BibTex RIS Cite

Environmental Evaluation of Organohalogens and Removal Methods

Year 2010, Volume: 13 Issue: 2, 38 - 43, 05.06.2016

Abstract

Organohalogens are organic compounds that contain one or more halogen atoms (fluorine, chlorine,
bromine or iodine). Having adverse effects on the environment and public health these compounds, which have been
originated naturally and anthropogenically, have to be investigated carefully. In recent years, organohalogen
accumulation by living organisms have been examined and removal alternatives have been studied due to their
carcinogenic characteristics. There have been physicochemical and biological removal methods of organohalogens.
Primarily source, type and concentration of these pollutants have been determined when any regional pollution has
occurred. Afterwards an appropriate removal method of this pollutant has been selected.
In this study, a general assessment of removal methods and accumulation of organohalogens has been made in terms
of definition, formation and adverse effects of them.
Keywords: Biological treatment, physicochemical treatment, organohalogens

References

  • Mariussen E., Fonnum F. 2006., Neurochemical targets and behavioral effects of organohalogen compounds: An update, Critical Reviews in Toxicology 36, 253–289.
  • Lecloux A.J. 2003., Scientific activities of Euro Chlor in monitoring and assessing naturally and man- made organohalogens, Chemosphere 52, 521–529.
  • Gribble G.W. 2003., The diversity of naturally produced organohalogens, Chemosphere 52, 289–297.
  • Xu D., Deng L., Chai Z., Mao X. 2004., Organohalogenated compounds in pine needles from Beijing city, China, Chemosphere 57, 1343–1353.
  • Ballschmiter K. 2003., Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens, Chemosphere 52, 313-324.
  • Urhahn T., Ballschmiter K. 1998., Chemistry of the biosynthesis
  • organohalogens as pre-industrial chemical stressors in the environment?, Chemosphere 37, 1017-1032.
  • Cl- 7. Ramanathan V., Feng Y. 2009., Air pollution, greenhouse gases and climate change: Global and regional perspectives, Atmospheric Environment 43, 37–50.
  • Francis D.W., Turner P.A., Wearing J.T. 1997., AOX reduction of kraft bleach plant effluent by chemical pretreatment-Pilot-scale trials, Water Research 31, 2397-2404.
  • Santos A.B.D., Cervantes F.J., Lier J.B.V. 2007., Review paper on current technologies for mother-to-calf transfer
  • of 16. Zhang H., Chai Z., Sun H. 2007., Human hair as a potential biomonitor for assessing persistent organic pollutants, Environment International 33, 685–693.
  • Adahchour M., Beens J., Vreuls R.J.J., Brinkman U.A.T. 2006., Recent developments in comprehensive two-dimensional gas chromatography (GCxGC), III. Applications for petrochemicals and organohalogens, Trends in Analytical Chemistry 25, 726-741.
  • Tittlemier S.A., Blank D.H., Gribble G.W., Norstrom R.J. 2002a., Structure elucidation of four possible biogenic organohalogens
  • exchange mass spectrometry, Chemosphere 46, 511– 517.
  • using isotope 19. Tittlemier S.A., Fisk A.T., Hobson K.A., Norstrom R.J. 2002b., Examination of the bioaccumulation of halogenated dimethyl bipyrroles in an Arctic marine food web using stable nitrogen isotope analysis, Environmental Pollution 116, 85–93. 20. Howe
  • dehalogenation processes, Applied Catalysis A: General 271, 3–11. Zeolite catalysts
  • for 21. Legawiec-Jarzyna M., Srebowata A., Juszczyk W., Karpinski Z. 2004., Hydrodechlorination over Pd– Pt/Al2O3 catalysts, A comparative study of chlorine removal
  • tetrachloride and 1,2-dichloroethane, Applied Catalysis A: General 271, 61–68.
  • carbon 22. Savant D.V., Abdul-Rahman R., Ranade D.R. 2006., Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater, Bioresource Technology 97, 1092–1104.
  • Pokhrel D., Viraraghavan T. 2004., Treatment of pulp and paper mill wastewater-a review, Science of the Total Environment 333, 37–58.
  • Matafonova G., Shirapova G., Zimmer G., Giffhorn F., Batoev V., Kohring G.-W. 2006., Degradation of 2,4-dichlorophenol by Bacillus sp. isolated from an aeration pond in the Baikalsk pulp and paper mill (Russia), International Biodeterioration & Biodegradation 58, 209–212.
  • Ruiying G., Jianlong W. 2007., Effects of pH and temperature on isotherm parameters of chlorophenols biosorption to anaerobic granular sludge, Journal of Hazardous Materials 145, 398–403.
  • Nyholm J.R., Lundberg C., Andersson P.L. 2010., Biodegradation kinetics of selected brominated flame retardants in aerobic and anaerobic soil, Environmental Pollution xxx, 1-6.
  • Field J.A., Sierra-Alvarez R. 2008., Microbial transformation and degradation of polychlorinated biphenyls, Environmental Pollution 155, 1-12.
  • Ficko S.A., Rutter A., Zeeb B.A. 2010., Potential for phytoextraction of PCBs from contaminated soils using weeds, Science of the Total Environment xxx, xxx–xxx.
  • Asai K., Takagi K., Shimokawa M., Sue T., Hibi A., Hiruta T., Fujihiro S., Nagasaka H., Hisamatsu S., Sonoki S. 2002., Phytoaccumulation of coplanar PCBs by Arabidopsis thaliana, Environmental Pollution 120, 509–511.
  • Bunge M., Ballerstedt H., Lechner U. 2001., Regiospecific dechlorination of spiked tetra –and trichlorodibenzo-p-dioxins by anaerobic bacteria from PCDD/F-contaminated
  • Chemosphere 43, 675-681. Spittelwasser
  • sediments, 31. Quintero J.C., Lş-Chau T.A., Moreira M.T., Feijoo G., Lema J.M. 2007., Bioremediation of HCH present in soil by the white-rot fungus Bjerkandera adusta in a slurry batch bioreactor, International Biodeterioration & Biodegradation 60, 319–326.
  • Singer A.C., Jury W., Luepromchai E., Yahng C.- S., Crowley D.E. 2001., Contribution of earthworms to PCB bioremediation, Soil Biology & Biochemistry 33, 765-776.
  • Tang N.H., Myers T.E. 2002., PCB removal from contaminated dredged material, Chemosphere 46, 477– 484.
  • Deshmukh N.S., Lapsiya K.L., Savant D.V., Chiplonkar S.A., Yeole T.Y., Dhakephalkar P.K., Ranade D.R. 2009., Upflow anaerobic filter for the degradation of adsorbable organic halides (AOX) from bleach composite wastewater of pulp and paper industry, Chemosphere 75, 1179–1185.
  • El-Hadj T.B., Dosta J., Torres R., Mata-Alvarez J. 2007., PCB and AOX removal in mesophilic and thermophilic sewage sludge digestion, Biochemical Engineering Journal 36, 281–287.
  • Ali M., Sreekrishnan T.R. 2000., Anaerobic treatment of agricultural residue based pulp and paper mill effluents for AOX and COD reduction, Process Biochemistry 36, 25–29.

