Review
BibTex RIS Cite

Treatments of Micro Pollutants in Wastewater Treatment Plants

Year 2019, Volume: 22 Issue: 2, 58 - 77, 28.06.2019
https://doi.org/10.17780/ksujes.451940

Abstract

With industrialization and rapid population growth, the use of chemicals in every aspect of our lives is increasing. As a result, there is an increase in micro-pollutant concentrations in water environments and nature. Micro pollutants consist of pharmaceutical, personal care products (PPCP), steroid hormones, industrial chemicals, pesticides, polyaromatic hydrocarbons and other recently seen compounds. In water environments, these pollutants are usually in very low concentrations ranging from a few ng /l to μg/ l. Many micro pollutants are stable and resistant to biological treatment. For this reason, they cannot be treated in conventional wastewater treatment plants and are continuously discharged to receiving environments.

Considering that the conventional methods are insufficient for removing the micropollutants other alternative treatment methods including coagulation–flocculation, activated carbon adsorption (powdered activated carbon and granular activated carbon), advanced oxidation processes (AOPs), membrane processes and membrane bioreactor can be applied for better removal. Studies on this subject and the results obtained are presented.

References

  • Al-Rifai, J. H., Khabbaz, H., Schäfer, A. I. (2011). Removal of pharmaceuticals and endocrine disrupting compounds in a water recycling process using reverse osmosis systems. Separation and Purification Technology, 77(1), 60–67.
  • Balci, B. (2010). Farmasötik Bileşiklerin Sucul Ortamda Bulunuşu ve Etkileri, Biyoloji Bilimleri Araştırma Dergisi, 3(2), 13–19.
  • Besha, A. T., Gebreyohannes, A. Y., Tufa, R. A., Bekele, D. N., Curcio, E., Giorno, L. (2017). Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: A review. Journal of Environmental Chemical Engineering.
  • Biljana, D. S., Kadokami, K, Anti, I. (2018). Survey on the micro-pollutants presence in surface water system of northern Serbia and environmental and health risk assessment, 166(May), 130–140.
  • Breton, R., Boxall, A. (2003). Pharmaceuticals and personal care products in the environment: Regulatory drivers and research needs. In QSAR and Combinatorial Science, 22, 399–409.
  • Chen, L., Wei, G., Zhong, Y., Wang, G., Shen, Z. (2014). Targeting priority management areas for multiple pollutants from non-point sources. Journal of Hazardous Materials, 280, 244–251.
  • Choi, K., Kim, Y., Park, J., Park, C. K., Kim, M. Y., Kim, H. S., Kim, P. (2008). Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea. Science of the Total Environment, 405(1–3), 120–128.
  • Eggen, R. I. L., Hollender, J., Joss, A., Schärer, M., Stamm, C. (2014). Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants. Environmental Science and Technology, 48(14), 7683–7689.
  • Escher, B. I., Baumgartner, R., Koller, M., Treyer, K., Lienert, J., McArdell, C. S. (2011). Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Research, 45(1), 75–92.
  • Gerrity D, Gamage S, Holady JC, Mawhinney DB, Quinones O, Trenholm RA. (2011). Pilotscale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection. Water Research, 45:2155-2165.
  • Grover DP, Zhou JL, Frickers PE, aReadman JW. (2011). Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: Impact on receiving river water. Journal of Hazardous Materials, 185, 1005-1011.
  • Huerta, B., Rodriguez-Mozaz, S., Lazorchak, J., Barcelo, D., Batt, A., Wathen, J., Stahl, L. (2018). Presence of pharmaceuticals in fish collected from urban rivers in the U.S. EPA 2008–2009 National Rivers and Streams Assessment. Science of The Total Environment, 634, 542–549.
  • Jiang, J. Q., Zhou, Z., Sharma, V. K. (2013). Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water - A review from global views. Microchemical Journal, 110, 292–300.
  • Kasprzyk-Hordern, B., Dinsdale, R. M., Guwy, A. J. (2009). The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research, 43(2), 363–380.
  • Kılıç, H. (2015). Hastane Atıksularında Antibiyotikler ve Kentsel Atıksulara Etkisi-Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Kinney, C. A., Furlong, E. T., Werner, S. L., Cahill, J. D. (2006). Presence and Distribution of Wastewater-Derived Pharmaceuticals in Soil Irrigated With Reclaimed Water. Environmental Toxicology and Chemistry, 25(2), 317.
