Research Article
BibTex RIS Cite

Azot gideriminde kullanılan biyo reaktörlerde heterotrofik, ototrofik ve miksotrofik proseslerin değerlendirilmesi

Year 2018, Volume: 21 Issue: 3, 217 - 225, 23.10.2018
https://doi.org/10.17780/ksujes.432026

Abstract

Bu çalışmada metanol bazlı heterotrofik, tiyosülfat
bazlı ototrofik ve miksotrofik denitrifikasyon proseslerinin nitrat giderme verimleri
karşılaştırılmıştır. Üç biyofilm reaktör kayseri evsel atıksu arıtma tesisinden
alınan aktif çamur ile aşılandı. Başlangıçta, heterotrofik denitrifikasyonun
performansı, artan nitrat konsantrasyonu (50 ila 400mgNO3- / L) altında
değerlendirildi ve reaksiyon süresi sonunda nitrat tamamen tüketildi. Daha
sonra, kükürt/azot (S / N) oranının denitrifikasyon üzerindeki etkilerini
belirlemek için elektron verici olarak tiosülfat kullanılarak ototrofik denitrifikasyon
gerçekleştirilmiştir. Ototrofik koşullar altında maksimum nitrat giderim
verimi, 150mgNO3-/L nitrat konsantrasyonunda S/N oranı
0.63 olduğunda elde edilmiştir. Son olarak, C/N oranlarının (15'ten 3,88'e)
mikstrofik denitrifikasyon performansı üzerindeki etkisi değerlendirildi.
Metanol eklenerek nitrat giderim oranının arttığı ve nitratın tamamen tüketildiği
gözlenmiştir. Optimum C/N oranı % 96 KOİ giderimi ve yaklaşık 3.0 mgNO3-/L.min
nitrat tüketim hızına karşılık gelen 3.88 bulunmuştur. Sonuç olarak heterotrofik
denitrifikasyonun nitrat ve karbon giderim verimleri ototrofik ve mikstrofik
denitrifikasyona göre daha yüksekti.

References

  • Campos, J. L.,Carvalho, S., Portela, R., Mosquera-Corral, A., &Méndez, R. (2008). Kinetics of denitrificationusingsulphurcompounds: effects of S/N ratio, endogenousandexogenouscompounds. Bioresourcetechnology, 99(5), 1293-1299.
  • Cord-Ruwisch, R., 1985. A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate reducing bacteria. Journal of Microbiological Methods 4, 33–36.
  • Della Rocca, C., Belgiorno, V., Meriç, S., 2006. An heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water. Process Biochem. 41,1022–1028.
  • Fonseca, J.F.B.D., Bosi, V., Vilanova, S.P. and Meghraoui, M. (2000). Investigations unveil Holocene thrusting for onshore Portugal. Eos, Transactions American Geophysical Union 81: doi: 10.1029/00EO00310. issn: 0096-3941.
  • Oh, S., Bum, M., Yoo, Y., Zubair, A., Kim, I., 2003. Nitrate removal by simultaneous sulfur utilizing autotrophic and heterotrophic denitrification under different organics and alkalinity conditions: batch experiments. Water Sci. Technol. 47, 237–244.
  • Peng, Y., Yong, M.A., Wang, S. 2007. Denitrification Potential Enhancement by Addition of External Carbon Sources in a pre-Denitrification Process.Journal of Environmental Sciences, 19, 284-289.
  • Sahinkaya, E. and Kilic, A. (2014). Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr (VI) reduction. waterresearch, 50, 278-286.
  • Sahinkaya, E., Dursun, N. (2012) “Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement”,Chemosphere, 89(2), 144-149.
  • Sahinkaya, E., Dursun, N., Kilic, A., Demirel, S., Uyanik, S., Cinar, O. (2011) “Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production”, Water Res., 45(20), 6661-6667.
  • Sierra-Alvarez, R., Beristan-Cardoso, R., Salazar, M., Gomez, J., Razo-Flores, E., Field, J.A. (2007) “Chemolithotrophic denitrification with elemental sulfur for ground water Treatment”, Water Res, 41,1253-1262.
  • Sun, F., Dong, W., Shao, M., Lv, X., Li, J., Peng, L., Wang, H. 2013. Aerobic Methane Oxidation Coupled to Denitrification in a Membrane Biofilm Reactor: Treatment performance and the effect of oxygen ventilation. Bioresource Technology. 145: 2-9.
  • Sun, Y.M., Nemati, M., 2012. Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters. Bioresour. Technol. 114, 207e216.
  • Tang, Kimberley, Shijie An, and Mehdi Nemati. "Evaluation of autotrophic and heterotrophic processes in biofilm reactors used for removal of sulphide, nitrate and COD." Bioresource technology 101.21 (2010): 8109-8118.
  • Ward MH, Dekok TM, Levallois P, Brenden J, Gulis G, Nolan BT, Vanderslice J (2005): Workgroup report: Drinking-water nitrate and health-recent findings and research needs. Environmental Health Perspective. 113, 1607-1614
  • Zhang, T.C., Lampe, D.G., 1999. Sulfur: limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: batch experiments.Water Res. 33, 599–608.
  • Zhang, T.C., Zeng, H., 2006. Development of a response surface for prediction of nitrate removal in sulfur-limestone autotrophic denitrification fixed-bed reactors. J. Environ. Eng. 132 (9), 1068e1072
Year 2018, Volume: 21 Issue: 3, 217 - 225, 23.10.2018
https://doi.org/10.17780/ksujes.432026

