Ateş Böceği Algoritmasını Kullanarak Kardiyak Aritmi Teşhisi
Year 2018,
Volume: 21 Issue: 3, 226 - 234, 23.10.2018
Yücel Koçyiğit
,
Selim Dilmaç
Abstract
Elektrokardiyografik
sinyallerdeki aritmileri otomatik olarak teşhis etmek ve kalp atım tipini
sınıflandırma için yeni yöntemler geliştirilmektedir. Bu çalışmada, veri
kümelemesi için Ateş böceği(AB) ve Bulanık C-Ortalama (BCO) algoritmalarını
kullanarak K-En Yakın Komşuluk (K-EYK) yöntemiyle EKG aritmilerinin
sınıflandırmasını gerçekleştirdik. Ateş böceği algoritmasının sonuçları,
Bulanık C-Ortalama algoritması başarı sonuçları ile karşılaştırılmıştır. EKG
verileri MITBIH veri tabanından elde edilmiştir. Ateş böceği ve Bulanık C-Ortalama algoritmalarını
kullanarak, sınıflandırma doğruluk oranı sırasıyla %99,47 ve %99,54 olarak
bulunmuştur.
References
-
Bezdek, J. C. (1981). Objective Function Clustering. In Pattern recognition with fuzzy objective function algorithms (pp. 43-93). Springer, Boston, MA.
-
Chen, S., Hua, W., Li, Z., Li, J., & Gao, X. (2017). Heartbeat classification using projected and dynamic features of ECG signal. Biomedical Signal Processing and Control, 31, 165-173.
-
De Albuquerque, V. H. C., Nunes, T. M., Pereira, D. R., Luz, E. J. D. S., Menotti, D., Papa, J. P., & Tavares, J. M. R. (2018). Robust automated cardiac arrhythmia detection in ECG beat signals. Neural Computing and Applications, 29(3), 679-693.
-
De Falco, I., Della Cioppa, A., & Tarantino, E. (2007). Facing classification problems with particle swarm optimization. Applied Soft Computing, 7(3), 652-658.
-
Dilmac, S., & Korurek, M. (2015). ECG heart beat classification method based on modified ABC algorithm. Applied Soft Computing, 36, 641-655.
-
Doğan, B., & Korürek, M. (2012). A new ECG beat clustering method based on kernelized fuzzy c-means and hybrid ant colony optimization for continuous domains. Applied Soft Computing, 12(11), 3442-3451.
-
Dorigo, M., & Stützle, T. (2004). Ant colony optimization. MIT Press, USA.
-
Elhaj, F. A., Salim, N., Harris, A. R., Swee, T. T., & Ahmed, T. (2016). Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Computer methods and programs in biomedicine, 127, 52-63.
-
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8), 651-666.Jung, W. H., & Lee, S. G. (2017). An Arrhythmia Classification Method in Utilizing the Weighted KNN and the Fitness Rule. IRBM, 38(3), 138-148.
-
Karaboga, D., & Ozturk, C. (2011). A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Applied soft computing, 11(1), 652-657.
-
Karlιk, B., Koçyiğit, Y., & Korürek, M. (2009). Differentiating types of muscle movements using a wavelet based fuzzy clustering neural network. Expert Systems, 26(1), 49-59.
-
Koçyiğit, Y. (2016). Heart sound signal classification using fast independent component analysis. Turkish Journal of Electrical Engineering & Computer Sciences, 24(4), 2949-2960.
-
Korürek, M., & Nizam, A. (2008). A new arrhythmia clustering technique based on Ant Colony Optimization. Journal of Biomedical Informatics, 41(6), 874-881.
-
Korürek, M., & Nizam, A. (2010). Clustering MIT–BIH arrhythmias with Ant Colony Optimization using time domain and PCA compressed wavelet coefficients. Digital Signal Processing, 20(4), 1050-1060.
-
Kutlu, Y., & Kuntalp, D. (2011). A multi-stage automatic arrhythmia recognition and classification system. Computers in Biology and Medicine, 41(1), 37-45.
-
Li, H., Yuan, D., Ma, X., Cui, D., & Cao, L. (2017). Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Scientific reports, 7, 41011
-
Martis, R. J., Acharya, U. R., Lim, C. M., Mandana, K. M., Ray, A. K., & Chakraborty, C. (2013). Application of higher order cumulant features for cardiac health diagnosis using ECG signals. International journal of neural systems, 23(04), 1350014.
-
Moody, G. B., & Mark, R. (1992). MIT-BIH arrhythmia database directory. MITBIH Database Distribution, Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. Available on the World Wide Web at:(http://www. physionet. org/physiobank/database/html/mitdbdir/mitdbdir. htm)(last date visited: Jul. 23, 2008).
-
Selim, S. Z., & Ismail, M. A. (1984). K-means-type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Transactions on pattern analysis and machine intelligence, (1), 81-87.
-
Senthilnath, J., Omkar, S. N., & Mani, V. (2011). Clustering using firefly algorithm: performance study. Swarm and Evolutionary Computation, 1(3), 164-171.
-
Suganya, R., & Shanthi, R. (2012). Fuzzy c-means algorithm-a review. International Journal of Scientific and Research Publications, 2(11), 1.
-
Yan, X., Zhu, Y., Zou, W., & Wang, L. (2012). A new approach for data clustering using hybrid artificial bee colony algorithm. Neurocomputing, 97, 241-250.
-
Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Luniver press.