  • Kosma, C. I., Lambropoulou, D. A., Albanis, T. A. (2014). Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment. Science of the Total Environment, 466–467, 421–438.
  • Liu, J. L., Wong, M. H. (2013). Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environment International, 59, 208–224.
  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473–474, 619–641.
  • Nas,B., Dolu, T., Ateş, H., Argun, ME., Yel, E. (2017). Treatment Alternatives for Micropollutant Removal in Wastewater. Selçuk Üniversitesi Mühendislik Fakültesi Dergisi, 5(2), 133-143.
  • Önen Acar Ö. (2018). Evsel Nitelikli Atıksu Arıtma Tesisi Çıkış Sularının Tarımsal Sulamada Kullanılabilirliği- Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Özdemir G. (2018). Mikro kirleticiler. 2. Uluslararası Mesleksel ve Çevresel Hastalıklar Kongresi, Antalya, Türkiye, 04-08 Mart.
  • Pal, A., Gin, K. Y. H., Lin, A. Y. C., Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062–6069.
  • Pauwels, B., Verstraete, W. (2006). The treatment of hospital wastewater: An appraisal. Journal of Water and Health, 4(4), 405–416.
  • Qin, Q., Chen, X., Zhuang, J. (2015). The fate and impact of pharmaceuticals and personal care products in agricultural soils irrigated with reclaimed water. Critical Reviews in Environmental Science and Technology, 45(13), 1379–1408.
  • Stasinakis, A. S., Thomaidis, N. S., Arvaniti, O. S., Asimakopoulos, A. G., Samaras, V. G., Ajibola, A., Lekkas, T. D. (2013). Contribution of primary and secondary treatment on the removal of benzothiazoles, benzotriazoles, endocrine disruptors, pharmaceuticals and perfluorinated compounds in a sewage treatment plant. Science of the Total Environment, 463–464, 1067–1075.
  • Suarez, S., Lema, J.M., Omil, F. (2009). Pre-treatment of hospital wastewater by coagulation–flocculation and flotation, Bioresource Technology, 100, 2138-2146.
  • Sui Q, Huang J, Deng S, Yu G, Fan Q. (2010). Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Research, 44:417-426.
  • Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R. D., Buelna, G. (2017). Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, 224, 1–12.
  • Trinh T, van den Akker B, Stuetz RM, Coleman HM, Le-Clech P, Khan, SJ. (2012). Removal of trace organic chemical contaminants by a membrane bioreactor. Water Science Technology, 66, 1856-1863.
  • Ulutaş G. (2017). Kentsel Atıksudaki Anti-Enflamatuar Yüküne Hastane Atıksularının Katkısı- Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Wang, J., & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. Journal of Environmental Management, 182, 620–640.
  • Wu, X., Ernst, F., Conkle, J. L., & Gan, J. (2013). Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environment International, 60, 15–22.
  • Xu, J., Wu, L., & Chang, A. C. (2009). Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere, 77(10), 1299–1305.
  • Yaşar, A., Doğan, E. C. A. N., & Arslan, A. (2013). Hastane Atıksularında Makro ve Mikro Kirleticiler ve Arıtma Seçenekleri Macro and Micro Pollutants and Treatment Options in Hospital Wastewaters, 29(2), 144–158.
  • Zhang, Y., Geißen, S. U., & Gal, C. (2008). Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8), 1151–1161.
  • URL 1, Ftalatların tanımlanması, https://tr.wikipedia.org/wiki/Ftalat (6 Temmuz 2018).

Atıksu Arıtma Tesislerinde Mikro Kirleticilerin Arıtılabilirliği

Year 2019, Volume: 22 Issue: 2, 58 - 77, 28.06.2019
https://doi.org/10.17780/ksujes.451940

Abstract

Sanayileşme ve hızlı nüfus artışıyla birlikte; kimyasalların hayatımızın her alanında kullanımı giderek artmaktadır. Bunun sonucu olarak, su ortamlarında ve doğada mikro kirletici konsantrasyonlarında bir artış görülmektedir. Mikro kirleticiler; farmasötikler, kişisel bakım ürünleri (PPCP), steroid hormonlar, endüstriyel kimyasallar, pestisitler, poliaromatik hidrokarbonlar ve son zamanlarda görülen diğer bileşiklerden oluşmaktadır. Su ortamlarında bu kirleticiler genellikle birkaç ng /L ile μg/ L arasında değişen çok düşük konsantrasyonlarda bulunmaktadır. Mikro kirleticilerin birçoğu kararlı yapıda olup biyolojik arıtmaya karşı dirençlidir. Bu nedenle klasik atıksu arıtma tesislerinde arıtılamayıp sürekli olarak alıcı ortamlara deşarj edilmektedirler.

