185.08488</td>
<td>172.46905</td>
<td>173.05879</td>
</tr>
<tr>
<td>Sıfır-nokta düzeltmesi</td>
<td>0.294952</td>
<td>0.274847</td>
<td>0.275787</td>
</tr>
<tr>
<td>Enerjide termal düzeltme</td>
<td>0.311916</td>
<td>0.292783</td>
<td>0.293683</td>
</tr>
<tr>
<td>Entalpide termal düzeltme</td>
<td>0.312861</td>
<td>0.293728</td>
<td>0.294628</td>
</tr>
<tr>
<td>Gibbs serbest enerjisinin termal düzeltmesi</td>
<td>0.248507</td>
<td>0.227463</td>
<td>0.228505</td>
</tr>
<tr>
<td>Elektronik ve sıfır nokta enerjisinin toplamı</td>
<td>-834.960210</td>
<td>-840.109149</td>
<td>-839.780951</td>
</tr>
<tr>
<td>Elektronik ve termal enerjilerin toplamı</td>
<td>-834.943245</td>
<td>-840.091212</td>
<td>-839.763054</td>
</tr>
<tr>
<td>Elektronik ve termal entalpi toplamı</td>
<td>-834.942301</td>
<td>-840.090268</td>
<td>-839.762110</td>
</tr>
<tr>
<td>Elektronik ve termal serbest enerjilerin toplamı</td>
<td>-835.006654</td>
<td>-840.156533</td>
<td>-839.828232</td>
</tr>
<tr>
<td>Toplam enerji (Hartree)</td>
<td>-835.2551613</td>
<td>-840.3839958</td>
<td>-840.0567377</td>
</tr>
</tbody>
</table>

Hirshfeld Analizi

Şekil 5. Molekülün Hirshfeld Yüzeyi (d_{norm} -0.650 ile 1.418 a.u.)

Hirshfeld yüzeyine en fazla katkını sunan bazı etkileşimlere ait 2-boyutlu parmak izi haritaları Şekil 6’da verilmiştir. O···H/H···O etkileşimleri incelenecek olursa iki keskin sıvı uç oldukça belirgin bir şekilde gözükmedir ve bu durum mevcut hidrojen bağılarının bir özelliğidir. Bu etkileşim Hirshfeld yüzeyine % 23.6 katkı sunarken, C···H/H···C ve N···H/H···N etkileşimlerinin Hirshfeld yüzeyine katkısi sırasıyla %13.9 ve %4.6 şeklinde belirlenmiştir.

Şekil 6. Moleküle ait bazı etkileşimlerin ait 2-boyutlu parmak izi haritaları.

SONUÇLAR

1-[5-(4-Hydroxy-3-methoxyphenyl)-3-methyl-4,5-dihydro-1H-pyrazol-1-yl]ethanone molekülünün kuramsal hesaplama yöntemleri HF ve YFK/B3LYP ve B3PW91 yöntemleri ve 6-311(d,p) ve 6-311++(d,p) baz setleri ile incelenmiştir. Molekülün optimizasyonu sonucunda elde edilen geometrik parametreler x-ışını kırınımından elde edilen parametrelerle karşılaştırılmış ve sonuçlar yorumlanmıştır. Ayrıca molekülün HOMO-LUMO orbitalleri, MEP haritaları, Fukui fonksiyonları ve de Hirshfeld yüzey analizleri yapılmış ve moleküldeki mevcut etkileşimleri desteklediği belirlenmiştir. Diğer taraftan molekülün sahip olduğu termal özellikler ve doğrusal olmayan optik özellikler belirlenerek molekülün deneySEL olarak elde edilemeyen fiziksel ve kimiyasal özelliklerine ulaşılmıştır. Molekülün elde edilen 1. mertebeden kutuplanabilirlik değerleriyle gelecekteki çalışmalarında optik materyal olarak kullanına uygun olduğu söylenebilmiştir.
Tevékkür
Acknowledgement
Bu çalışmanın yazarı olarak herhangi bir destek ve teşekkür beyanının olmadığını bildirim.

Yazarların Katkısi
Author contribution
Tüm yazarlar çalışmaya eşit katkıda bulunmuştur.

Çıkar Çatışması Beyani
Conflicts of interest
“Yazarlar herhangi bir çıkar çatışması olmadığını beyan eder”

Etik Beyan
Declaration of ethical code
“Bu makalenin yazarları, bu çalışmada kullanılan materyal ve yöntemlerin etik kurul izni ve / veya yasal-özelizin gerektirdiğini beyan etmektedir."
KAYNAKLAR