-
Yeh, Y. C., Chiou, C. W., & Lin, H. J. (2012). Analyzing ECG for cardiac arrhythmia using cluster analysis. Expert Systems with Applications, 39(1), 1000-1010.
-
Zhang, C., Ouyang, D., & Ning, J. (2010). An artificial bee colony approach for clustering. Expert Systems with Applications, 37(7), 4761-4767.
-
Zhang, J., & Shen, L. (2014). An improved fuzzy c-means clustering algorithm based on shadowed sets and PSO. Computational intelligence and neuroscience, 2014, 22.
Year 2018,
Volume: 21 Issue: 3, 226 - 234, 23.10.2018
Yücel Koçyiğit
,
Selim Dilmaç
References
-
Bezdek, J. C. (1981). Objective Function Clustering. In Pattern recognition with fuzzy objective function algorithms (pp. 43-93). Springer, Boston, MA.
-
Chen, S., Hua, W., Li, Z., Li, J., & Gao, X. (2017). Heartbeat classification using projected and dynamic features of ECG signal. Biomedical Signal Processing and Control, 31, 165-173.
-
De Albuquerque, V. H. C., Nunes, T. M., Pereira, D. R., Luz, E. J. D. S., Menotti, D., Papa, J. P., & Tavares, J. M. R. (2018). Robust automated cardiac arrhythmia detection in ECG beat signals. Neural Computing and Applications, 29(3), 679-693.
-
De Falco, I., Della Cioppa, A., & Tarantino, E. (2007). Facing classification problems with particle swarm optimization. Applied Soft Computing, 7(3), 652-658.
-
Dilmac, S., & Korurek, M. (2015). ECG heart beat classification method based on modified ABC algorithm. Applied Soft Computing, 36, 641-655.
-
Doğan, B., & Korürek, M. (2012). A new ECG beat clustering method based on kernelized fuzzy c-means and hybrid ant colony optimization for continuous domains. Applied Soft Computing, 12(11), 3442-3451.
-
Dorigo, M., & Stützle, T. (2004). Ant colony optimization. MIT Press, USA.
-
Elhaj, F. A., Salim, N., Harris, A. R., Swee, T. T., & Ahmed, T. (2016). Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Computer methods and programs in biomedicine, 127, 52-63.
-
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8), 651-666.Jung, W. H., & Lee, S. G. (2017). An Arrhythmia Classification Method in Utilizing the Weighted KNN and the Fitness Rule. IRBM, 38(3), 138-148.
-
Karaboga, D., & Ozturk, C. (2011). A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Applied soft computing, 11(1), 652-657.
-
Karlιk, B., Koçyiğit, Y., & Korürek, M. (2009). Differentiating types of muscle movements using a wavelet based fuzzy clustering neural network. Expert Systems, 26(1), 49-59.
-
Koçyiğit, Y. (2016). Heart sound signal classification using fast independent component analysis. Turkish Journal of Electrical Engineering & Computer Sciences, 24(4), 2949-2960.
-
Korürek, M., & Nizam, A. (2008). A new arrhythmia clustering technique based on Ant Colony Optimization. Journal of Biomedical Informatics, 41(6), 874-881.
-
Korürek, M., & Nizam, A. (2010). Clustering MIT–BIH arrhythmias with Ant Colony Optimization using time domain and PCA compressed wavelet coefficients. Digital Signal Processing, 20(4), 1050-1060.
-
Kutlu, Y., & Kuntalp, D. (2011). A multi-stage automatic arrhythmia recognition and classification system. Computers in Biology and Medicine, 41(1), 37-45.
-
Li, H., Yuan, D., Ma, X., Cui, D., & Cao, L. (2017). Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Scientific reports, 7, 41011
-
Martis, R. J., Acharya, U. R., Lim, C. M., Mandana, K. M., Ray, A. K., & Chakraborty, C. (2013). Application of higher order cumulant features for cardiac health diagnosis using ECG signals. International journal of neural systems, 23(04), 1350014.
-
Moody, G. B., & Mark, R. (1992). MIT-BIH arrhythmia database directory. MITBIH Database Distribution, Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. Available on the World Wide Web at:(http://www. physionet. org/physiobank/database/html/mitdbdir/mitdbdir. htm)(last date visited: Jul. 23, 2008).
-
Selim, S. Z., & Ismail, M. A. (1984). K-means-type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Transactions on pattern analysis and machine intelligence, (1), 81-87.
-
Senthilnath, J., Omkar, S. N., & Mani, V. (2011). Clustering using firefly algorithm: performance study. Swarm and Evolutionary Computation, 1(3), 164-171.
-
Suganya, R., & Shanthi, R. (2012). Fuzzy c-means algorithm-a review. International Journal of Scientific and Research Publications, 2(11), 1.
-
Yan, X., Zhu, Y., Zou, W., & Wang, L. (2012). A new approach for data clustering using hybrid artificial bee colony algorithm. Neurocomputing, 97, 241-250.
-
Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Luniver press.
-
Yeh, Y. C., Chiou, C. W., & Lin, H. J. (2012). Analyzing ECG for cardiac arrhythmia using cluster analysis. Expert Systems with Applications, 39(1), 1000-1010.
-
Zhang, C., Ouyang, D., & Ning, J. (2010). An artificial bee colony approach for clustering. Expert Systems with Applications, 37(7), 4761-4767.
-
Zhang, J., & Shen, L. (2014). An improved fuzzy c-means clustering algorithm based on shadowed sets and PSO. Computational intelligence and neuroscience, 2014, 22.