Mikro kirleticilerin giderimin de klasik yöntemlerin yetersiz olduğu göz önünde bulundurulduğunda daha iyi giderim verimleri için koagülasyon – flokülasyon, aktif karbon adsorpsiyonu (toz aktif karbon ve granül aktif karbon), ileri oksidasyon prosesleri (İOP), membran prosesleri ve membran biyoreaktörü içeren diğer alternatif arıtma yöntemleri uygulanabilir. Yapılan bu derlemede, mikro kirleticilerin su ortamlarındaki varlığına, çeşitli arıtma yöntemlerine ve arıtma verimlerine yer verilmiştir. Bu şekilde mikro kirleticinin türüne göre uygun arıtım alternatifleri sunulmuştur.

References

  • Al-Rifai, J. H., Khabbaz, H., Schäfer, A. I. (2011). Removal of pharmaceuticals and endocrine disrupting compounds in a water recycling process using reverse osmosis systems. Separation and Purification Technology, 77(1), 60–67.
  • Balci, B. (2010). Farmasötik Bileşiklerin Sucul Ortamda Bulunuşu ve Etkileri, Biyoloji Bilimleri Araştırma Dergisi, 3(2), 13–19.
  • Besha, A. T., Gebreyohannes, A. Y., Tufa, R. A., Bekele, D. N., Curcio, E., Giorno, L. (2017). Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: A review. Journal of Environmental Chemical Engineering.
  • Biljana, D. S., Kadokami, K, Anti, I. (2018). Survey on the micro-pollutants presence in surface water system of northern Serbia and environmental and health risk assessment, 166(May), 130–140.
  • Breton, R., Boxall, A. (2003). Pharmaceuticals and personal care products in the environment: Regulatory drivers and research needs. In QSAR and Combinatorial Science, 22, 399–409.
  • Chen, L., Wei, G., Zhong, Y., Wang, G., Shen, Z. (2014). Targeting priority management areas for multiple pollutants from non-point sources. Journal of Hazardous Materials, 280, 244–251.
  • Choi, K., Kim, Y., Park, J., Park, C. K., Kim, M. Y., Kim, H. S., Kim, P. (2008). Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea. Science of the Total Environment, 405(1–3), 120–128.
  • Eggen, R. I. L., Hollender, J., Joss, A., Schärer, M., Stamm, C. (2014). Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants. Environmental Science and Technology, 48(14), 7683–7689.
  • Escher, B. I., Baumgartner, R., Koller, M., Treyer, K., Lienert, J., McArdell, C. S. (2011). Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Research, 45(1), 75–92.
  • Gerrity D, Gamage S, Holady JC, Mawhinney DB, Quinones O, Trenholm RA. (2011). Pilotscale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection. Water Research, 45:2155-2165.
  • Grover DP, Zhou JL, Frickers PE, aReadman JW. (2011). Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: Impact on receiving river water. Journal of Hazardous Materials, 185, 1005-1011.
  • Huerta, B., Rodriguez-Mozaz, S., Lazorchak, J., Barcelo, D., Batt, A., Wathen, J., Stahl, L. (2018). Presence of pharmaceuticals in fish collected from urban rivers in the U.S. EPA 2008–2009 National Rivers and Streams Assessment. Science of The Total Environment, 634, 542–549.
  • Jiang, J. Q., Zhou, Z., Sharma, V. K. (2013). Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water - A review from global views. Microchemical Journal, 110, 292–300.
  • Kasprzyk-Hordern, B., Dinsdale, R. M., Guwy, A. J. (2009). The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research, 43(2), 363–380.
  • Kılıç, H. (2015). Hastane Atıksularında Antibiyotikler ve Kentsel Atıksulara Etkisi-Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Kinney, C. A., Furlong, E. T., Werner, S. L., Cahill, J. D. (2006). Presence and Distribution of Wastewater-Derived Pharmaceuticals in Soil Irrigated With Reclaimed Water. Environmental Toxicology and Chemistry, 25(2), 317.