Abstract

References

  • Campos, J. L.,Carvalho, S., Portela, R., Mosquera-Corral, A., &Méndez, R. (2008). Kinetics of denitrificationusingsulphurcompounds: effects of S/N ratio, endogenousandexogenouscompounds. Bioresourcetechnology, 99(5), 1293-1299.
  • Cord-Ruwisch, R., 1985. A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate reducing bacteria. Journal of Microbiological Methods 4, 33–36.
  • Della Rocca, C., Belgiorno, V., Meriç, S., 2006. An heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water. Process Biochem. 41,1022–1028.
  • Fonseca, J.F.B.D., Bosi, V., Vilanova, S.P. and Meghraoui, M. (2000). Investigations unveil Holocene thrusting for onshore Portugal. Eos, Transactions American Geophysical Union 81: doi: 10.1029/00EO00310. issn: 0096-3941.
  • Oh, S., Bum, M., Yoo, Y., Zubair, A., Kim, I., 2003. Nitrate removal by simultaneous sulfur utilizing autotrophic and heterotrophic denitrification under different organics and alkalinity conditions: batch experiments. Water Sci. Technol. 47, 237–244.
  • Peng, Y., Yong, M.A., Wang, S. 2007. Denitrification Potential Enhancement by Addition of External Carbon Sources in a pre-Denitrification Process.Journal of Environmental Sciences, 19, 284-289.
  • Sahinkaya, E. and Kilic, A. (2014). Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr (VI) reduction. waterresearch, 50, 278-286.
  • Sahinkaya, E., Dursun, N. (2012) “Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement”,Chemosphere, 89(2), 144-149.
  • Sahinkaya, E., Dursun, N., Kilic, A., Demirel, S., Uyanik, S., Cinar, O. (2011) “Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production”, Water Res., 45(20), 6661-6667.
  • Sierra-Alvarez, R., Beristan-Cardoso, R., Salazar, M., Gomez, J., Razo-Flores, E., Field, J.A. (2007) “Chemolithotrophic denitrification with elemental sulfur for ground water Treatment”, Water Res, 41,1253-1262.
  • Sun, F., Dong, W., Shao, M., Lv, X., Li, J., Peng, L., Wang, H. 2013. Aerobic Methane Oxidation Coupled to Denitrification in a Membrane Biofilm Reactor: Treatment performance and the effect of oxygen ventilation. Bioresource Technology. 145: 2-9.
  • Sun, Y.M., Nemati, M., 2012. Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters. Bioresour. Technol. 114, 207e216.
  • Tang, Kimberley, Shijie An, and Mehdi Nemati. "Evaluation of autotrophic and heterotrophic processes in biofilm reactors used for removal of sulphide, nitrate and COD." Bioresource technology 101.21 (2010): 8109-8118.
  • Ward MH, Dekok TM, Levallois P, Brenden J, Gulis G, Nolan BT, Vanderslice J (2005): Workgroup report: Drinking-water nitrate and health-recent findings and research needs. Environmental Health Perspective. 113, 1607-1614
  • Zhang, T.C., Lampe, D.G., 1999. Sulfur: limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: batch experiments.Water Res. 33, 599–608.
  • Zhang, T.C., Zeng, H., 2006. Development of a response surface for prediction of nitrate removal in sulfur-limestone autotrophic denitrification fixed-bed reactors. J. Environ. Eng. 132 (9), 1068e1072
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Ziya Ağıl 0000-0001-7632-2100

Vildan Akgül 0000-0001-5507-2886

Ahmet Duyar 0000-0001-8850-8308

Kevser Cırık 0000-0002-1756-553X

Publication Date October 23, 2018
Submission Date June 8, 2018
Published in Issue Year 2018Volume: 21 Issue: 3

Cite

APA Ağıl, Z., Akgül, V., Duyar, A., Cırık, K. (2018). Azot gideriminde kullanılan biyo reaktörlerde heterotrofik, ototrofik ve miksotrofik proseslerin değerlendirilmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 21(3), 217-225. https://doi.org/10.17780/ksujes.432026