Organohalojenlerin Çevresel Açıdan Değerlendirilmesi ve Giderim Yöntemleri

Year 2010, Volume: 13 Issue: 2, 38 - 43, 05.06.2016

Abstract

Organohalojenler flor, klor, brom veya iyot gibi 7A grubu elementlerden birini içeren organik bileşiklerdir. Doğal ve antropojenik kaynaklı olarak oluşabilen bu bileşikler, çevre ve halk sağlığı açısından olumsuz etkilere sebep olduklarından dikkatle izlenmesi gereken bileşiklerdir. Bu bileşiklerin çoğu kanserojen özellikte olduğundan, son yıllarda organohalojenlerin canlılardaki birikimi izlenmekte ve giderim alternatifleri araştırılmaktadır. Giderim yöntemleri arasında fizikokimyasal yöntemler ile biyolojik yöntemler bulunmaktadır. Herhangi bir bölgede bu türden bir kirlilik meydana geldiğinde öncelikle kirliliğin kaynağı, türü ve konsantrasyonu tespit edilmeli, sonrasında ise giderim için kullanılacak bir yöntem belirlenerek etkili bir giderim yapılmaya çalışılmalıdır

References

  • Mariussen E., Fonnum F. 2006., Neurochemical targets and behavioral effects of organohalogen compounds: An update, Critical Reviews in Toxicology 36, 253–289.
  • Lecloux A.J. 2003., Scientific activities of Euro Chlor in monitoring and assessing naturally and man- made organohalogens, Chemosphere 52, 521–529.
  • Gribble G.W. 2003., The diversity of naturally produced organohalogens, Chemosphere 52, 289–297.
  • Xu D., Deng L., Chai Z., Mao X. 2004., Organohalogenated compounds in pine needles from Beijing city, China, Chemosphere 57, 1343–1353.
  • Ballschmiter K. 2003., Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens, Chemosphere 52, 313-324.
  • Urhahn T., Ballschmiter K. 1998., Chemistry of the biosynthesis
  • organohalogens as pre-industrial chemical stressors in the environment?, Chemosphere 37, 1017-1032.
  • Cl- 7. Ramanathan V., Feng Y. 2009., Air pollution, greenhouse gases and climate change: Global and regional perspectives, Atmospheric Environment 43, 37–50.
  • Francis D.W., Turner P.A., Wearing J.T. 1997., AOX reduction of kraft bleach plant effluent by chemical pretreatment-Pilot-scale trials, Water Research 31, 2397-2404.
  • Santos A.B.D., Cervantes F.J., Lier J.B.V. 2007., Review paper on current technologies for mother-to-calf transfer
  • of 16. Zhang H., Chai Z., Sun H. 2007., Human hair as a potential biomonitor for assessing persistent organic pollutants, Environment International 33, 685–693.
  • Adahchour M., Beens J., Vreuls R.J.J., Brinkman U.A.T. 2006., Recent developments in comprehensive two-dimensional gas chromatography (GCxGC), III. Applications for petrochemicals and organohalogens, Trends in Analytical Chemistry 25, 726-741.
  • Tittlemier S.A., Blank D.H., Gribble G.W., Norstrom R.J. 2002a., Structure elucidation of four possible biogenic organohalogens
  • exchange mass spectrometry, Chemosphere 46, 511– 517.
  • using isotope 19. Tittlemier S.A., Fisk A.T., Hobson K.A., Norstrom R.J. 2002b., Examination of the bioaccumulation of halogenated dimethyl bipyrroles in an Arctic marine food web using stable nitrogen isotope analysis, Environmental Pollution 116, 85–93. 20. Howe
  • dehalogenation processes, Applied Catalysis A: General 271, 3–11. Zeolite catalysts
  • for 21. Legawiec-Jarzyna M., Srebowata A., Juszczyk W., Karpinski Z. 2004., Hydrodechlorination over Pd– Pt/Al2O3 catalysts, A comparative study of chlorine removal