  • Kosma, C. I., Lambropoulou, D. A., Albanis, T. A. (2014). Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment. Science of the Total Environment, 466–467, 421–438.
  • Liu, J. L., Wong, M. H. (2013). Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environment International, 59, 208–224.
  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473–474, 619–641.
  • Nas,B., Dolu, T., Ateş, H., Argun, ME., Yel, E. (2017). Treatment Alternatives for Micropollutant Removal in Wastewater. Selçuk Üniversitesi Mühendislik Fakültesi Dergisi, 5(2), 133-143.
  • Önen Acar Ö. (2018). Evsel Nitelikli Atıksu Arıtma Tesisi Çıkış Sularının Tarımsal Sulamada Kullanılabilirliği- Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Özdemir G. (2018). Mikro kirleticiler. 2. Uluslararası Mesleksel ve Çevresel Hastalıklar Kongresi, Antalya, Türkiye, 04-08 Mart.
  • Pal, A., Gin, K. Y. H., Lin, A. Y. C., Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062–6069.
  • Pauwels, B., Verstraete, W. (2006). The treatment of hospital wastewater: An appraisal. Journal of Water and Health, 4(4), 405–416.
  • Qin, Q., Chen, X., Zhuang, J. (2015). The fate and impact of pharmaceuticals and personal care products in agricultural soils irrigated with reclaimed water. Critical Reviews in Environmental Science and Technology, 45(13), 1379–1408.
  • Stasinakis, A. S., Thomaidis, N. S., Arvaniti, O. S., Asimakopoulos, A. G., Samaras, V. G., Ajibola, A., Lekkas, T. D. (2013). Contribution of primary and secondary treatment on the removal of benzothiazoles, benzotriazoles, endocrine disruptors, pharmaceuticals and perfluorinated compounds in a sewage treatment plant. Science of the Total Environment, 463–464, 1067–1075.
  • Suarez, S., Lema, J.M., Omil, F. (2009). Pre-treatment of hospital wastewater by coagulation–flocculation and flotation, Bioresource Technology, 100, 2138-2146.
  • Sui Q, Huang J, Deng S, Yu G, Fan Q. (2010). Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Research, 44:417-426.
  • Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R. D., Buelna, G. (2017). Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, 224, 1–12.
  • Trinh T, van den Akker B, Stuetz RM, Coleman HM, Le-Clech P, Khan, SJ. (2012). Removal of trace organic chemical contaminants by a membrane bioreactor. Water Science Technology, 66, 1856-1863.
  • Ulutaş G. (2017). Kentsel Atıksudaki Anti-Enflamatuar Yüküne Hastane Atıksularının Katkısı- Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Wang, J., & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. Journal of Environmental Management, 182, 620–640.
  • Wu, X., Ernst, F., Conkle, J. L., & Gan, J. (2013). Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environment International, 60, 15–22.
  • Xu, J., Wu, L., & Chang, A. C. (2009). Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere, 77(10), 1299–1305.
  • Yaşar, A., Doğan, E. C. A. N., & Arslan, A. (2013). Hastane Atıksularında Makro ve Mikro Kirleticiler ve Arıtma Seçenekleri Macro and Micro Pollutants and Treatment Options in Hospital Wastewaters, 29(2), 144–158.
  • Zhang, Y., Geißen, S. U., & Gal, C. (2008). Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8), 1151–1161.
  • URL 1, Ftalatların tanımlanması, https://tr.wikipedia.org/wiki/Ftalat (6 Temmuz 2018).
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Şeyma Akkurt 0000-0002-0135-1975

Merve Oğuz 0000-0002-8388-1477

Publication Date June 28, 2019
Submission Date August 8, 2018
Published in Issue Year 2019Volume: 22 Issue: 2

Cite

APA Akkurt, Ş., & Oğuz, M. (2019). Atıksu Arıtma Tesislerinde Mikro Kirleticilerin Arıtılabilirliği. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 22(2), 58-77. https://doi.org/10.17780/ksujes.451940