  • tetrachloride and 1,2-dichloroethane, Applied Catalysis A: General 271, 61–68.
  • carbon 22. Savant D.V., Abdul-Rahman R., Ranade D.R. 2006., Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater, Bioresource Technology 97, 1092–1104.
  • Pokhrel D., Viraraghavan T. 2004., Treatment of pulp and paper mill wastewater-a review, Science of the Total Environment 333, 37–58.
  • Matafonova G., Shirapova G., Zimmer G., Giffhorn F., Batoev V., Kohring G.-W. 2006., Degradation of 2,4-dichlorophenol by Bacillus sp. isolated from an aeration pond in the Baikalsk pulp and paper mill (Russia), International Biodeterioration & Biodegradation 58, 209–212.
  • Ruiying G., Jianlong W. 2007., Effects of pH and temperature on isotherm parameters of chlorophenols biosorption to anaerobic granular sludge, Journal of Hazardous Materials 145, 398–403.
  • Nyholm J.R., Lundberg C., Andersson P.L. 2010., Biodegradation kinetics of selected brominated flame retardants in aerobic and anaerobic soil, Environmental Pollution xxx, 1-6.
  • Field J.A., Sierra-Alvarez R. 2008., Microbial transformation and degradation of polychlorinated biphenyls, Environmental Pollution 155, 1-12.
  • Ficko S.A., Rutter A., Zeeb B.A. 2010., Potential for phytoextraction of PCBs from contaminated soils using weeds, Science of the Total Environment xxx, xxx–xxx.
  • Asai K., Takagi K., Shimokawa M., Sue T., Hibi A., Hiruta T., Fujihiro S., Nagasaka H., Hisamatsu S., Sonoki S. 2002., Phytoaccumulation of coplanar PCBs by Arabidopsis thaliana, Environmental Pollution 120, 509–511.
  • Bunge M., Ballerstedt H., Lechner U. 2001., Regiospecific dechlorination of spiked tetra –and trichlorodibenzo-p-dioxins by anaerobic bacteria from PCDD/F-contaminated
  • Chemosphere 43, 675-681. Spittelwasser
  • sediments, 31. Quintero J.C., Lş-Chau T.A., Moreira M.T., Feijoo G., Lema J.M. 2007., Bioremediation of HCH present in soil by the white-rot fungus Bjerkandera adusta in a slurry batch bioreactor, International Biodeterioration & Biodegradation 60, 319–326.
  • Singer A.C., Jury W., Luepromchai E., Yahng C.- S., Crowley D.E. 2001., Contribution of earthworms to PCB bioremediation, Soil Biology & Biochemistry 33, 765-776.
  • Tang N.H., Myers T.E. 2002., PCB removal from contaminated dredged material, Chemosphere 46, 477– 484.
  • Deshmukh N.S., Lapsiya K.L., Savant D.V., Chiplonkar S.A., Yeole T.Y., Dhakephalkar P.K., Ranade D.R. 2009., Upflow anaerobic filter for the degradation of adsorbable organic halides (AOX) from bleach composite wastewater of pulp and paper industry, Chemosphere 75, 1179–1185.
  • El-Hadj T.B., Dosta J., Torres R., Mata-Alvarez J. 2007., PCB and AOX removal in mesophilic and thermophilic sewage sludge digestion, Biochemical Engineering Journal 36, 281–287.
  • Ali M., Sreekrishnan T.R. 2000., Anaerobic treatment of agricultural residue based pulp and paper mill effluents for AOX and COD reduction, Process Biochemistry 36, 25–29.
There are 34 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Aslı Çoban

Fatma Türkdoğan

Göksel Demir

Publication Date June 5, 2016
Submission Date January 25, 2011
Published in Issue Year 2010Volume: 13 Issue: 2

Cite

APA Çoban, A., Türkdoğan, F., & Demir, G. (2016). Environmental Evaluation of Organohalogens and Removal Methods. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 38-43. https://doi.org/10.17780/ksujes.29739